Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey.

At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at **www.onsemi.com**

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Analog Multiplexers/ Demultiplexers

High-Performance Silicon-Gate CMOS

MC74HC4051A, MC74HC4052A, MC74HC4053A

The MC74HC4051A, MC74HC4052A and MC74HC4053A utilize silicon—gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/demultiplexers control analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).

The HC4051A, HC4052A and HC4053A are identical in pinout to the metal–gate MC14051AB, MC14052AB and MC14053AB. The Channel–Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

The Channel–Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors they are compatible with LSTTL outputs.

These devices have been designed so that the ON resistance (R_{on}) is more linear over input voltage than R_{on} of metal-gate CMOS analog switches.

For a multiplexer/demultiplexer with injection current protection, see HC4851A and HC4852A.

Features

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range $(V_{CC} V_{EE}) = 2.0$ to 12.0 V
- Digital (Control) Power Supply Range $(V_{CC} GND) = 2.0$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal–Gate Counterparts
- Low Noise
- In Compliance with the Requirements of JEDEC Standard No. 7A
- Chip Complexity: HC4051A 184 FETs or 46 Equivalent Gates HC4052A – 168 FETs or 42 Equivalent Gates

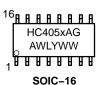
 HC4053A – 156 FETs or 39 Equivalent Gates
 NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100

Qualified and PPAP Capable

• These Devices are Pb–Free, Halogen Free/BFR–Free and are RoHS Compliant

This document contains information on some products that are still under development. **onsemi** reserves the right to change or discontinue these products without notice.

SOIC-16 D SUFFIX CASE 751B



TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAMS

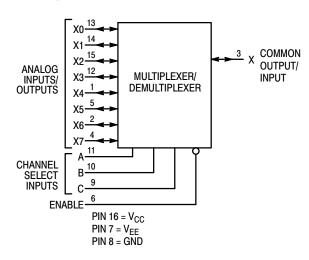
SOIC-16 WIDE

TSSOP-16

x = 1, 2 or 3

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

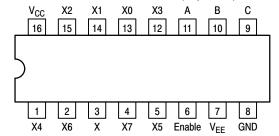

(Note: Microdot may be in either location)

ORDERING INFORMATION

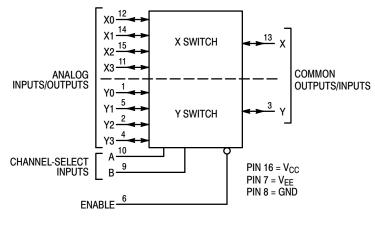
See detailed ordering and shipping information on page 13 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 13.

LOGIC DIAGRAM MC74HC4051A Single-Pole, 8-Position Plus Common Off



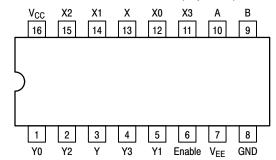
FUNCTION TABLE - MC74HC4051A


	Control Inputs				
		;	Selec	t	
Ena	ble	С	В	Α	ON Channels
L		L	L	L	X0
L		L	L	Н	X1
L		L	Н	L	X2
L		L	Н	Н	X3
L		Н	L	L	X4
L		Н	L	Н	X5
L		Н	Н	L	X6
L		Н	Н	Н	X7
H	l	X	Χ	Χ	NONE

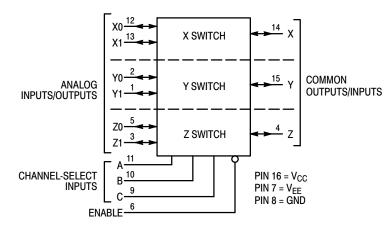
X = Don't Care

Pinout: MC74HC4051A (Top View)

LOGIC DIAGRAM MC74HC4052A Double-Pole, 4-Position Plus Common Off



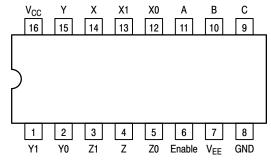
FUNCTION TABLE - MC74HC4052A


1 0110	11014 17	14101 7110-	10327	
Contr	ol Input			
	Sel			
Enable	В	Α	ON Ch	annels
L	L	L	Y0	X0
L	L	Н	Y1	X1
L	Н	L	Y2	X2
L	Н	Н	Y3	Х3
Н	Х	Χ	NO	NE

