QUALITY BUILT SHORT THROW WOOFER OPTIMISED FOR SEALED ENCLOSURES

UPC:	685757152938
EAN:	0685757152938
Printed:	685757152938

DETAILED TECHNICAL DATA

Power Handling (Per Driver):	250W WRMS (@0%Thd)
Maximum Burp Power (Per Driver):	500w (@0%Thd)
Nominal Impedance:	4 ohm
DC Impedance :	3.2 ohm
Voice Coil:	50.8 mm
Voice Coil Layers :	4
Magnet:	120mm x5mm
Magnet Type:	Y25 Ferrite

BOX COMPATIBILITY

Recommended Box Type:	Sealed
Recommended Box Size:	15>45 Litres
Optimal Frequency	30>100Hz
Response:	

INSTALLATION POINTS

Failure to observe any of these installation points will invalidate your warranty:

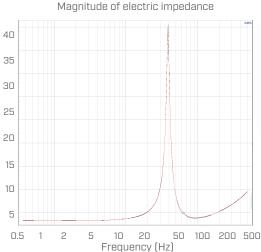
- O not run this subwoofer infinite baffle.
- Ensure your enclosure is within the specification listed.
- Only use correctly rated non-combustible cables.

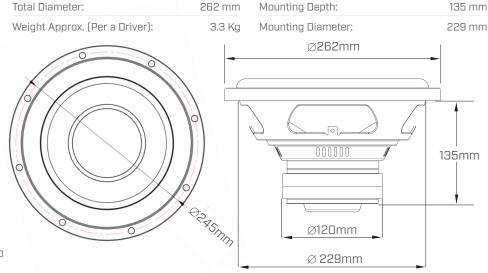
TEAM TIPS

- We recommend to put all subwoofers in your system in a box with a shared air space.
- Remember that larger enclosures offer a deeper bass, whilst smaller ones offer more instant punch.

Also, filling the enclosure with Dacron will give a deeper sound but still with the punch of the current enclosure size.

For setting subwoofers it is possible to make a useful DIY clip detector. Wire an old tweeter and high voltage capacitor (we recommend a 250V 6.8uF) in line with the subwoofer. Next, play a 50Hz tone. Turn the gain up slowly until the tweeter makes a distinctive metallic rasp then back the gain off a small amount until the tweeter stops making the noise. Only use a tweeter you do not need as this can damage the tweeter.


TS PARAMETERS


Name	Value	Unit	Note	Name
RE	3.21	OHM	Electrical voice coil resistance at DC	BL
KRM	0.0012	OHM	Wright inductance model	LAMBDA
ERM	0.96		Wright inductance model	QТР
KXM	0.0107	OHM	Wright inductance model	QMS
EXM	0.82		Wright inductance model	
CMES	959.18	UF	Electrical capacitance representing moving mass	QES
LCES	17.53	МН	Electrical inductance representing driver	QTS
	compliance	VAS		
RES	40.44	OHM	Resistance due to mechanical losses	ΜQ
FS	38.8	HZ	Driver resonance frequency	LM
MMS	99.754	G	Mechanical mass of driver diaphragm assembly including air load and coil	LMOM
MMD	92.978	G	Mechanical mass of voice coil and diaphragm without air load	RMSE Z
RMS	2.572	KG/S	Mechanical resistance of total driver losses	RMSE HX
CMS	0.169	MM/N	Mechanical compliance of driver suspension	SD
KMS	5.93	N/MM	Mechanical stiffness of driver suspension	XMAX

Name	Value	Unit	Note
BL	10.198	N/A	Force factor BL product
LAMBDA	0.055		Suspension creep factor
QTP	0.744		Total Q factor considering all losses
QMS	9.458		Mechanical Q factor of driver in free air considering RMS only
QES	0.752		Electrical Q factor of driver in free air considering RE only
QTS	0.697		Total Q factor considering RE and RMS only
VAS	25.99		Equivalent air volume of suspension
ΜQ	0.194	%	Ref. efficiency (2 PI radiation using RE)
LM	85.05	DB	Sound pressure level (SPL at 1M for 1W @ RE)
LMOM	86.03	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
RMSE Z	3.25	%	Root mean square fitting error of driver impedance Z(F)
RMSE HX	1.89	%	Root mean square fitting error of transfer function HX(F)
SD	330.06	CM2	Diaphragm area
XMAX	12	mm	Total linear movement

FREQUENCY VS IMPEDANCE

TECHNICAL DRAWING

