#### INTEGRATED CIRCUITS

# DATA SHEET

# TDA7056A 3 W BTL mono audio output amplifier with DC volume control

Product specificiation
File under Integrated Circuits, IC01

July 1994





### 3 W BTL mono audio output amplifier with DC volume control

#### **TDA7056A**

#### **FEATURES**

- · DC volume control
- · Few external components
- Mute mode
- Thermal protection
- · Short-circuit proof
- · No switch-on and off clicks
- · Good overall stability
- Low power consumption
- Low HF radiation
- · ESD protected on all pins.

#### **GENERAL DESCRIPTION**

The TDA7056A is a mono BTL output amplifier with DC volume control. It is designed for use in TV and monitors, but also suitable for battery-fed portable recorders and radios.

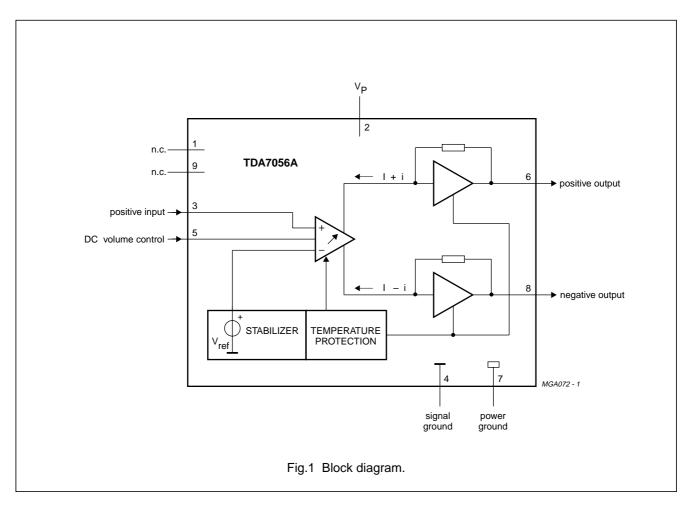
#### **Missing Current Limiter (MCL)**

A MCL protection circuits is built-in. The MCL circuit is activated when the difference in current between the output terminal of each amplifier exceeds 100 mA (typical 300 mA). This level of 100 mA allows for headphone applications (single-ended).

#### **QUICK REFERENCE DATA**

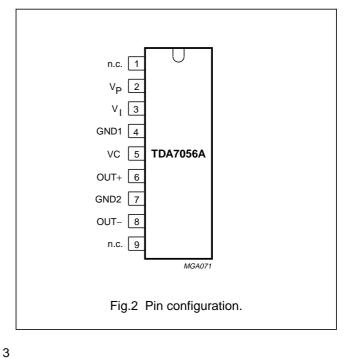
| SYMBOL         | PARAMETER                     | CONDITIONS                                | MIN. | TYP. | MAX. | UNIT |
|----------------|-------------------------------|-------------------------------------------|------|------|------|------|
| V <sub>P</sub> | positive supply voltage range |                                           | 4.5  | _    | 18   | V    |
| Po             | output power                  | $R_L = 16 \Omega; V_P = 12 V$             | 3    | 3.5  | _    | W    |
| G <sub>v</sub> | voltage gain                  |                                           | 34.5 | 35.5 | 36.5 | dB   |
| ф              | gain control range            |                                           | 75   | 80   | _    | dB   |
| I <sub>P</sub> | total quiescent current       | V <sub>P</sub> = 12 V; R <sub>L</sub> = ∞ | _    | 8    | 16   | mA   |
| THD            | total harmonic distortion     | V <sub>P</sub> = 0.5 W                    | _    | 0.3  | 1    | %    |

#### **ORDERING INFORMATION**


| EXTENDED TYPE | PACKAGE |              |          |        |  |  |  |  |
|---------------|---------|--------------|----------|--------|--|--|--|--|
| NUMBER        | PINS    | PIN POSITION | MATERIAL | CODE   |  |  |  |  |
| TDA7056A      | 9       | SIL          | plastic  | SOT110 |  |  |  |  |

#### Note

1. SOT110-1; 1996 August 21.


# 3 W BTL mono audio output amplifier with DC volume control

#### TDA7056A



#### **PINNING**

| SYMBOL         | PIN | DESCRIPTION             |
|----------------|-----|-------------------------|
| n.c.           | 1   | not connected           |
| V <sub>P</sub> | 2   | positive supply voltage |
| VI             | 3   | voltage input           |
| GND1           | 4   | signal ground           |
| VC             | 5   | DC volume control       |
| OUT+           | 6   | positive output         |
| GND2           | 7   | power ground            |
| OUT-           | 8   | negative output         |
| n.c.           | 9   | not connected           |



July 1994

### 3 W BTL mono audio output amplifier with DC volume control

TDA7056A

#### **FUNCTIONAL DESCRIPTION**

The TDA7056A is a mono BTL output amplifier with DC volume control, designed for use in TV and monitor but also suitable for battery-fed portable recorders and radios.