X = Don't Care

Pinout: MC74HC4052A (Top View)

LOGIC DIAGRAM MC74HC4053A Triple Single-Pole, Double-Position Plus Common Off


NOTE: This device allows independent control of each switch. Channel–Select Input A controls the X–Switch, Input B controls the Y–Switch and Input C controls the Z–Switch

FUNCTION TABLE - MC74HC4053A

Control Inputs						
Enable	C	Selec B	t A	01	N Chann	els
L	L	L	L	Z0	Y0	X0
L	L	L	Н	Z0	Y0	X1
L	L	Н	L	Z0	Y1	X0
L	L	Н	Н	Z0	Y1	X1
L	Н	L	L	Z1	Y0	X0
L	Н	L	Н	Z1	Y0	X1
L	Н	Н	L	Z1	Y1	X0
L	Н	Н	Н	Z1	Y1	X1
Н	X	Χ	Χ		NONE	

X = Don't Care

Pinout: MC74HC4053A (Top View)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND) (Referenced to V _{EE})	-0.5 to +7.0 -0.5 to +14.0	V
V _{EE}	Negative DC Supply Voltage (Referenced to GND)	-7.0 to +5.0	V
V _{IS}	Analog Input Voltage	$V_{EE} - 0.5 \text{ to} $ $V_{CC} + 0.5$	V
V _{in}	Digital Input Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
I	DC Current, Into or Out of Any Pin	±25	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V _{EE})	2.0 2.0	6.0 12.0	V
V _{EE}	Negative DC Supply Voltage, Output (Referenced to GND)		-6.0	GND	V
V _{IS}	Analog Input Voltage		V _{EE}	V _{CC}	V
V _{in}	Digital Input Voltage (Referenced to GND)		GND	V _{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Switch			1.2	V
T _A	Operating Temperature Range, All Package Types		- 55	+125	°C
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inputs)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 600 500 400	ns

DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted

			V _{CC}	Guara	Guaranteed Limit		
Symbol	Parameter	Condition	v	-55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	٧
V _{IL}	Maximum Low–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
I _{in}	Maximum Input Leakage Current, Channel–Select or Enable Inputs	$V_{in} = V_{CC}$ or GND, $V_{EE} = -6.0 \text{ V}$	6.0	± 0.1	± 1.0	± 1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable an $V_{IS} = V_{CC}$ or GND; V_{EE} $V_{IO} = 0 \text{ V}$	= GND 6.0	1 4	10 40	20 80	μΑ

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

*For voltage drops across switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS — Analog Section

					Guaranteed Limit			
Symbol	Parameter	Condition	v _{cc}	V _{EE}	–55 to 25°C	≤85°C	≤125°C	Unit
R _{on}	Maximum "ON" Resistance	$V_{in} = V_{IL}$ or V_{IH} ; $V_{IS} = V_{CC}$ to V_{EE} ; $I_S \le 2.0$ mA (Figures 1, 2)	4.5 4.5 6.0	0.0 - 4.5 - 6.0	190 120 100	240 150 125	280 170 140	Ω
		$\begin{split} &V_{in} = V_{IL} \text{ or } V_{IH}; \ V_{IS} = V_{CC} \text{ or } \\ &V_{EE} \text{ (Endpoints); } I_{S} \leq 2.0 \text{ mA} \\ &\text{(Figures 1, 2)} \end{split}$	4.5 4.5 6.0	0.0 - 4.5 - 6.0	150 100 80	190 125 100	230 140 115	
ΔR_{on}	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{split} &V_{in} = V_{IL} \text{ or } V_{IH}; \\ &V_{IS} = 1/2 (V_{CC} - V_{EE}); \\ &I_{S} \leq 2.0 \text{ mA} \end{split}$	4.5 4.5 6.0	0.0 - 4.5 - 6.0	30 12 10	35 15 12	40 18 14	Ω
l _{off}	Maximum Off-Channel Leakage Current, Any One Channel	$V_{in} = V_{IL} \text{ or } V_{IH};$ $V_{IO} = V_{CC} - V_{EE};$ Switch Off (Figure 3)	6.0	- 6.0	0.1	0.5	1.0	μΑ
	Maximum Off–ChannelHC4051A Leakage Current, HC4052A Common Channel HC4053A	$V_{IO} = V_{CC} - V_{EE};$	6.0 6.0 6.0	- 6.0 - 6.0 - 6.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	
l _{on}	Maximum On-ChannelHC4051A Leakage Current, HC4052A Channel-to-Channel HC4053A	Switch-to-Switch =	6.0 6.0 6.0	- 6.0 - 6.0 - 6.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	μΑ

