

Konfiguracja komunikacji między akumulatorem a falownikiem

Konfiguracja komunikacji między akumulatorem a falownikiem poprawi ich koordynację, umożliwiając bardziej precyzyjne sterowanie ładowaniem lub rozładowywaniem. Na przykład, falownik może odczytywać dane o stanie naładowania (SOC) i temperaturze z systemu zarządzania akumulatorem (BMS) i dostosowywać napięcie i prąd ładowania zgodnie z wymaganiami akumulatora. Zapewnia to optymalną wydajność i wydłuża żywotność akumulatora. Poniżej znajduje się procedura konfiguracji komunikacji.

1. Połączenie kablowe.

Zalecamy użycie kabla CAN do podłączenia falownika i akumulatora, jest to kabel sieciowy ze złączem RJ45 i zwykle można go znaleźć w opakowaniu falownika.

Building 8, 115# OF Zhangcha 1st Road, Chancheng District, Foshan City, Guangdong Province, China

Jeśli kabel nie jest dostępny, można go wykonać za pomocą kabla Ethernet. Jednak definicja

wyprowadzeń musi być ściśle zgodna z dostarczonymi instrukcjami (zwykle CAN_L: 4, CAN_H: 5).

Below chart sh	ow RJ45 Pins definition			
Pin	Definition			
1	RS-485-B			
2	RS-485-A			
3	GND			
4	CANH			
5	CANL			
6				
7				
8				

Należy pamiętać, że definicja wyprowadzeń może się różnić w zależności od modelu falownika. Dlatego należy zawsze zapoznać się z instrukcją obsługi (akumulatora/inwertera) konkretnego modelu, aby potwierdzić, że używany kabel jest prawidłowy.

2. Ustawienie protokolarne (falownik/akumulator)

Po nawiązaniu połączenia nadal będziemy musieli ustawić ten sam protokół zarówno w akumulatorze, jak i falowniku, zanim będą mogły się ze sobą komunikować.

Ustawienie po stronie falownika:

Dla PV18, Po naciśnięciu i przytrzymaniu przycisku "ENTER" przez 2 sekundy, urządzenie wejdzie w tryb ustawień. Nacisnąć przycisk "w górę", aby przejść do ustawienia 41 (przycisk "w dół", aby powrócić);

Setting value	Protocal	Communication type
00	MUST (PV-CAN)	CAN
08	PYLON	CAN
17	MUST(New Version)	CAN

Następnie naciśnij przycisk "ENTER" lub "MENU", aby potwierdzić wybór i wyjść.

Większość falowników MUST może obsługiwać PV-CAN(0) i PYLON(8), a w przypadku niektórych modeli z płytą równoległą obsługiwanych jest więcej opcji protokołów, szczegółowe informacje można uzyskać u lokalnego sprzedawcy lub w dziale serwisowym.

W przypadku PH11-12KL3 protokół komunikacji falownika można ustawić, zmieniając wartość BMS

Type:

Battery Type:	Battery V High Fault:	60.00 V	1
O Lead acid battery	Battery V Low Fault:	44.00 V	1/
Lithium battery Lithium battery no BMS	Battery V Low Recover:	50.00 V	5
O No battery	Battery SOC Low Fault:	5 %	-
Battery Activate	Battery SOC Low Recover:	20 %	
MS Type: 08	Max Charge-I:	100.00 A	
20.00	Max Discharge-I:	200.00A	R

Ustawienia po stronie baterii,

W przypadku MUST LFP ustawienia mogą się różnić dla baterii o różnych okresach, ale ogólnie istnieją trzy rodzaje ustawień:

1. W przypadku najnowszej wersji ustawienia można wykonać na wyświetlaczu, naciskając "menu" w celu ustawienia, "w dół", aby wybrać program, "wprowadź" do określonego ustawienia programu i wybierz element, a "DSE", aby wyjść.

Para Setting-->Set CAN Port-->PV CAN/PYLON

2 Ustawienie za pomocą kodu dip:

Szczegółowe informacje można zawsze znaleźć w instrukcji obsługi, a tutaj podaję dwa najbardziej ogólne ustawienia kodu DIP:

For WD BMS

Protocol	1	2	3	4	5	6	7	8
CAN MUST	On	On	On	On	Off	Off	Off	Off
CAN PYLON	On	Off	On	Off	On	Off	Off	Off

W przypadku kodu dip, który ma tylko 6 pozycji, wystarczy ustawić pierwsze 6 pozycji.

For PC BMS

Protocol	1	2	3	4	5	6	
CAN MUST	On	On	On	Off	On	Off	
CAN PYLON	On	On	Off	Off	Off	Off	

(3) Ustawianie protokołu przez komputer.

altime Monitoring Multi Mon	nitoring Memory Info.	Parameter Setting	System Config.	Export Datas				
oltage(mV)			Capacity(mAl	H)				
Vref	Calibration			DesignCapacit	у			
Pack Voltage	Calibration			RemainCapacit	.y			
urrent(mA)				FullCapacit	у			
CHG Current (1000-60000nÅ)	Calibration	Resetting			Read Write	e		
Zero Current	Calibration	Resetting	Battery Cycle	Setting				
DSG Current (1000-60000mA)	Calibration	Resetting		Battery Cycl	le 0 🗘 Setting			
Cell Number Setting			Inverter proto	col				
Cell Number	Setting			密码:	Pz#168178			
THC Current Setting				CAN Protocol		~		
carent setting			R	S485 Protocol	PACE CAN			
Start Current(A)	 Setting 	Read		Туре	PYLON_CAN(信息业/CAN) GROWATT_CAN			
	A				Victron_CAN SE_CAN			
Sap Charge Setting					明5程_CAN SRD_CAN			
Gap Charge Threshol	d V Set	tting	Manufacture	Information	SNA_CAN GOODWE_CAN			
			🗹 Clear text	box after writ	Studer_CAN Sofar_CAN			
			🗌 no-repeat	BMS S/N	PV_CAN JL_CAN TBB_CAN Aifu CAN		Write	
			🗌 no-repeat	PACK S/N (20)		20 ~	Write	

3. Potwierdź pomyślne połączenie i zaktualizuj ustawienia.

Po nawiązaniu połączenia kablowego i prawidłowym ustawieniu protokołu komunikacja powinna zostać skonfigurowana, a na wyświetlaczu falownika będzie można zobaczyć SOC baterii (%).

PV19:

PH11-12KL3:

Battery			c
Voltage 53.2 V Power 47 W	Current 0.9 A Temp 16.9 C	SOC 98 %	4/7
			BMS

Jeśli komunikacja nie powiedzie się, należy dokładnie sprawdzić połączenie kablowe i definicję wyprowadzeń.

Po nawiązaniu komunikacji zaleca się ustawienie w falowniku sterowania przez SOC (Program 37).