In conventional DC volume circuits the control or input stage is AC coupled to the output stage via external capacitor to keep the offset voltage low.

In the TDA7056A the DC volume stage is integrated into the input stage so that coupling capacitors are not required and a low offset voltage is maintained.

At the same time the minimum supply voltage remains low.

The BTL principle offers the following advantages:

- · lower peak value of the supply current
- the frequency of the ripple on the supply voltage is twice the signal frequency

Thus, a reduced power supply and smaller capacitors can be used which results in cost savings.

For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 35.5 dB. The DC volume control stage has a logarithmic control characteristic.

The total gain can be controlled from 35.5 dB to -44 dB.

If the DC volume control voltage is below 0.3 V, the device switches to the mute mode.

The amplifier is short-circuit proof to ground,  $V_P$  and across the load. A thermal protection circuit is also implemented. If the crystal temperature rises above +150 °C the gain will be reduced, thereby reducing the output power.

Special attention is given to switch-on and off clicks, low HF radiation and a good overall stability.

#### LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

| SYMBOL           | PARAMETER                           | CONDITIONS                | MIN. | MAX. | UNIT |
|------------------|-------------------------------------|---------------------------|------|------|------|
| V <sub>P</sub>   | supply voltage range                |                           | _    | 18   | V    |
| I <sub>ORM</sub> | repetitive peak output current      |                           | _    | 1.25 | А    |
| I <sub>OSM</sub> | non repetitive peak output current  |                           | _    | 1.5  | А    |
| P <sub>tot</sub> | total power dissipation             | T <sub>case</sub> < 60 °C | _    | 9    | W    |
| T <sub>amb</sub> | operating ambient temperature range |                           | -40  | +85  | °C   |
| T <sub>stg</sub> | storage temperature range           |                           | -55  | +150 | °C   |
| T <sub>vj</sub>  | virtual junction temperature        |                           | _    | +150 | °C   |
| T <sub>sc</sub>  | short-circuit time                  |                           | _    | 1    | hr   |
| V <sub>3</sub>   | input voltage pin 3                 |                           | _    | 8    | V    |
| V <sub>5</sub>   | input voltage pin 5                 |                           | _    | 8    | V    |

#### THERMAL RESISTANCE

| SYMBOL              | PARAMETER                            | THERMAL RESISTANCE |
|---------------------|--------------------------------------|--------------------|
| R <sub>th j-a</sub> | from junction to ambient in free air | 55 K/W             |
| R <sub>th j-c</sub> | from junction to case                | 10 K/W             |

#### Note to the thermal resistance

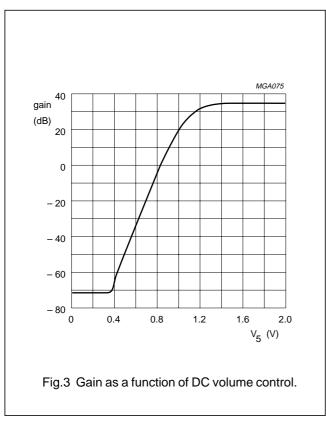
 $V_P$  = 12 V;  $R_L$  = 16  $\Omega$ ; The maximum sine-wave dissipation is = 1.8 W. The  $R_{th\ vj-a}$  of the package is 55 K/W;  $T_{amb\ (max)}$  = 150 – 55 x 1.8 = 51 °C

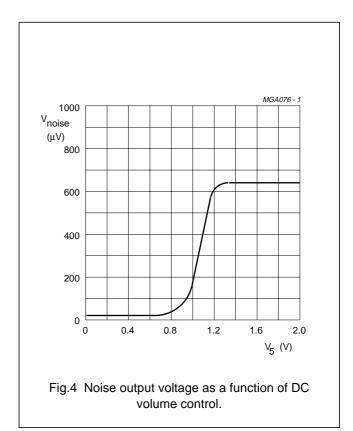
### 3 W BTL mono audio output amplifier with DC volume control