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			V _{CC}	Guaranteed Limit		nit	
Symbol	Parameter		V	−55 to 25°C	≤85°C	≤125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Channel-Select to Analog (Figure 9)	Output	2.0 3.0 4.5 6.0	270 90 59 45	320 110 79 65	350 125 85 75	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Analog Input to Analog Ot (Figure 10)	ıtput	2.0 3.0 4.5 6.0	40 25 12 10	60 30 15 13	70 32 18 15	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Enable to Analog Output (Figure 11)		2.0 3.0 4.5 6.0	160 70 48 39	200 95 63 55	220 110 76 63	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Enable to Analog Output (Figure 11)		2.0 3.0 4.5 6.0	245 115 49 39	315 145 69 58	345 155 83 67	ns
C _{in}	Maximum Input Capacitance, Channel-Select or Enable	Inputs		10	10	10	pF
C _{I/O}	Maximum Capacitance	Analog I/O		35	35	35	pF
	(All Switches Off) Common O/	I: HC4051A HC4052A HC4053A		130 80 50	130 80 50	130 80 50	
	Fe	ed-through		1.0	1.0	1.0	
			Typica	I @ 25°C, V _{CC}	= 5.0 V, V	_{EE} = 0 V	
C _{PD}	Power Dissipation Capacitance (Figure 13)*	HC4051A HC4052A HC4053A		45 80 45			pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

			Vcc	V _{CC} V _{EE}		Limit*		
Symbol	Parameter	Condition	v v			25°C		Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response (Figure 6)	f_{in} = 1MHz Sine Wave; Adjust f_{in} Voltage to Obtain 0dBm at V _{OS} ; Increase f_{in} Frequency Until dB Meter Reads –3dB; R_L = 50 Ω , C_L = 10pF	2.25 4.50 6.00	-2.25 -4.50 -6.00	'51 80 80 80	'52 95 95 95	'53 120 120 120	MHz
_	Off-Channel Feed-through Isolation (Figure 7)	f_{in} = Sine Wave; Adjust f_{in} Voltage to Obtain 0dBm at V_{IS} f_{in} = 10kHz, R_L = 600 Ω , C_L = 50pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50	<u>I</u>	dB
		f_{in} = 1.0MHz, R_L = 50 Ω , C_L = 10pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-40 -40 -40		
_	Feedthrough Noise. Channel–Select Input to Common I/O (Figure 8)	$\begin{split} &V_{in} \leq \text{1MHz Square Wave } (t_r = t_f = 6\text{ns}); \\ &\text{Adjust R}_L \text{ at Setup so that } I_S = 0\text{A}; \\ &\text{Enable} = \text{GND} \qquad R_L = 600\Omega, \ C_L = 50\text{pF} \end{split}$	2.25 4.50 6.00	-2.25 -4.50 -6.00		25 105 135		mV_{PP}
		$R_L = 10k\Omega$, $C_L = 10pF$	2.25 4.50 6.00	-2.25 -4.50 -6.00		35 145 190		
_	Crosstalk Between Any Two Switches (Figure 12) (Test does not apply to HC4051A)	$\begin{aligned} f_{in} &= \text{Sine Wave; Adjust } f_{in} \text{ Voltage to} \\ &\text{Obtain 0dBm at V}_{IS} \\ &f_{in} &= 10 \text{kHz, R}_{L} = 600\Omega, C_{L} = 50 \text{pF} \end{aligned}$	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50		dB
		f_{in} = 1.0MHz, R_L = 50 Ω , C_L = 10pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-60 -60 -60		
THD	Total Harmonic Distortion (Figure 14)	$\begin{split} f_{\text{in}} = \text{1kHz, R}_{L} = \text{10k}\Omega, C_{L} = \text{50pF} \\ \text{THD} = \text{THD}_{\text{measured}} - \text{THD}_{\text{source}} \\ V_{\text{IS}} = \text{4.0V}_{\text{PP}} \text{ sine wave} \\ V_{\text{IS}} = \text{8.0V}_{\text{PP}} \text{ sine wave} \\ V_{\text{IS}} = \text{11.0V}_{\text{PP}} \text{ sine wave} \end{split}$	2.25 4.50 6.00	-2.25 -4.50 -6.00		0.10 0.08 0.05		%

