Frame fixing SXRL

Drill hole diameter

Anchorage depth

Anchorage in concrete ≥ C12/15 Permissible tensile load N

Permissible shear load V_{nerm}

Minimum member thickness

Characteristic edge distance

Characteristic spacing

with an edge distance

Minimum edge distance

Permissible tensile load N

Permisible load F_{nerm} in solid brick Mz

Permissible load F in solid sand-lime brick KS

Permissible load F_{nerm} in solid sand-lime brick Vbl

Permissible load⁵⁾ F_{nerm} in vertically perforated brick HLz

Permissible load F_{nerm} in perforated sand-lime brick KSL

Permissible load⁵⁾ F_{nerm} in hollow lightweight concrete

Permissible load 5 $F_{\rm nerm}$ in ceilings made of

vertically perforated bricks Minimum member thickness

Minimum spacing (single anchor)

Minimum spacing (anchor group)

Anchorage in aerated concrete4) Permissible load F_{nerm}

in reinforced aerated concrete

Minimum spacing (single anchor)

Minimum spacing (anchor group)

Minimum edge distance (anchor group)

⁶⁾ Only for axial distance $s \ge 250$ mm. 7) Valid for HLz \geq 3 DF 12/1.0

Minimum member thickness

in aerated concrete

Permissible load F_{nerm}

taken.

5) Rotary drilling.

Minimum edge distance (anchor group)

Permissible shear load V

Anchorage in masonry4)

Minimum spacing

with a spacing

blocks Hbl

Permissible loads (12)3) of a single anchor as part of a multiple fixing of non-structural systems. For the design the complete assessment ETA-07/0121 of 20.12.2022 has to be considered.

Anchorage in narrow concrete members (h ≥ 40 mm) made of concrete ≥ C12/15

 d_{0}

h_{nom} ≥

zinc coated screw (qvz)

stainless steel screw (R)

a resp. s_{cr,N}

≥ NF 12/1.8

≥ NF 28/1.8

≥ NF 12/1.8 ≥ NF 28/1.8

 \geq 8 DF 2/1.6

 \geq 8 DF 8/1.6

≥ 2 DF 12/1.2

 \geq 2 DF 28/1.2

 \geq 2 DF 12/1.6

≥ 2/0.8

≥ 8/0.7

h_{min}

a_{min}

Smin

h_{mir}

 a_{\min}

 S_{\min}

 $\mathbf{C}_{\underline{\min}}$

As a single anchor counts e.g. an anchor with a minimum spacing a according to annexes of the ETA.

EN 771 and other masonry variants and geometries can be found in the ETA.

⁹⁾ Valid for member thickness $h_{min} \ge 175$ mm. Minimum spacing and edge distances see ETA. ¹⁰⁾ Valid for member thickness $h_{min} \ge 240$ mm. Minimum spacing and edge distances see ETA.

Only for axial distance $s_{1,min} \ge 240$ mm and $s_{2,min} \ge 250$ mm.

¹¹⁾ Valid for AAC with compression strength $\geq 6 \text{ N/mm}^2$.

The required partial safety factors for material resistance as well as a partial safety factor for load actions $\gamma_i = 1.4$ are considered.

 $AAC \ge 2 N/mm^2$

 $AAC \ge 6 \text{ N/mm}^2$

 $AAC \ge 2 \text{ N/mm}^2$

AAC ≥ 6 N/mm²

 $\boldsymbol{h}_{_{\!\!\boldsymbol{min}}}$

C_{cr,N}

Smir

C≥

 C_{\min}

S≥

Loads

Type

0.43 0.86 0.346)

0.57

0.176)

0.716)

0.176)

 0.34^{6}

0.26

0.346)

115

250

100

100

_

_

Valid for zinc coated screws (gvz) and for screws made of stainless steel (R). For exterior use of the zinc coated screws measures against incoming humidity according to ETA have to be

Valid for tensile load, shear load and oblique load under any angle. For bending moments and non-visible or non-mortared masonry joints, the design specifications of the ETA must be observed. Masonry properties in min. compressive strength [N/mm²] and density [kg/dm³] e.g. for Mz as 12/1.8. The corresponding average stone compressive strengths according to

SXRL 8

8

50

1.59

4.23

3.93

80

85

90

85

85

85

85

[mm]

[mm]

[kN]

[kN]

[kN]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[mm]

[mm]

[mm]

[mm]

Valid for temperatures in the substrate up to +50 °C (resp. short term up to +80 °C). For long term temperatures up to +30 °C higher permissible loads may be possible.

8

70

1.98

4.23

3.93

100

85

105

85

85

85

85

0.57

1.29

0.266)

0.57

 0.26^{6}

0.866

0.176)

0.346

0.43

0.346)

115

250

100

100

0.14

0.54

175

250

80/11011)

90/11011)

8

90

1.98

4.23

3.93

120

85

105

85

85

85

85

0.57

1.29

0.266)

0.57

0.266)

0.866)

0.17

0.43

 0.34^{6}

 0.34^{6}

115

250

100

100

0.21

0.71

175

250

80/11011)

90/11011)

SXRL 10

10

50

1.98

5.98

5.98

100

140

120

70

140

70

175

0.99

5.98

 $0.57^{(6)}$

1.296)

 0.26^{6}

0.866

 0.34^{6}

110

250

100

100

_

_

10

70

2.58

5.98

5.98

100

140

120

70

140

70

175

1.14

1.436

0.71

1.57

0.576)

2.146)

 0.26^{6}

 0.57^{6}

 0.71^{6}

0.436)

0.576)

110

250

100

100

0.18

0.89

 0.18^{9}

1.0710)

100

250

120

100/12011)

10

90

2.58

5.98

5.98

120

140

120

70

140

70

175

1.14

1.436)

0.71

1.57

 0.57^{6}

2 146)

0.71

110

250

100

100

 $0.21^{(8)}$

1.108)

 0.18^{9}

1.2510)

120

250

120

100/12011)

SXRL 14

14

70

3.37

12.40

11.63

110

140

135

85

140

85

175

0.71

1.57

0.57

1.29

0.436)

1 006)

0.716)7)

0.57

0.576)

115

250

100

100

0.32

1.43

175

250

80

120

14

90

3.37

12.40

11.63

130

140

135

85

140

85

175

0.71

1.57

0.57

1.29

 0.43^{6}

1.006)

0.716)7

0.71

0.436)

115

250

100

100

0.43

1.79

175

250

100

120