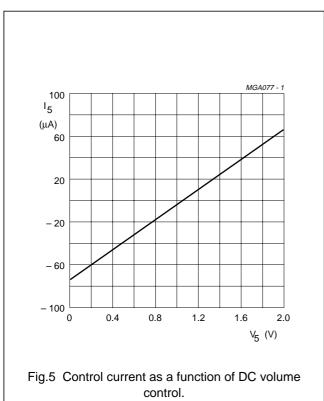
TDA7056A

#### **CHARACTERISTICS**

 $V_P$  = 12 V; f = 1 kHz;  $R_L$  = 16  $\Omega$ ;  $T_{amb}$  = 25 °C; unless otherwise specified (see Fig.6)


| SYMBOL               | PARAMETER                        | CONDITIONS                                          | MIN. | TYP.                | MAX. | UNIT |
|----------------------|----------------------------------|-----------------------------------------------------|------|---------------------|------|------|
| V <sub>P</sub>       | positive supply voltage range    |                                                     | 4.5  | _                   | 18   | V    |
| l <sub>P</sub>       | total quiescent current          | $V_P = 12 \text{ V}; R_L = \infty; \text{ note } 1$ | _    | 8                   | 16   | mA   |
| Maximum g            | ain (V <sub>5</sub> = 1.4 V)     |                                                     |      |                     |      |      |
| Po                   | output power                     |                                                     |      |                     |      |      |
|                      |                                  | THD = 10%; $R_L$ = 16 $Ω$                           | 3    | 3.5                 | _    | W    |
|                      |                                  | THD = 10%; $R_L = 8 \Omega$                         | _    | 5.2                 | _    | W    |
| THD                  | total harmonic distortion        | P <sub>O</sub> = 0.5 W                              | _    | 0.3                 | 1    | %    |
| G <sub>v</sub>       | voltage gain                     |                                                     | 34.5 | 35.5                | 36.5 | dB   |
| VI                   | input signal handling            | V <sub>5</sub> = 0.8 V;THD < 1%                     | 0.5  | 0.65                | _    | V    |
| V <sub>no(rms)</sub> | noise output voltage (RMS value) | f = 500 kHz; note 2                                 | _    | 210                 | _    | μV   |
| В                    | bandwidth                        | at -1 dB                                            | _    | 20 Hz to<br>300 kHz | _    |      |
| SVRR                 | supply voltage ripple rejection  | note 3                                              | 38   | 46                  | _    | dB   |
| V <sub>off</sub>     | DC output offset voltage         |                                                     | _    | 0                   | 150  | mV   |
| Z <sub>I</sub>       | input impedance pin 3            |                                                     | 15   | 20                  | 25   | kΩ   |
| Minimum ga           | ain (V <sub>5</sub> = 0.5 V)     | •                                                   |      |                     |      |      |
| G <sub>v</sub>       | voltage gain                     |                                                     | _    | -44                 | _    | dB   |
| V <sub>no(rms)</sub> | noise output voltage (RMS value) | note 4                                              | _    | 20                  | 30   | μV   |
| Mute position        | on                               |                                                     |      |                     |      |      |
| Vo                   | output voltage in mute position  | $V_5 \le 0.3 \text{ V}; V_1 = 600 \text{ mV}$       | _    | _                   | 30   | μV   |
| DC volume            | control                          |                                                     |      |                     |      |      |
| ф                    | gain control range               |                                                     | 75   | 80                  | _    | dB   |
| I <sub>5</sub>       | control current                  | V <sub>5</sub> = 0 V                                | 60   | 70                  | 80   | μΑ   |

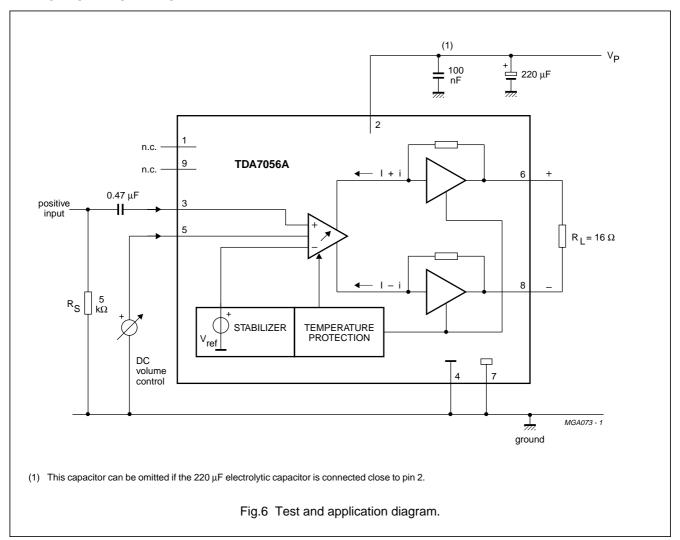

#### Notes to the characteristics

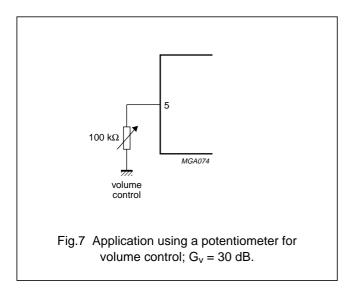

- 1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage divided by R<sub>L</sub>.
- 2. The noise output voltage (RMS value) at f = 500 kHz is measured with  $R_S$  = 0  $\Omega$  and bandwidth = 5 kHz.
- 3. The ripple rejection is measured with  $R_S = 0~\Omega$  and f = 100~Hz to 10 kHz. The ripple voltage of 200 mV (RMS value) is applied to the positive supply rail.
- 4. The noise output voltage (RMS value) is measured with  $R_S$  = 5 k $\Omega$  unweighted.