^{*}Limits not tested. Determined by design and verified by qualification.

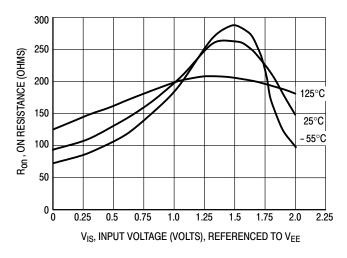
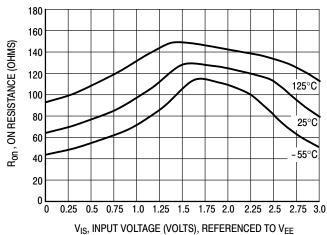
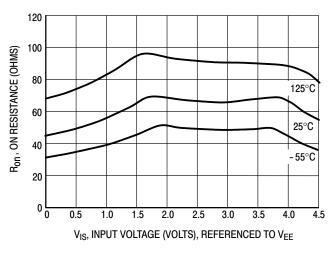
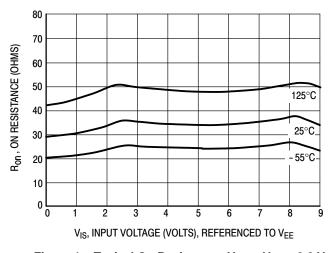


Figure 1a. Typical On Resistance, $V_{CC} - V_{EE} = 2.0 \text{ V}$


Figure 1b. Typical On Resistance, $V_{CC} - V_{EE} = 3.0 \text{ V}$

105 90 75 60 45 0 0 0 0.5 1.0 1.5 2.0 2.5 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 V_{IS}, INPUT VOLTAGE (VOLTS), REFERENCED TO V_{EE}

Figure 1c. Typical On Resistance, $V_{CC} - V_{EE} = 4.5 \text{ V}$

Figure 1d. Typical On Resistance, $V_{CC} - V_{EE} = 6.0 \text{ V}$

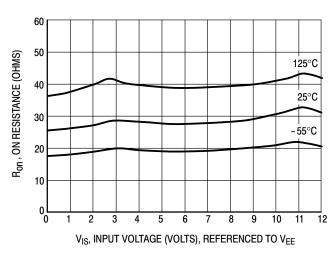


Figure 1e. Typical On Resistance, $V_{CC} - V_{EE} = 9.0 \text{ V}$

Figure 1f. Typical On Resistance, $V_{CC} - V_{EE} = 12.0 \text{ V}$

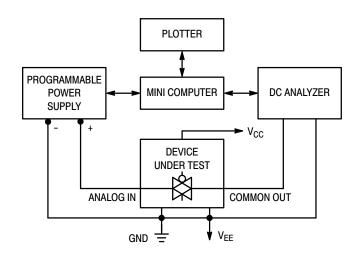


Figure 2. On Resistance Test Set-Up

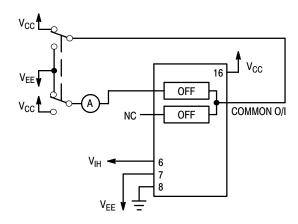


Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

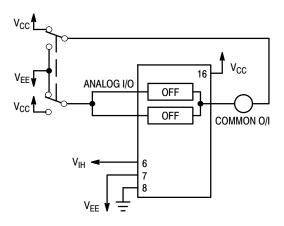


Figure 4. Maximum Off Channel Leakage Current, Common Channel, Test Set-Up

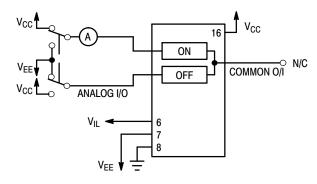


Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

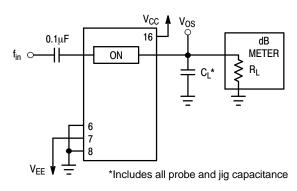


Figure 6. Maximum On Channel Bandwidth,
Test Set-Up

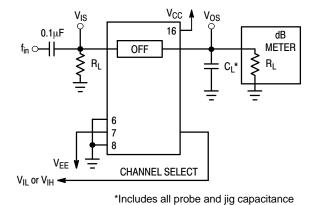
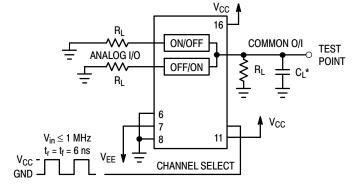
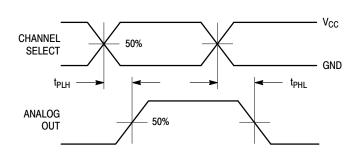




Figure 7. Off Channel Feedthrough Isolation, Test Set-Up

*Includes all probe and jig capacitance

Figure 8. Feedthrough Noise, Channel Select to Common Out, Test Set-Up

ANALOG I/O

OFF/ON

TEST
POINT

Channel Select

*Includes all probe and jig capacitance

Figure 9a. Propagation Delays, Channel Select to Analog Out

Figure 9b. Propagation Delay, Test Set-Up Channel Select to Analog Out

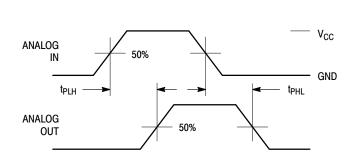
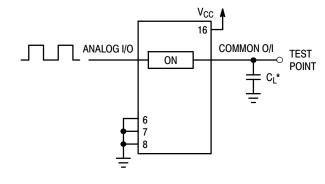



Figure 10a. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance

Figure 10b. Propagation Delay, Test Set-Up Analog In to Analog Out

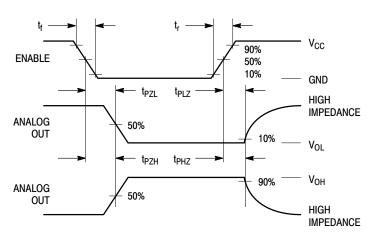


Figure 11a. Propagation Delays, Enable to Analog Out

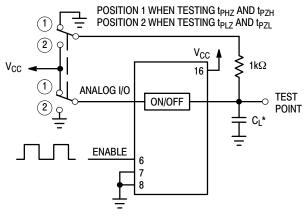
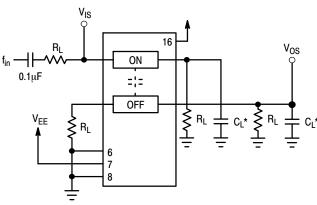



Figure 11b. Propagation Delay, Test Set-Up
Enable to Analog Out

*Includes all probe and jig capacitance

Figure 12. Crosstalk Between Any Two Switches, Test Set-Up

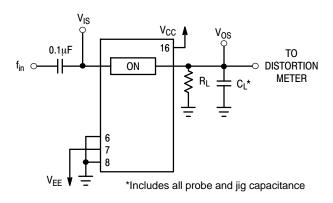


Figure 14a. Total Harmonic Distortion, Test Set-Up

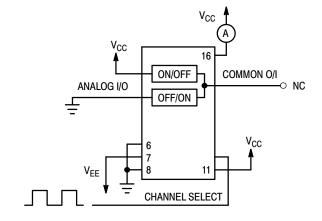


Figure 13. Power Dissipation Capacitance, Test Set-Up

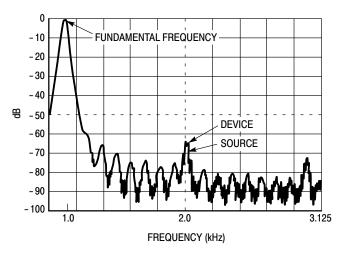


Figure 14b. Plot, Harmonic Distortion

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$V_{CC} = +5V = logic high$$

 $GND = 0V = logic low$

The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In this example, the difference between V_{CC} and V_{EE} is ten volts. Therefore, using the configuration of Figure 15, a maximum analog signal of ten volts peak—to—peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and

outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feed-through noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$\begin{split} V_{CC} - GND &= 2 \text{ to 6 volts} \\ V_{EE} - GND &= 0 \text{ to -6 volts} \\ V_{CC} - V_{EE} &= 2 \text{ to 12 volts} \\ and V_{EE} &\leq GND \end{split}$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_x) are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping.