# 3 W BTL mono audio output amplifier with DC volume control

#### TDA7056A





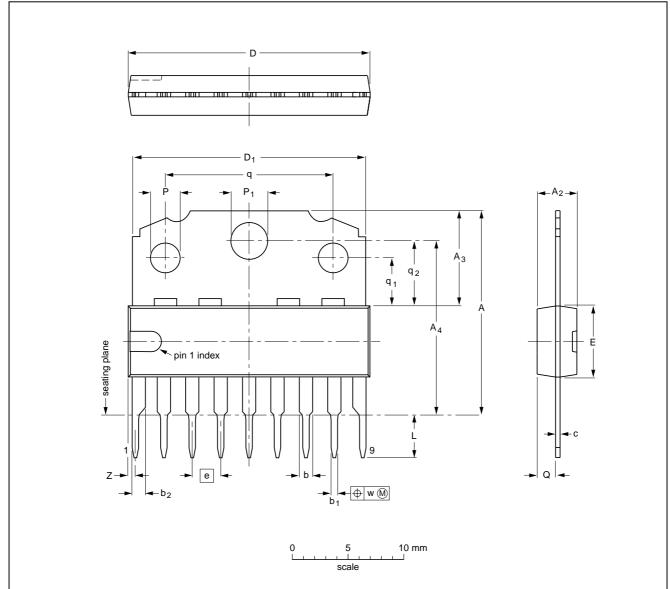

# 3 W BTL mono audio output amplifier with DC volume control

TDA7056A

#### **APPLICATION INFORMATION**






# 3 W BTL mono audio output amplifier with DC volume control

TDA7056A

#### **PACKAGE OUTLINE**

SIL9MPF: plastic single in-line medium power package with fin; 9 leads

SOT110-1



#### **DIMENSIONS** (mm are the original dimensions)

| UNIT | Α            | A <sub>2</sub><br>max. | A <sub>3</sub> | A <sub>4</sub> | b            | b <sub>1</sub> | b <sub>2</sub> | С            | D <sup>(1)</sup> | D <sub>1</sub> | E <sup>(1)</sup> | е    | L          | Р            | P <sub>1</sub> | Q            | q            | q <sub>1</sub> | q <sub>2</sub> | w    | Z <sup>(1)</sup><br>max. |
|------|--------------|------------------------|----------------|----------------|--------------|----------------|----------------|--------------|------------------|----------------|------------------|------|------------|--------------|----------------|--------------|--------------|----------------|----------------|------|--------------------------|
| mm   | 18.5<br>17.8 | 3.7                    | 8.7<br>8.0     | 15.8<br>15.4   | 1.40<br>1.14 | 0.67<br>0.50   | 1.40<br>1.14   | 0.48<br>0.38 | 21.8<br>21.4     | 21.4<br>20.7   | 6.48<br>6.20     | 2.54 | 3.9<br>3.4 | 2.75<br>2.50 | 3.4<br>3.2     | 1.75<br>1.55 | 15.1<br>14.9 | 4.4<br>4.2     | 5.9<br>5.7     | 0.25 | 1.0                      |

#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER | EUROPEAN | ISSUE DATE |            |                                 |
|----------|-----|-------|----------|------------|------------|---------------------------------|
| VERSION  | IEC | JEDEC | EIAJ     |            | PROJECTION | 1330E DATE                      |
| SOT110-1 |     |       |          |            |            | <del>92-11-17</del><br>95-02-25 |

### 3 W BTL mono audio output amplifier with DC volume control

TDA7056A

#### **SOLDERING**

#### Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

#### Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T<sub>stg max</sub>). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

#### Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

#### **DEFINITIONS**

| Data sheet status         |                                                                                       |
|---------------------------|---------------------------------------------------------------------------------------|
| Objective specification   | This data sheet contains target or goal specifications for product development.       |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification     | This data sheet contains final product specifications.                                |
| Limiting values           |                                                                                       |

#### **Limiting values**

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

#### **Application information**

Where application information is given, it is advisory and does not form part of the specification.

#### LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.