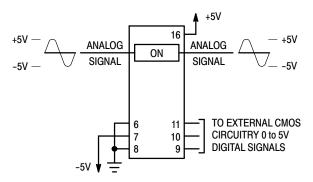


Figure 15. Application Example

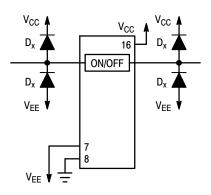
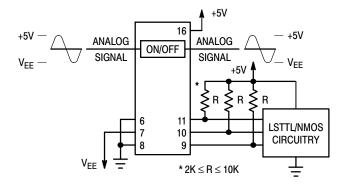
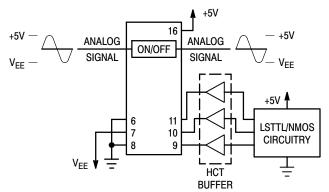
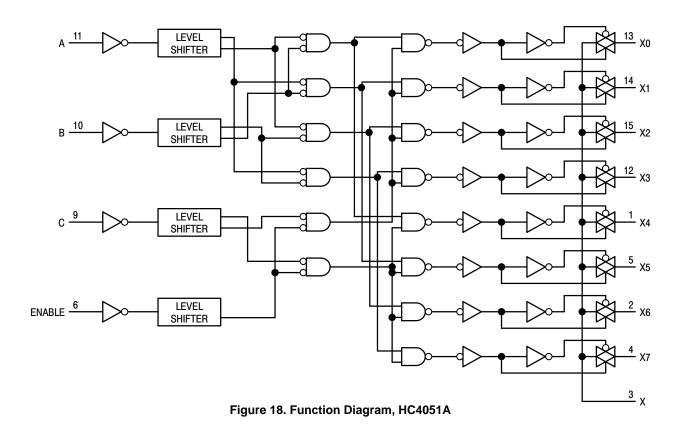




Figure 16. External Germanium or Schottky Clipping Diodes



a. Using Pull-Up Resistors

b. Using HCT Interface

Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs

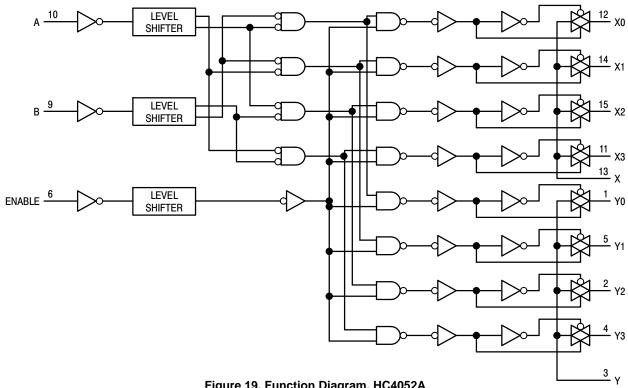


Figure 19. Function Diagram, HC4052A

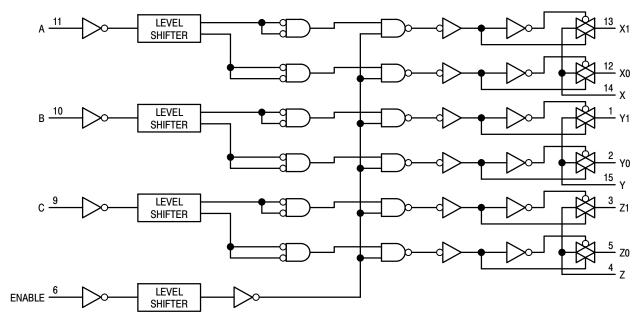


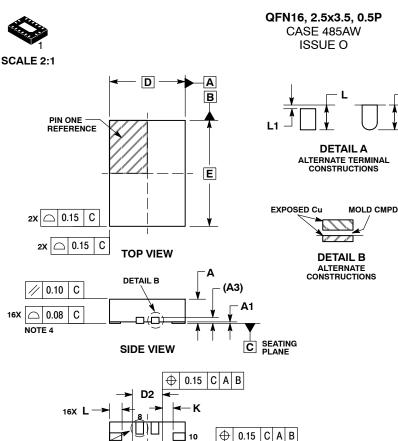
Figure 20. Function Diagram, HC4053A

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC4051ADG	SOIC-16	48 Units / Rail
MC74HC4051ADR2G	(Pb-Free)	2500 Units / Tape & Reel
MC74HC4051ADWG	SOIC-16 WIDE	48 Units / Rail
MC74HC4051ADWR2G	(Pb-Free)	1000 Units / Tape & Reel
MC74HC4051ADTG	TSSOP-16	96 Units / Rail
MC74HC4051ADTR2G	(Pb-Free)	2500 Units / Tape & Reel
NLVHC4051AMNTWG* (In Development)	QFN16 (Pb-Free)	3000 Units / Tape & Reel
MC74HC4052ADG	SOIC-16	48 Units / Rail
MC74HC4052ADR2G	(Pb-Free)	2500 Units / Tape & Reel
MC74HC4052ADWR2G	SOIC-16 WIDE (Pb-Free)	1000 Units / Tape & Reel
MC74HC4052ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLVHC4052AMNTWG* (In Development)	QFN16 (Pb-Free)	3000 Units / Tape & Reel
MC74HC4053ADG		48 Units / Rail
MC74HC4053ADR2G	SOIC-16	2500 Units / Tape & Reel
NLV74HC4053ADR2G*	— (Pb-Free)	2500 Units / Tape & Reel
MC74HC4053ADWR2G	SOIC-16 WIDE	1000 Units / Tape & Reel
NLV74HC4053ADWR2G*	(Pb-Free)	1000 Units / Tape & Reel
MC74HC4053ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
DISCONTINUED (Note 1)		
NLV74HC4051ADR2G*		2500 Units / Tape & Reel
MC74HC4051AADR2G	SOIC-16	2500 Units / Tape & Reel
NLV74HC4051AADR2G*	— (Pb-Free)	2500 Units / Tape & Reel
NLVHC4051ADWR2G*	SOIC-16 WIDE (Pb-Free)	1000 Units / Tape & Reel
NLVHC4051ADTR2G*	TSSOP-16	2500 Units / Tape & Reel
NLVHC4051AADTR2G*	(Pb-Free)	2500 Units / Tape & Reel
NLV74HC4052ADR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC74HC4052ADWG	SOIC-16 WIDE (Pb-Free)	48 Units / Rail
MC74HC4052ADTG		96 Units / Rail
NLV74HC4052ADTRG*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLVHC4052ADTR2G*	(1 5-1 166)	2500 Units / Tape & Reel
MOTULO (OFOADING		4011 11 12 11
MC74HC4053ADWG	SOIC-16 WIDE	48 Units / Rail
NLV74HC4053ADWRG*	(Pb-Free)	1000 Units / Tape & Reel
MC74HC4053ADTG	TSSOP-16	96 Units / Rail
NLVHC4053ADTR2G*	(Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.


DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The
most current information on these devices may be available on www.onsemi.com.

DETAIL A

е

e/2

E2

16X b

Ф 0.05 C NOTE 3

0.10 C A B

BOTTOM VIEW

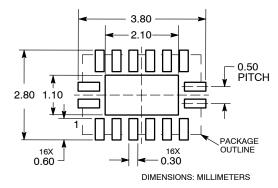
DATE 11 DEC 2008

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.80	1.00				
A1	0.00	0.05				
A3	0.20	REF				
b	0.20	0.30				
D	2.50	BSC				
D2	0.85	1.15				
E	3.50	BSC				
E2	1.85	2.15				
е	0.50	BSC				
K	0.20					
L	0.35	0.45				
L1		0.15				

GENERIC MARKING DIAGRAM*


= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week

= Pb-Free Package

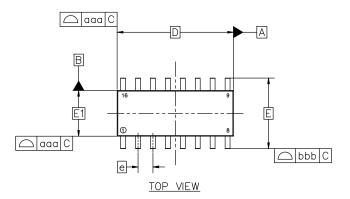
(Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products may not follow the Generic Marking.

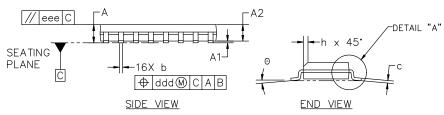
RECOMMENDED SOLDERING FOOTPRINT*

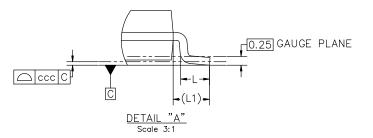
*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON36347E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	QFN16, 2.5X3.5, 0.5P		PAGE 1 OF 1

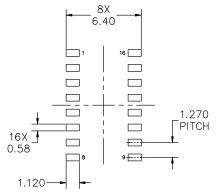
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.




SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L


DATE 29 MAY 2024

NOTES:

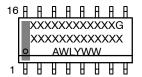

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS					
DIM	MIN	NOM	MAX		
Α	1.35	1.55	1.75		
A1	0.00	0.05	0.10		
A2	1.35	1.50	1.65		
Ь	0.35	0.42	0.49		
С	0.19	0.22	0.25		
D		9.90 BSC			
E	6.00 BSC				
E1	3.90 BSC				
е	1.27 BSC				
h	0.25		0.50		
L	0.40	0.83	1.25		
L1	1.05 REF				
Θ	0.		7.		
TOLERANCE OF FORM AND POSITION					
aaa	0.10				
bbb	0.20				
ccc	0.10				
ddd	0.25				
eee	0.10				

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 1 OF 2	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.50 1.27P

CASE 751B ISSUE L

DATE 29 MAY 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

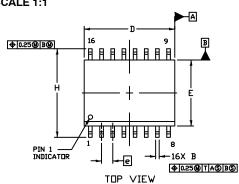
WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

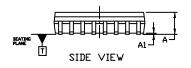
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

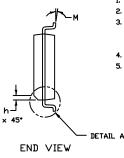
STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
9.	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4	10	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	GATE, #3 SOURCE, #3	11. 12.	ANODE ANODE	11. 12.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13.	GATE, #3 SOURCE, #3 GATE, #2	11. 12. 13.	ANODE ANODE ANODE	11. 12. 13.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		
12. 13. 14. 15.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	11. 12. 13. 14. 15.	ANODE ANODE ANODE ANODE ANODE	11. 12. 13. 14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 2 OF 2

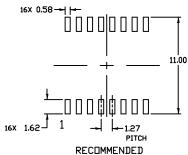
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.





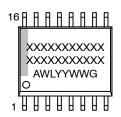

SOIC-16 WB CASE 751G ISSUE E

DATE 08 OCT 2021



DETAIL A

NOTES


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE.

	MILLIMETERS		
DIM	MIN.	MAX.	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	10.15	10.45	
E	7.40	7.60	
е	1.27 BSC		
Н	10.05	10.55	
h	0.53 REF		
١	0.50 0.90		
М	0*	7*	

MOUNTING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

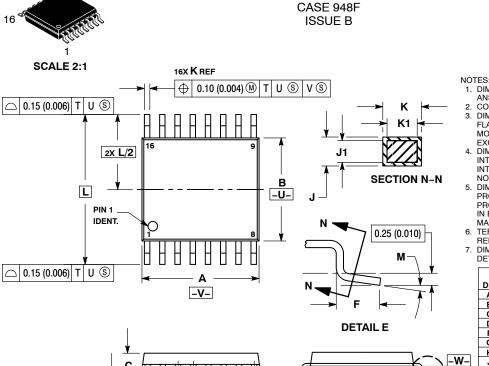
WL = Wafer Lot YY = Year ww = Work Week G = Pb-Free Package

not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42567B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16 WB		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

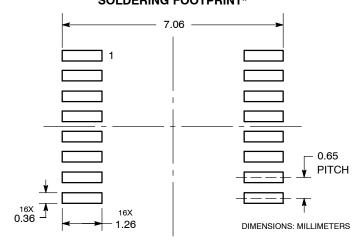
^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may


DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0 °	8°	0 °	8 °

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales