Certificate of Conformity

Certification No. : AXJC20230522000307R

Applicant : Shenzhen yueerte Technology Co., Ltd

Address : Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Manufacturer : Shenzhen yueerte Technology Co., Ltd

Address : Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Certification Marking : CE-RoHS

Product Description : Bluetooth audio transmitter

Model : R20, R10, R30

Trademark : N/A

An independent evaluation on the above-mentioned product(s) has been conducted pursuant to EU 2015/863 with 2011/65/EU of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment, and concluded that the equipment under evaluation met the legislative requirements of this directive.

Test standard: IEC 62321-4:2013+A1:2017, IEC 62321-5:2013, IEC 62321-7-1:2015,

IEC 62321-7-2:2017, IEC 62321-6:2015, IEC 62321-8:2017

Authorized Signer:

Kevin Liu/Manager May. 26, 2023

TEST REPORT

For

Bluetooth audio transmitter

R20, R10, R30

Test Report Number: AXJC20230522000307G

Issued Date: May. 26, 2023

Applicant:

Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue village, Bantian, Longgang, Shenzhen

Issued by

Shenzhen An-Xin Testing Service Co., Ltd.

Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial Park, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

TEL: +86 755 23009643 Fax: +86 755 23009643

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen An-Xin Testing Service Co., Ltd. This document may be altered or revised by Shenzhen An-Xin Testing Service Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

1 GENERAL INFORMATION

Applicant Shenzhen yueerte Technology Co., Ltd.

Address Second floor, building C, Huaxing Industrial Park, shangxue village,

Bantian, Longgang, Shenzhen

Manufacturer Shenzhen yueerte Technology Co., Ltd.

Address Second floor, building C, Huaxing Industrial Park, shangxue village,

Bantian, Longgang, Shenzhen

Equipment under Test (EUT)

Name: Bluetooth audio transmitter

Model No.: R20

EUT Power

DC 5V

Supply: Standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.2.4 (2020-09)

Test Result: PASS

- * In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 2 of this report for further details.
- * The tests required in RED Directive 2014/53/EU were included in the report, The European Union's new Radio Equipment Directive (RED) 2014/53/EU was published on April 16, 2014, and EU member states must adopt and publish the laws, regulations and administrative provisions needed to comply with the new Directive by June 12, 2016.

2016.	XIN AIR	IN ANX	ANXIII	ANXIN
	1 1 1			
Tested By:	Jet Chen	Date:	May. 26, 202	3414
		ANXIN		
Approved By:		Date:	May. 26, 2023	

MXIN

2 Contents

ANX. AT					
2 Contents	s XIV		AMA		T. Aut
1 GENERALINEC	ORMATION	MX	Klis	1XIM	Page
2 CONTENTS.	PXII.	M	la.		
3 TEST SUMM	ARY	AM	MX"	"IXILA	~// ¹ / ₄
	NFORMATION				
4.1 GENERA	L DESCRIPTION OF EUT	гАДУ	NXII.	1XIP	5
	ING MODESPTION OF SUPPORT UNIT				
	ACILITY				
4.5 TEST LO	CATION				6
	ON FROM STANDARDS MALITIES FROM STANDA				
	INFORMATION REQUEST				
	USED DURING TES				
	REMENTS SPECIFICA				
	MISSION)				
	ated Emission ducted Emissions				
	nonics Test Results				
6.1.4 Flicke	er Test Results				16
	Υ				
	rostatic Discharge ated Immunity				
	o frequency common				
6.2.4 Elect	trical Fast Transients				25
6.2.5 Surge	e				27
6.2.6 Volta	age Dip and Voltage I	nterruptions	N		29
		ANXIN P			

ANXIN **Test Summary** 3

EMI Test				
Test Item	Test Requirement	Test Method	Application	Result
Radiated Emission	ETSI EN 301 489-17	ETSI EN301 489-1	Enclosure	Pass
Conducted Emission	ETSI EN 301 489-17	ETSI EN301 489-1	AC port	Pass
Harmonic Current Emissions	ETSI EN 301 489-17	ETSI EN301 489-1	AC port	N/A
Voltage Fluctuations and Flicker	ETSI EN 301 489-17	ETSI EN301 489-1	AC port	Pass
EMS Test				
ESD (Electrostatic Discharge)	ETSI EN 301 489-17	EN 61000-4-2	Enclosure	Pass
Radiated Immunity, 80MHz to 6 GHz	ETSI EN 301 489-17	EN 61000-4-3	Enclosure	Pass
EFT (Electrical Fast Transients	ETSI EN 301 489-17	EN 61000-4-4	AC port	Pass
Surge Immunity	ETSI EN 301 489-17	EN 61000-4-5	AC port	Pass
Injected Currents 150kHz to 80MHz	ETSI EN 301 489-17	EN 61000-4-6	AC port	Pass
Voltage Dips and Interruptions	ETSI EN 301 489-17	EN 61000-4-11	AC port	Pass

ANXIN

MXM

Pass: The EUT complies with the essential requirements in the standard. N/A: Not applicable ANXIN ANXIN

N/A: Not applicable

MXM

ANXIN

General Information General Description 4.1 General Description of EUT

	General Description of Product Name:	Bluetooth audio transmitter	P
	Model No.:	R20	
IN		re identical in the same PCB layout, interior structure and electrical coordel name for commercial purpose.	rcuits
*	Hardware Version:	IPC3516C-241AA-ZW MAIN REV:1.3	
	Software Version:	V2.0.01	4
NA	Operation Frequency:	2412MHz~2472MHz(802.11b/802.11g/802.11n(H20)) 2422MHz~2462MHz(802.11n(H40))	NY
	Channel numbers:	13 for 802.11b/802.11g/802.11n(HT20) 9 for 802.11n(HT40)	
N	Channel separation:	5MHz	P
(Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum(DSSS)	
	Modulation Technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	N
77//	Antenna Type:	FPCB antenna	
1	Antenna gain:	2.39dBi (declare by Applicant)	
I,	Power Supply:	DC 5V	
	worst was record on the repo	and 3 were tested, and found adapter 1 was the worst case. So or ort.	ily th
			lly tr
			lly tr
THY CITY	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	1×1/2
THY KIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	1×1/2
THY KIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	1×1/2
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	1×1/2
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	1×1/2
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	141/4 14
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	141/4 14
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	14 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	14 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	14 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	14 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	141/4 14
YIN XIN	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	141/4 14
THY CITY	worst was record on the repo	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	4
THY CITY	worst was record on the repo		14

4.2 Operating Modes

Operating mode	e ,	Detail description	+
WiFi mode	M	Keep the EUT in charging and play internet information by wifi network.	

4.3 Description of Support Units

None.

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

4.5 Test Location

	7.5	Test Location	-1361.				
		RI test was performe	ed at:				
	7/1/	My.		1	, P	VL.	MX
P		All other tests were p	performed at:				
		M	N	VI.	D	Mr.	17/1
	7.0						
	1						

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Conditions

None.

4.8 Other Information Requested by the Customer

None.

ANXIN

MXIN

5

Test Equipment Manufacturer Model No. No. (mm-dd-yy) (mm-dd-yy)	Test Equipment	۱au	iated Emission:	II XIN	In In		N P	VIA.
Chamber ZhongYu Electron 9.2(L)*6.2(W)* 6.4(H) GTS250 June. 03, 2022 June. 02, 202	Chamber	tem	Test Equipment	Manufacturer	Model No.	-	. 1	Cal.Due date (mm-dd-yy)
BiConiLog Antenna	BiConiLog Antenna	1,		ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June. 03, 2022	June. 02, 2023
BiConiLog Antenna	BiConiLog Antenna	2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
BICONILOG Antenna MESS-ELEKTRONIK VULB9163 GTS214 June. 03, 2022 June. 02, 202	BICONILOG Antenna	3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 03, 2022	June. 02, 2023
Norn MESS-ELEKTRONIK 9120D-829 GTS208 June. 03, 2022 June. 02, 202	Norm	4	BiConiLog Antenna		VULB9163	GTS214	June. 03, 2022	June. 02, 2023
7 EMI Test Software AUDIX E3 N/A N/A N/A 8 Coaxial Cable GTS N/A GTS213 June. 03, 2022 June. 02, 202 9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 202 10 Coaxial Cable GTS N/A GTS210 June. 03, 2022 June. 02, 202 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 202 12 Amplifier (100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier (2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 <t< td=""><td>7 EMI Test Software AUDIX E3 N/A N/A N/A 8 Coaxial Cable GTS N/A GTS213 June. 03, 2022 June. 02, 2023 9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 2023 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 2023 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022</td><td>5</td><td></td><td>4 15</td><td>9120D-829</td><td>GTS208</td><td>June. 03, 2022</td><td>June. 02, 2023</td></t<>	7 EMI Test Software AUDIX E3 N/A N/A N/A 8 Coaxial Cable GTS N/A GTS213 June. 03, 2022 June. 02, 2023 9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 2023 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 2023 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022	5		4 15	9120D-829	GTS208	June. 03, 2022	June. 02, 2023
8 Coaxial Cable GTS N/A GTS213 June. 03, 2022 June. 02, 202 9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 202 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 202 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 202 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS588 June. 03, 2022 June. 02, 2	8 Coaxial Cable GTS N/A GTS213 June. 03, 2022 June. 02, 2023 9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 2023 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 2023 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier (100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier (2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS38	6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 03, 2022	June. 02, 2023
9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 202 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 202 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 202 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Tostor Rohde & Schwarz CMW500	9 Coaxial Cable GTS N/A GTS211 June. 03, 2022 June. 02, 2023 10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 2023 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Textor Rohde & Schwarz CM	7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 202 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 202 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	10 Coaxial cable GTS N/A GTS210 June. 03, 2022 June. 02, 2023 11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	8	Coaxial Cable	GTS	N/A	GTS213	June. 03, 2022	June. 02, 2023
11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 202 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testors Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	11 Coaxial Cable GTS N/A GTS212 June. 03, 2022 June. 02, 2023 12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	9	Coaxial Cable	GTS	N/A	GTS211	June. 03, 2022	June. 02, 2023
12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 202 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	12 Amplifier(100kHz-3GHz) HP 8347A GTS204 June. 03, 2022 June. 02, 2023 13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Toster Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	10	Coaxial cable	GTS	N/A	GTS210	June. 03, 2022	June. 02, 2023
13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 202 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	13 Amplifier(2GHz-20GHz) HP 8349B GTS206 June. 03, 2022 June. 02, 2023 14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	11	Coaxial Cable	GTS	N/A	GTS212	June. 03, 2022	June. 02, 2023
14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	14 Amplifier (18-26GHz) Rohde & Schwarz AFS33-18002 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	12	Amplifier(100kHz-3GHz)	HP XIM	8347A	GTS204	June. 03, 2022	June. 02, 2023
14 Amplifier (18-26GHz) Rohde & Schwarz 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 202 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 202 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	14 Amplifier (18-26GHz) Rohde & Schwarz 650-30-8P-44 GTS218 June. 03, 2022 June. 02, 2023 15 Band filter Amindeon 82346 GTS219 June. 03, 2022 June. 02, 2023 16 Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Tester Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 03, 2022	June. 02, 2023
Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 202 The properties of the properties	Constant temperature and humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 The property of the	14	Amplifier (18-26GHz)	Rohde & Schwarz	111	GTS218	June. 03, 2022	June. 02, 2023
Homographic D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 202 18 Wideband Radio Communication Testor Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	16 humidity box Oregon Scientific BA-888 GTS248 June. 03, 2022 June. 02, 2023 17 D.C. Power Supply Instek PS-3030 GTS232 June. 03, 2022 June. 02, 2023 18 Wideband Radio Communication Toster Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	15	Band filter	Amindeon	82346	GTS219	June. 03, 2022	June. 02, 2023
Wideband Radio Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 202	Wideband Radio Rohde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	16		Oregon Scientific	BA-888	GTS248	June. 03, 2022	June. 02, 2023
18 Communication Tector Ronde & Schwarz CMW500 G1S588 June. 03, 2022 June. 02, 202	18 Communication Tostor Ronde & Schwarz CMW500 GTS588 June. 03, 2022 June. 02, 2023	17	D.C. Power Supply	Instek	PS-3030	GTS232	June. 03, 2022	June. 02, 2023
19 Splitter Agilent 11636B GTS237 June. 03, 2022 June. 02, 202	19 Splitter Agilent 11636B GTS237 June. 03, 2022 June. 02, 2023	18						
I THE STATE OF THE	ANXIN	19	Splitter	Agilent	11636B	GTS237	June. 03, 2022	June. 02, 2023
		18 19	Wideband Radio Communication Tester Splitter	Rohde & Schwarz	CMW500	GTS588	June. 03, 2022	June. 02, 20
				MXIM				
ANXIN				ANXIN				

MX	· HAXILA	All Co	onducted Emission	MXIM	NIN.	VW.
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	June. 03, 2022	June. 02, 2023
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 03, 2022	June. 02, 2023
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 03, 2022	June. 02, 2023
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 03, 2022	June. 02, 2023
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 03, 2022	June. 02, 2023

M	in h	V VIA	ESD	NY		IXIN
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	ESD Simulator	KIKUSUI	KES4021A	GTS242	June. 03, 2022	June. 02, 2023
2	Thermo meter	KTJ	TA328	GTS243	June. 03, 2022	June. 02, 2023

N	W/XII	Co	onducted Immunity	12	, , , , , , , , , , , , , , , , , , ,	V VIA
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Signal Generator	SCHLODER	CDG-6000-25	GTS553	June. 03, 2022	June. 02, 2023
2	CDN	SCHLODER	CDN-M2+3	GTS554	June. 03, 2022	June. 02, 2023
3	ATT	SCHLODER	ATT-6DB-100	GTS556	June. 03, 2022	June. 02, 2023
47	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS588	June. 03, 2022	June. 02, 2023

1	MXIII LIT	The The	Harmonic/ Flicker	r.	· VIA.	AM
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	HARMONIC/FLICKER ANALYZER	KIKUSUI	KHA1000	GTS235	June. 03, 2022	June. 02, 2023
2	AC POWER SUPPLY	KIKUSUI	PCR4000LE	GTS236	June. 03, 2022	June. 02, 2023
3	LINE IMPEDANCE NETWORK	KIKUSUI	LIN1020JF	GTS237	June. 03, 2022	June. 02, 2023
4	Thermo meter	KTJ	TA328	GTS256	June. 03, 2022	June. 02, 2023

	UXIN ANXIN	IN ANXIN			sting Service (JC202305220	
N TEST	ANXIII A	WXIN WIN	XIM AN	XIN I	ANXIN R	ANXIN
		EFT, Surge, Vo	oltage dips and Inter	ruption	JXIN	-/15
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	EMTEST system	EMTEST	UCS500N	GTS239	June. 03, 2022	June. 02, 2023
2	Thermo meter	KTJ	TA328	GTS238	June. 03, 2022	June. 02, 2023

		R	adiated Immunity:			
Item	Test Equipment	Manufacturer	Model No.	Serial NO.	Cal.Date (mm-dd-yy)	Cal.Due Date (mm-dd-yy)
1	Fully-Anechoic Chamber 2	Chang Zhou Zhong Shuo	854	SEM001-05	June. 03, 2022	June. 02, 2023
2	Power Sensor	Rohde & Schwarz	NRP-Z91	SEM009-08	June. 03, 2022	June. 02, 2023
3	Power Sensor	Rohde & Schwarz	NRP-Z91	SEM009-09	June. 03, 2022	June. 02, 2023
4	Log-periodic Antenna (0.07-3GHz)	Schwarzbeck	VUSLP9111E	SEM003-17	N/A	N/A
5	Signal Generator	Rohde & Schwarz	SMB100A	SEM006-11	June. 03, 2022	June. 02, 2023
6	Broadband Amplifier (80MHz-1GHz)	Rohde & Schwarz	BBA150- BC250	SEM005-12	June. 03, 2022	June. 02, 2023
(Z _I)	Broadband Amplifier (800MHz-3GHz)	Rohde & Schwarz	BBA150- D110	SEM005-13	June. 03, 2022	June. 02, 2023
8	Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	SEM010-01	June. 03, 2022	June. 02, 2023
9	Universal Radio Communication Tester	Rohde & Schwarz	CMW 500	SEM010-03	June. 03, 2022	June. 02, 2023
10	Audio Analyzer	Rohde & Schwarz	UPV	SEM008-03	June. 03, 2022	June. 02, 2023
11	Conditioning Amplifier	Brüel & Kjaer	2690-OS2	SEM005-10	June. 03, 2022	June. 02, 2023

	W	Ge	neral used equipment:	1/2	IXIM	MY
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
AN	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	GTS243	June. 03, 2022	June. 02, 2023
2	Barometer	ChangChun	DYM3	GTS255	June. 03, 2022	June. 02, 2023

EMC Requirements Specification in ETSI EN 301 489-17

EMI (Emission)

6.1.1 Radiated Emission

Test Requirement:	ETSI EN 301 489	9-17			
Test Method:	ETSI EN 301 489		16-2-3		7/1/1/
Test Frequency Range:	30MHz to 6GHz	T and Endoor	N Z O P		Vis.
		tanaa: 2m	114	MX	B
Test site:	Measurement Dis		5514	Mr.	-4711
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak AV	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value
Limit:	Frequen		imit (dBuV/n	_	Remark
LIIIIL.	30MHz-230		40.00		Quasi-peak Value
	230MHz-1		47.00		Quasi-peak Value
			50.00		Average Value
	1GHz-3G	SHz -	70.00		Peak Value
	2011- 00	N	54.00		Average Value
	3GHz-6G	oHZ	74.00	-/15	Peak Value
		4	Antenna Tawe	WWW.	
	Above 1GHz	Jestilles Ground Releveze Phose Test Receiver	Anterna Towe		ANXIN ANXIN

Test Procedure:	■ From 30MHz to 1GHz:
	The radiated emissions test was conducted in a semi-anechoic chamber.
	2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
	3. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.
	4. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.
	■ Above 1GHz:
	The radiated emissions test was conducted in a fully-anechoic chamber.
	2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
	3. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum plots of the EUT.
	4. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.
Test environment:	Temp.: 25 °C Humid.: 50% Press.: 1 010mbar
Measurement Record:	Uncertainty: ± 4.5dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Measurement Data **Below 1GHz**

N TESTING						oort No.: AXJ		
Measureme Below 1GH:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarity
49.88	44.98	12.20	0.77	30.00	27.95	40.00	-12.05	Vertical
35.38	40.10	11.20	0.61	30.07	21.84	40.00	-18.16	Vertical
124.57	43.66	8.75	1.40	29.54	24.27	40.00	-15.73	Vertical
190.41	43.48	9.70	1.79	29.23	25.74	40.00	-14.26	Vertical
467.24	34.30	16.83	3.17	29.36	24.94	47.00	-22.06	Vertical
890.73	31.69	22.12	4.82	29.11	29.52	47.00	-17.48	Vertical
48.84	29.72	12.23	0.76	30.00	12.71	40.00	-27.29	Horizontal
136.46	38.97	7.57	1.48	29.48	18.54	40.00	-21.46	Horizontal
194.45	37.39	9.87	1.81	29.22	19.85	40.00	-20.15	Horizontal
213.76	34.76	10.69	1.92	29.34	18.03	40.00	-21.97	Horizontal
483.91	27.19	17.20	3.23	29.33	18.29	47.00	-28.71	Horizontal
863.06	25.17	21.86	4.71	29.13	22.61	47.00	-24.39	Horizontal

Above 1GHz

Peak measurement

Peak measu					M			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarity
1340.00	37.32	25.69	4.57	33.33	34.25	70.00	-35.75	Vertical
2145.00	35.51	27.52	5.12	34.30	33.85	70.00	-36.15	Vertical
2880.00	35.44	28.42	5.82	33.45	36.23	70.00	-33.77	Vertical
3450.00	35.67	28.80	6.86	32.81	38.52	74.00	-35.48	Vertical
4790.00	29.52	31.76	8.59	32.08	37.79	74.00	-36.21	Vertical
5720.00	29.66	32.53	9.81	32.29	39.71	74.00	-34.29	Vertical
1910.00	36.52	25.79	4.92	34.32	32.91	70.00	-37.09	Horizontal
2585.00	36.02	27.74	5.57	33.80	35.53	70.00	-34.47	Horizontal
3200.00	35.43	28.71	6.35	33.10	37.39	74.00	-36.61	Horizontal
3855.00	31.86	29.44	7.62	32.34	36.58	74.00	-37.42	Horizontal
4525.00	30.99	31.37	8.36	31.95	38.77	74.00	-35.23	Horizontal
5390.00	30.07	31.79	9.35	32.37	38.84	74.00	-35.16	Horizontal

Remark:

- 1. The EUT was test at 3m in field chamber.
- 2. If the average limit is met when using a Peak detector, the EUT shall be deemed to meet both peak and average limits. And measurement with the average detector is unnecessary.

6.1.2 Conducted Emissions

Test Requirement:	ETSI EN 301 489-17			
Test Method:	ETSI EN 301 489-1	- Pi	NA	
Test Frequency Range:	150kHz to 30MHz	M	M	
Class / Severity:	Class B	AM		MXIII
Receiver setup:	RBW=9kHz, VBW=30kHz	Bu	-\	Pri
Limit:		44,	Limit (dBu\	()
	Frequency range (MHz)	Quasi-pe	ak	Average
	0.15-0.5	66 to 56	3 *	56 to 46*
	0.5-5	56	1/4/	46
	5-30	60	nov	50
Toot ootun:	* Decreases with the logarith	2111	ncy.	M
Test setup:	Reference Plan			
	LISN 40cm 80c	LISN		
	133.11			
		Filter	- AC power	
	AUX Equipment E.U.T	11 23381	114 4 2000	
	Equipment E.U.T			
		EMI		
	and the second state of the second	Receiver		
	Test table/legulation plans			
	Test table/Insulation plane			
	rest table/insulation plane	7 11 1		
	Permark	2111		
	Remark E UT Equipment Under Test	2 = 12		
	Remark E.U.T. Equipment Under Test LISM Line Impedence Stabilization Network	7 11 14		
WANNY WAXIN	Remark E UT Equipment Under Test LISM Line Impedence Stabilization Network Test table height=0 8m		2	THY DE
Test procedure	Remark E UT Equipment Under Test LISM Line Impedence Stabilization Network Test table height=0 8m	are connected	to the main p	power through a
Test procedure	Remark E UT Equipment Under Test LSN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators			
Test procedure	Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati	on network(L.I.S	.N.). The pro	ovide a
Test procedure	Remark E UT Equipment Under Test LISM Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im	on network(L.I.S bedance for the	.N.). The pro measuring e	ovide a quipment.
Test procedure	Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati	on network(L.I.S bedance for the	.N.). The pro measuring e	ovide a quipment.
Test procedure	Remark E UT Equipment Under Test LISM Line Impedence Stabilization Network Test lable height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar	on network(L.I.S bedance for the e also connecte	.N.). The prome measuring e d to the mair	ovide a quipment. n power through
Test procedure	Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50	on network(L.I.S bedance for the e also connecte ohm/50uH coup	.N.). The promeasuring ed to the mair ling impedar	ovide a quipment. In power through Ince with 50ohm
Test procedure	Remark EUT Equipment Under Test LSN Line Impedance Stabilization Network fest table height=0.8m 1. The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer	on network(L.I.S bedance for the e also connecte ohm/50uH coup	.N.). The promeasuring ed to the mair ling impedar	ovide a quipment. In power through Ince with 50ohm
Test procedure	Remark E UT Equipment Under Test LSN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs).	on network(L.I.S bedance for the e also connecte ohm/50uH coup s to the block dia	.N.). The promeasuring education to the mair ling impedar agram of the	ovide a quipment. In power through Ince with 50ohm Itest setup and
Test procedure	Remark EUT Equipment Under Test LSN Line Impedance Stabilization Network fest table height=0.8m 1. The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer	on network(L.I.S bedance for the e also connecte ohm/50uH coup s to the block dia	.N.). The promeasuring education to the mair ling impedar agram of the	ovide a quipment. In power through Ince with 50ohm Itest setup and
Test procedure	Remark E UT Equipment Under Test LSN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs).	on network(L.I.S) pedance for the e also connecte ohm/50uH coup is to the block dia e checked for ma	.N.). The promeasuring educed to the mair ling impedar agram of the aximum condition.	ovide a quipment. In power through nee with 500hm test setup and
Test procedure	Pernank E UT Equipment Under Test LSN Line impedence Stabilization Network Test lable height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi	on network(L.I.S) pedance for the e also connecte ohm/50uH coup is to the block dia e checked for mand the maximum	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conditions.	ovide a quipment. In power through the control test setup and ducted the relative
Test procedure	Remark E UT Equipment Under Test LSN Line Impedence Stabilization Network fest table height-0 am 1. The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar	on network(L.I.S) bedance for the e also connecte ohm/50uH coup is to the block dia e checked for ma and the maximum d all of the interior	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables remeasured.	ovide a quipment. In power through the with 50 ohm test setup and ducted the relative must be change
IN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	Pernank E UT Equipment Under Test LSN Line Impedence Stabilization Network Test table height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar according to EN55032 CI	on network(L.I.S) pedance for the e also connecte ohm/50uH coup is to the block dia e checked for ma ind the maximum d all of the interfass B on conduct	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables reted measure.	ovide a quipment. In power through the ce with 500hm test setup and ducted the relative must be change the rement.
Test Instruments:	Promote E UT Equipment Under Test LSN Line Impedence Stabilization Network fest lable height-0 am 1. The E.U.T and simulators line impedance stabilizati 500hm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar according to EN55032 CI Temp.: 24 °C Humin	on network(L.I.S) pedance for the e also connecte ohm/50uH coup is to the block dia e checked for ma ind the maximum d all of the interfass B on conduct	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables remeasured.	ovide a quipment. In power through the with 50 ohm test setup and ducted the relative must be change
Test Instruments: Measurement Record:	Pernank E UT Equipment Under Test LSN Line Impedence Stabilization Network Test lable height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar according to EN55032 CI Temp.: 24 °C Humie Uncertainty: ± 3.45dB	on network(L.I.S) pedance for the e also connecte ohm/50uH coup is to the block dia e checked for ma nd the maximum d all of the interfass B on conduct d.: 51%	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables reted measure.	ovide a quipment. In power through the ce with 500hm test setup and ducted the relative must be change the rement.
Test Instruments: Measurement Record: Test Instruments:	Remark E UT Equipment Under Test LSN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar according to EN55032 CI Temp.: 24 °C Humic Uncertainty: ± 3.45dB Refer to section 6.0 for deta	on network(L.I.S pedance for the e also connecte ohm/50uH coup is to the block did e checked for mand the maximum d all of the interfass B on conduction.	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables reted measure.	ovide a quipment. In power through the ce with 500hm test setup and ducted the relative must be change the rement.
Test Instruments: Measurement Record:	Pernank E UT Equipment Under Test LSN Line Impedence Stabilization Network Test lable height-0 8m 1. The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im 2. The peripheral devices ar a LISN that provides a 50 termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar according to EN55032 CI Temp.: 24 °C Humie Uncertainty: ± 3.45dB	on network(L.I.S pedance for the e also connecte ohm/50uH coup is to the block did e checked for mand the maximum d all of the interfass B on conduction.	.N.). The promeasuring ed to the mair ling impedar agram of the aximum conduction emission, the face cables reted measure.	ovide a quipment. In power through the ce with 500hm test setup and ducted the relative must be change the rement.

Line:

MXH

Neutral:

Notes:

6.056

30.25

An initial pre-scan was performed on the live and neutral lines with peak detector.

0.16

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

30.62

60.00

-29.38

Final Level =Receiver Read level + LISN Factor + Cable Loss 3.

0.21

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary. ANXIN ANXIN

TESTING	Report No.: AXJC20230522000307G
6.1.3 Harmonics Test Result	ISMXIN ANXIN ANXIN ANXIN ANXIN ANXIN A
Test Requirement:	ETSI EN 301 489-17: EN 61000-3-2
Test Method:	N/A: See Remark Below
Remark:	There is no need for Harmonics test to be performed on this product (rated power is less than 75W) in accordance with EN 61000-3-2. For further details, please refer to Clause 7, Note 1 of EN 61000-3-2 Which states: "For the following categories of equipment limits are not specified in this edition of the standard. Note 1: Equipment with a rated power of 75W or less, other than lighting equipment."
6.1.4 Flicker Test Results	WALL WASH WASH WASH WASH
Test Requirement:	ETSI EN 301 489-17: EN 61000-3-3

6.1.4 Flicker Test Results

	equipment.				
6.1.4 Flicker Test Results	VINXIN	VHXILA VL	MIX	JXIN P	WALL DE
Test Requirement:	ETSI EN 301 489-	17: EN 61000-	-3-3		VL
Test Method:	EN 61000-3-3	. 4	Klls.	My.	la:
Class/Severity:	Clause 5 of EN 61	000-3-3		MA	WAY
Measurement Time:	10 min	XIL	Mr.		in lar
Detector:	As per EN 61000-3	3-3	VIN	N	717
Test Instruments:	Temp.: 24 °C	Humid.:	51%	Press.:	1 010mbar
Test Instruments:	Refer to section 6.0	0 for details	N		18/14
Test mode:	Refer to section 5.2 the test report.	2 for details, C	Only show to	est data of th	ne worse mode on
Test results:	Pass	, bis		VIA	MXII

Measurement Data

ANXIN

	EUT values	Limit	Result
Pst	0.028	1.00	PASS
dc [%]	0.000	3.30	PASS
dmax [%]	0.059	7.00	PASS
dt [s]	0.000	0.50	PASS
	7.777	-0.5	4.7.44
XIM CHXIN	. Pro-	VI.	BLAK.
YIN ANXIN	ANXIN P	AXIN AIL.	IN WAYN
ANXIN ANXIN	ANXIN P	WAILY WAY	VMr.

MXM

IN TESTING	Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307G
6.2 Immunity	ANY MAN WALL
Continuous phenomena applied to transmitters (CT)	1. During the test, the uplink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check). 2. At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained. 3. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate.
Transient phenomena applied to Transmitters (TT)	 At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate.
Continuous phenomena applied to Receivers (CR)	 During the test, the RXQUAL of the downlink shall not exceed the value of three, measured during each individual exposure in the test sequence. During the test, the downlink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check). At the conclusion of the test, the EUT shall operate as intended with no loss of
(=: 4)	
Transient phenomena applied to Receivers (TR)	 At the control the The communication link shall have been maintained. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained
Transient phenomena applied to Receivers	user control the The communication link shall have been maintained. 1. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. 2. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall
Transient phenomena applied to Receivers (TR) Ancillary equipment tested on a stand	user control the The communication link shall have been maintained. 1. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. 2. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in the clauses above are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the

VHXII. "MXIIA	TAIN THE PARTY AND AND
with the	
Alex	Shenzhen An-Xin Testing Service Co., Ltd
TESTING	Report No.: AXJC20230522000307G
5.2.1 Electrostatic Discha	rge XX
Test Requirement:	ETSI EN 301489-17
Test Method:	EN 61000-4-2
Discharge Voltage:	Contact Discharge: ±2kV, ±4kV Air Discharge: ±2kV, ±4kV, ±8kV HCP/VCP: ±2kV, ±4kV
Polarity:	Positive & Negative
Number of Discharge:	Contact Discharge: Minimum 25 times at each test point,
Les Me	Air Discharge: Minimum 10 times at each test point.
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum
Limit:	Criteria B
Test setup:	
	Non-Conducted Table Ground Reference Plane
JXIN	
Test Procedure:	 Air discharge: 1. The test was applied on non-conductive surfaces of EUT. 2. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. 3. After each discharge, the discharge electrode was removed from the EUT.
	The generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point.
	5. This procedure was repeated until all the air discharge completed Contact Discharge:
	 The test was applied on conductive surfaces of EUT. the generator was re-triggered for a new single discharge and repeated 10 times for each pre-selected test point.
	the tip of the discharge electrode was touch the EUT before the discharge switch was operated.
	Indirect discharge for horizontal coupling plane
	 At least 10 single discharges shall be applied at the front edge of each HCP opposite the centre point of each unit of the EUT and 0.1m from the front of the EUT.
	2. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge. 2. Consideration should be given to expecting all sides of the EUT.
	3. Consideration should be given to exposing all sides of the EUT.

N TESTING	Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307G
Indirect discharge for vertical coupling plate. 1. At least 10 single discharges were applied edge of the coupling plane. 2. The coupling plane, of dimensions 0.5m X to, and positioned at a distance of 0.1m from 3. Discharges were applied to the coupling plane.	ANXING MAIN MAIN TAIN
ANXIN ANXIN	 Indirect discharge for vertical coupling plane At least 10 single discharges were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1 010mbar
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

	I: Please refer to red ring in	n below plots	VIII.	"HXII
est points:	II: Please refer to red ring i	n below plots	4 ' 4	150
Direct discharge				
Discharge Voltage (KV)	Type of discharge	Test points	Observations Performance	Result
\pm 2, \pm 4	Contact	4 1 1 1	A A	Pass
± 2, ± 4,± 8	Air	Allaxilla	A	Pass
ndirect discharge				
Discharge Voltage (KV)	Type of discharge	Test points	Observation Performance	Result
± 2, ± 4	HCP-Bottom/Top/ Front/Back/Left/Right	Edge of the HCP	A A A	Pass
Maria La	VCP-Front/Back	Center of the VCP	A Min	Pass
± 2, ± 4	/Left/Right	33/13/3/3/43/	MXII.	Aller and
Remark:	WIN 17	TH VIL	W. M.	XIII .
Remark: A: Normal performance	/Left/Right	TH VIL	WAXIN W	NIN W
Remark:	within the specification limit	TH VIL	YNXIN M	ANXIN
Remark: A: Normal performance I/A:Not applicable	e within the specification limit	ANXIN ANXIN	AWXIN AL	AUXIN XIII
Remark: \(\text{\text{Normal performance}}\) \(\text{I/A:Not applicable}\)	e within the specification limit	ANXIN ANXIN	ANXIN A	ANXIN ANXIN
Remark: : Normal performance I/A:Not applicable	within the specification limit	ANXIN ANXIN	ANXIN A	ANXIN ANXIN
emark: : Normal performance I/A:Not applicable	within the specification limit	ANXIN ANXIN	IXIN BUXIN	IN ANXIN
emark: : Normal performance I/A:Not applicable	e within the specification limit	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN	IN ANXIN
Remark: A: Normal performance N/A:Not applicable	e within the specification limit	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN	ANXIN AN
Remark: A: Normal performance N/A:Not applicable	e within the specification limit	IN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN	ANXIN AN
emark: : Normal performance I/A:Not applicable	e within the specification limit	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN	IN ANXIN

Remark:

ANXIN

6.2.2 Radiated Immunity	View May My
Test Requirement:	ETSI EN 301489-17
Test Method:	EN 61000-4-3
Frequency range:	80MHz to 6GHz
Test Level:	3V/m
Modulation:	80%, 1kHz Amplitude Modulation
Performance Criterion:	Criteria A
Test setup:	Amenina Antenna Antenn
	non-conductive table 0.8m high. For arrangement of floor-standing equipment, the EUT was mounted on a non-conductive support 0.1m above the supporting plane. For human body-mounted equipment, the EUT may be tested in the same manner as table top items. 2. If possible, a minimum of 1 m of cable is exposed to the electromagnetic field. Excess length of cables interconnecting units of the EUT shall be bundled low-inductively in the approximate center of the cable to form a bundle 30 cm to 40 cm in length. 3. The EUT was initially placed with one face coincident with the calibration plane. The EUT face being illuminated was contained within the UFA (Uniform Field Area). 4. The frequency ranges to be considered were swept with the signal modulated and pausing to adjust the RF signal level or to switch oscillators and antennas as necessary. Where the frequency range was swept incrementally, the step size was not exceed 1 % of the preceding frequency value. 5. The dwell time of the amplitude modulated carrier at each frequency was not be less than the time necessary for the EUT to be exercised and to respond, and was not less than 0,5 s. 6. The test normally was performed with the generating antenna facing each side of the EUT. 7. The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally. 8. The EUT was performed in a configuration to actual installation conditions, a video camera and/or a audio monitor were used to
Test monitor:	monitor the performance of the EUT. Traffic mode:
1 CSt HIOHILOI.	Tranic mode.

MXIM

WHX!	PXII	MXIM	MILL	10.	Bi.	VW.
	in A					
	N AI			en An-Xin T		rice Co., Ltd 522000307G
IN TESTIN	G WALL		W Ke	eport No., Az	\JU202308	022000307G
MXIII	- KIM	1 The test system	em shall simulate a	Base Statio	n (BS) with	Broadcast
100 m			nel/Common Contr			
ANX			III be synchronized tespond to paging m		I, listening t	o the CCCH
111.		Idle mode:	7	VL.	1	'M'X'
IN P		Control Cha	stem shall simulate nnel/Common Cor			
HXIII		carrier.	all be synchronized	d to the BC	CL lietenin	a to the CCCL
			espond to paging m		on, iisteriiri	g to the CCCF
Tes	st environment:	Temp.: 25	5 °C Humid.:	52%	Press.:	1 010mbar
Tes	st Instruments:	Refer to section	6.0 for details	MIXI	1	/N
Tes	st results:	Pass	N	VL.	27	Zr.
						MXIII
		NI DIE				
		ANXIN				

Measurement Record:

Measurement I						
Measurement res	-13	THY BIS	Operating	Antenna	751,	Observation
Frequency	Level	Modulation	Mode	Polarization	EUT Face	(Performane Criterion)
WHY			MXIM	V	Front	Α
	MY		P.	PH	110111	A
		WAXI	MX	V	Rear	A
	141	1 kHz, 80 % Amp.	"M	H AM	75	A
	VW.	Mod,	V.	ALV.	Left	A
80 MHz-6 GHz 3 V/m	10 % increment,	Traffic mode	H	VI.a.	A	
	N	dwell	VHX.	ATH	Right	A
	The state of the s	time=3seco nds	My	V	7 Vie	A
		Wy.	HYLY	Тор	A	
	MXIII		٠. د	N AI	ud ki	A
MILL			AM	н 🔊	Bottom	A AKA
						XIM ANX
		MXIM				
		ANXIN				

MXIN

ANXIN ANXIN

Test Requirement:	ETSI EN 301489-17
Test Method:	EN 61000-4-6
Frequency range:	0.15MHz to 80MHz
Test Level:	3V rms on AC Ports (unmodulated emf into 150 $Ω$)
Modulation:	80%, 1kHz Amplitude Modulation
Performance Criterion:	Criteria A
Test setup:	Shielding Room Signal Generator Power Amplifier Fixed Pad Insulating Support Och CND EUT Insulating Support Och Ground Reference Plane Ground Reference Plane Ground Reference Plane
Test Procedure:	Let the EUT work in test mode and test it.
	2. The EUT are placed on an insulating support 0.1m high above a
	ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible). 3. The disturbance signal described below is injected to EUT through CDN. 4. The EUT operates within its operational mode(s) under intended climatic conditions after power on. 5. The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulate with a 1kHz sine wave. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally; the step size
Test environment: Test Instruments:	placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible). 3. The disturbance signal described below is injected to EUT through CDN. 4. The EUT operates within its operational mode(s) under intended climatic conditions after power on. 5. The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulate

Measurement Record:

Frequency	Injected	Test				~ / * / * /
	Position	Level	Modulation	Step Size	Dwell Time	Observations (Performance Criterion)
150kHz to 80MHz	AC Main	3Vrms	80%, 1kHz Amp. Mod.	1%	2s	ANA
Remark:						MXII.
Normal perforn	mance within the	e specifica	tion limits.			
					ANXI	
					V DIA	
		IN				
						VINXIN BUXIN B
						ANXIN ANXIN
						ANXIN ANXIN
						ANXIN ANXIN
						ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN

MXIM

ANXIN ANXIN

TESTING	Report No.: AXJC20230522000307G
6.2.4 Electrical Fast Transien	
Test Requirement:	ETSI EN 301489-17
Test Method:	EN 61000-4-4
Test Level:	1.0kV on AC port
Polarity:	Positive & Negative
Repetition Frequency:	5kHz
Burst Duration:	15ms
Burst Period:	300ms
Test Duration:	2 minute per level & polarity
Performance Criterion:	BUX.
Test setup:	EMC Tester EUT
	80cm Non-conducted table Ground Reference Plane Ground Reference Plane
Test Procedure:	The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness.
	 This reference ground plane was project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under
	test to minimize the coupling between the cables. 4. The length of the signal and power lines between the coupling device
	and the EUT is 0.5m Test on Signal Ports, Telecommunication Ports and Control Ports: The EFT interference signal is through a coupling clamp device couples to the signal and control lines of the EUT with burst noise for 2 minutes.
	Test on power supply ports: 1. The EUT is connected to the power mains through a coupling device that directly couples the EFT/B interference signal.
	2. Each of the Line and Neutral conductors is impressed with burst noise for 2 minutes.
VIA. MAIN	
Test environment:	Temp.: 26 °C Humid.: 54% Press.: 1 010mbar

ANX. ANXIN	ANXIN	ANXIN ANXI	4 ALVIE	y Villy
N TESTING		Shenzhen An-Xin Report No.:	Testing Service C AXJC2023052200	co., Ltd 00307G
Mr. Mr.	V VIA	ANX	MXIII	MXIN
Test mode:	Refer to section 5.	2 for details	,	VIA.
Test results:	Pass	Mr. "MXIII.	IXIM	
MXII IXIN	M	N	VI.	M

Measurement Record:

Lead under Test	Level (±kV)	Coupling Direct/Clamp	Observations (Performance Criterion)	Result
IXIN L WX	± 1.0	Direct	A A	Pass
- UEN PA	± 1.0	Direct	A'AXIII	Pass
AMA-L-N A	± 1.0	Direct	Mr. A MXI	Pass
Remark:	MY	, M	YIA. VINY	ANXIN
A: Normal performa	nce within the sp	ecification limits	ANXIN ANX	
			XIN ANXIN	
			XIN ANXIN	
			ANXIN ANXIN	
			ANXIN ANXIN	
			ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN ANXIN
			ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN ANXIN
			ANXIN ANXIN ANXIN ANXIN ANXIN	

WXIN

ANXIN ANXIN

ANXIN

MXIN

6.2.5 Surge	all with the
Test Requirement:	ETSI EN 301489-17
Test Method:	ETSI EN 61000-4-5
Test Level:	±1kV Live to Neutral: Differential mode
Polarity:	Positive & Negative
Test Interval:	60s between each surge
No. of surges:	5 positive, 5 negative at 0°, 90°, 180°, 270°.
Performance Criterion:	LB WX, TXILL
WAIN WAIN WA	80cm grounding cable
Test Procedure:	1. For line-to-line coupling mode, provide a 1kV 1.2/50us voltage (at open-circuit condition) and 8/20us current surge to EUT's points, and for active line / neutral lines to ground are same exclevel is 2kV. 2. At least 5 positive and 5 negative (polarity) tests with a manufacture 1/min repetition rate are applied during test. 3. Different phase angles are done individually. 4. Record the EUT operating situation during compliance test and the EUT immunity criterion for above each test.
THE ANXIN ANXIN ANXIN	 For line-to-line coupling mode, provide a 1kV 1.2/50us voltage (at open-circuit condition) and 8/20us current surge to EUT s points, and for active line / neutral lines to ground are same exclevel is 2kV. At least 5 positive and 5 negative (polarity) tests with a manufactor of the same applied during test. Different phase angles are done individually. Record the EUT operating situation during compliance test and the EUT immunity criterion for above each test.
Test environment:	 For line-to-line coupling mode, provide a 1kV 1.2/50us voltage (at open-circuit condition) and 8/20us current surge to EUT s points, and for active line / neutral lines to ground are same exclevel is 2kV. At least 5 positive and 5 negative (polarity) tests with a manufactor of the same applied during test. Different phase angles are done individually. Record the EUT operating situation during compliance test and the EUT immunity criterion for above each test. Temp.: 26 °C Humid.: 53% Press.: 1 010r
Test environment: Test Instruments:	 For line-to-line coupling mode, provide a 1kV 1.2/50us voltage (at open-circuit condition) and 8/20us current surge to EUT s points, and for active line / neutral lines to ground are same exclevel is 2kV. At least 5 positive and 5 negative (polarity) tests with a manufactor of the second strains are applied during test. Different phase angles are done individually. Record the EUT operating situation during compliance test and the EUT immunity criterion for above each test. Temp.: 26 °C Humid.: 53% Press.: 1 010r Refer to section 6.0 for details
Test environment:	1. For line-to-line coupling mode, provide a 1kV 1.2/50us voltage (at open-circuit condition) and 8/20us current surge to EUT s points, and for active line / neutral lines to ground are same exclevel is 2kV. 2. At least 5 positive and 5 negative (polarity) tests with a management of 1/min repetition rate are applied during test. 3. Different phase angles are done individually. 4. Record the EUT operating situation during compliance test and the EUT immunity criterion for above each test. Temp.: 26 °C Humid.: 53% Press.: 1 010recondered Refer to section 6.0 for details Refer to section 5.2 for details Pass

Measurement Record:

TESTING				Reportin	10 AAJC20230322000307	G
Measuremen	t Record:					
NN.			N.	AM	Okaman and	
Location	Level(kV)	Pulse No	Surge Interval	Phase(deg)	Observations (Performance Criterion	1)
AN	KIII	MXIN	NXIN	0°	AM	
XIN L-N	±1	5	60s	90°	ANXIII A	N
L-IN	ANT.	5 XIN	, dxlk	180°	Α	
MXIN	-41	1	NA N	270°	ATTA	N
Remark:						
A. Normal p	erformance w	ithin the specif	ication limits	XIM AM		
VL.		77.		ANXIN		
			bu.			
				ANXIN		
				, Air		
					ANXIN ANXI	
		ANXIN ANXIN ANXIN				
					MIL	

WXIM

ANXIN ANXIN

ANXIN

MXIN

Test Requirement:	ETSI EN 301489-17					
Test Method:	EN 61000-4-11					
Test Level:	0% of VT(Supply Voltage) for 0.5 period 0% of VT(Supply Voltage) for 1.0 period 70% of VT(Supply Voltage) for 25 period 0% of VT(Supply Voltage) for 250 period					
No. of Dips / Interruptions:	3 per Level					
Performance Criterion:	0% VD, 0.5 periodPerformance criterion: B 0% VD, 1 periodPerformance criterion: B 70% VD, 25 periodPerformance criterion: C 0% VI, 250 periodPerformance criterion: C					
Test setup:	80cm Non-conducted table Ground Reference Plane					
	The state of the s					
Test Procedure:	Ground Reference Plane 1>.The EUT and test generator were setup as shown on above setup					
Test Procedure:	The state of the s					
Test Procedure: Test environment:	1>.The EUT and test generator were setup as shown on above setup photo.2>.The interruptions are introduced at selected phase angles with specified duration.					
THE WAYIN BY	1>.The EUT and test generator were setup as shown on above setup photo. 2>.The interruptions are introduced at selected phase angles with specified duration. 3>.Record any degradation of performance.					
Test environment: Test Instruments:	1>.The EUT and test generator were setup as shown on above setup photo. 2>.The interruptions are introduced at selected phase angles with specified duration. 3>.Record any degradation of performance. Temp.: 26 °C Humid.: 53% Press.: 1 010mbar Refer to section 6.0 for details					
Test environment: Test Instruments:	1>.The EUT and test generator were setup as shown on above setup photo. 2>.The interruptions are introduced at selected phase angles with specified duration. 3>.Record any degradation of performance. Temp.: 26 °C Humid.: 53% Press.: 1 010mbar Refer to section 6.0 for details					
Test environment: Test Instruments:	1>.The EUT and test generator were setup as shown on above setup photo. 2>.The interruptions are introduced at selected phase angles with specified duration. 3>.Record any degradation of performance. Temp.: 26 °C Humid.: 53% Press.: 1 010mbar Refer to section 6.0 for details					

Measurement Record:

ANXIN TESTING				Report No.: AXJC20230522000307G			
	Measurement R	Pacard:					
NIN	Measurement	necora.	AM	WK.	MXIL	WXIN :	VIM I
NXII.	Test Level U⊤	Duration (Periods)	Phase angle	No of dropout	Time between dropout	Observations (Performance Criterion)	NIN
VIA.	0%	0.5	0°, 90°, 180°, 270°	3	10s	A 61	VL.
	0%	1.0	0°, 90°, 180°, 270°	3	10s	XII A XIN	. 4
AL	70%	25	0°, 90°, 180°, 270°	3	10s	В	VIJ.
IN	0%	250	0°, 90°, 180°, 270°	3	10s	WALLE B	4

Remark:

MXM

ANXIN B: During the test, the charging stopped, but after the test, the power charger can automatically return to normal ANXIN ANXIN

ANXIN

7 EUT PHOTOGRAPHS

Photo 1
View:

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 2

View:

 $[\sqrt{}]$ Front

[] Rear 🔊

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 3

View: R20

[A] Front

[] Rear

[√] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 4

View: R20

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

Photo 9 View: R10 Front [] [1] Rear Right side [] Left side [] [] Top 90 80 70 60 50 40 30 20 10 mm [] Bottom\ 03 0E 04 05 09 07 08 09 00 for 05 0E 0 Internal

Photo 10 View: R10 [] Front Rear Right side [] Left side Top [] 60 50 40 30 20 10 mm $[\sqrt{}]$ **Bottom** \$ 02 0E 04 0E 09 07 08 09 00 101 02 0E 04 Internal

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 12

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

View: R30

Front []

Rear 11

Right side []_i

Left side Γ1

[] Top

[√] **Bottom**

Internal

Photo 14

View: R30

[] Front

11 Rear

[] Right side

Left side

Top []

 $[\sqrt{}]$ **Bottom**

Internal

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[√] Internal

Photo 16

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[√] Internal

TEST REPORT

For

Bluetooth audio transmitter

Bluetooth Models No.: R20, R10, R30

Applicant: Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Manufacturer: Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Issued By: Shenzhen An-Xin Testing Service Co., Ltd.

Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial Park, Xixiang Street, Bao'an District, Shenzhen,

Currydony China

Guangdong, China

Tel: +86 755 23009643 Fax: +86 755 23009643

Report Number: AXJC20230522000307H

Issued Date : May. 26, 2023 Date of Report : May. 26, 2023

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen An-Xin Testing Service Co., Ltd. This document may be altered or revised by Shenzhen An-Xin Testing Service Co., Ltd personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

MXIM

2 Contents

TESTIN	G _M XIM	MXIM		Report No.: AX3	C20230522000307F
2 Cc	ontents				Page
1 CO	VER PAGE			ANY III	VAXIIA 11
	ONTENTS			. 47/1	, XIV
3 GE					
3.2 3.3 3.4 3.5 3.6 3.7	TEST FACILITY TEST LOCATION DESCRIPTION OF SI DEVIATION FROM S ABNORMALITIES FR	UPPORT UNITS TANDARDS	DITIONS		
4 TE	CHNICAL REQUIRE	MENTS SPECIFICA	ATION IN EN 6231	1	VYX.
5. PHOT	OGRAPHS OF EUT	Mr.	AliXIII	, MXIN	-1X167
			ANXIN AN		
		ANXIN ANX		M AMXIN ANXIN	

MXIN

ANXIN ANXIN ANXIN **General Information**

General Description of EUT

3.1 General Description Product Name:	Bluetooth audio transmitter
Model No.:	R20
	are identical in the same PCB layout, interior structure and electrical circuit model name for commercial purpose.
Operation Frequency:	2412MHz~2472MHz(802.11b/802.11g/802.11n(H20)) 2422MHz~2462MHz(802.11n(H40))
Channel Numbers:	13 for 802.11b/802.11g/802.11n(HT20) 9 for 802.11n(HT40)
Channel Separation:	5MHz
Modulation Type: (IEEE 802.11b)	Direct Sequence Spread Spectrum(DSSS)
Modulation Type: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Antenna Type:	FPCB Antenna
Antenna Gain:	2.39dBi
Power Supply:	DC 5V
Test standard:	EN 62311:2020
Remark: Both adapter 1, 2 was record on the report.	and 3 were tested, and found adapter 1 was the worst case. So only the wor
ANXIN ANXIN	ANXIN ANXIN ANXIN ANXIN AN

was record on the repo	ort. AP	X. MXIII	· HXIM	412
Tested By:	ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN	May. 26, 2023	
			May. 26, 2023	
		4		
	h.			
	And then			
Tested By:	loc and	Date:	May. 26, 2023	-WXIII
Tested By: ANY	Jet Chen			
	The same of the		May. 26, 2023	
	The same	Date:		
Approved By:	(Color Se)	Date:	May. 26, 2023	
VIA. VIA.	Kevin Liu	AIN MA	10	
		12.		
				M
ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	Kevin Liu	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	May. 26, 2023	of 15
W YOU ARE	Aldri	n Testing Service Co.,	raye 3	UI IJ

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

2	2	Thef	Location
J	. U . 🕔	I E S L	LUCALIUII

None.

ANXIN

3.3	lest Location	h.	VIA.	WY.	7/1/
	All tests were performed at:				
	WALLY WASHING WIS	KILL BLAK	XIN BUXI	IN ANXIE	, by
3.4	Description of Support Units	IN AT	AM	AN	XIII
	The EUT has been tested as an indep	pendent unit.		My	bi
3.5	Deviation from Standards	M	NI.	AM	AMXII
	None.	VINV.	MXIII	IXIM	_1
3.6	Abnormalities from Standard (Conditions	114	M VIA	" VIN
	None.	VL.	ANX	. 11	
3.7	Other Information Requested by	by the Custor	ner	-VIM	A P

ANXIT

ANXIN

Page 4 of 15

4 Technical Requirements Specification in EN 62311

Test Requirement:	EN 62311	MY	415	<u> </u>	N.		
Test Method:	EN 62311:2020)APA	WAXII		XIII		
General Description of Applied Standards	EN 62311 Generic standard to demonstrate the compliance of electronic and electrical apparatus with the basic restrictions related to human exposure to electromagnetic fields (0 Hz–300 GHz) is to demonstrate the compliance of apparatus with the basic restrictions or reference levels of exposure of the general public related to electric, magnetic, electromagnetic fields as well as induced and contact current.						
Limit:	According to EN 62311, the criteria listed in the below table shall be used to evalouate the environmental inpact of human exposure to radio frequency (RF) radiation as specified table 2 of Council Recommendation 1999/519/EC. Reference levels for electric, magnetic and electromagnetic fields						
		(0 Hz to 3	600 GHz, unperturbed	rms values)			
	Frequency range	E-field strength (V/m)	H-field strength (A/m)	B-field (μT)	Equivalent plane wave power density S _{eq} (W/m²)		
	0-1 Hz 1-8 Hz	10 000	3,2 × 10+ 3,2 × 10+/f ²	4 × 10 ⁴ 4 × 10 ⁴ f ²	-		
	8-25 Hz 0.025-0.8 kHz	10 000 250/f	4 000/f 4/f	5 000/f 5/f			
	0.8-3 kHz	250/f	5	6,25			
	3-150 kHz	87	5	6,25			
	0,15-1 MHz	87	0,73/€	0,92/f			
	1-10 MHz	87/F ^{1/2}	0.73/f	0.92/f	-		
	10-400 MHz	28	0,073	0,092	2		
	400-2 000 MHz	1,375 ₽17	0,0037 (92	0,0046 f ³ / ²	f)200		
	2-300 GHz	.61	0,16	0,20	10		
	Notes: 1. f as indicated in the frequency range column.						
Test method:	According to th	e Far field ca	lculation form	ıla:	Die		
root mounou.	According to the Far field calculation formula: Far Field Calculation Formula						
	$E = \frac{\sqrt{30PG(\theta, \phi)}}{\theta, \phi}$ G = antenna gain relative to an isotropic antenna $\theta, \phi = \text{elevation and azimuth angles to point of investigation}$						
	r = distance from observation point to the antenna						
	away from the 20cm separation	body of the u on distance a ed on the use	ser. Warning s and the prohil er manual. So	statement of pition of ope this product	on is at least 200 the user for keei rating to a pers under normal u nan body.		

HXIM

A	IXIM			Shenzh Rep	en An-Xin Testing ort No.: AXJC202	3 Service Co., Lta 230522000307H
TESTIN Measure		ily at	IM .	W K.		
Wiedsure	ment Da	ta. API	WAY	MXIII	IXIP	-114
			1	1b mode		
Frequ	-	Output Power	Output Power	E Field Strength	Limit	Result
(MF		(dBm) 17.44	(mW) 55.463	(V/m) 6.450	(V/m) 61.00	Pass
244		17.40	54.954	6.420	61.00	Pass
247	72	17.52	56.494	6.509	61.00	Pass
				1 Mil		
						WALL BUX
			ANXIN	ANXIN A		WXIN ANX
			ANXIN	ANXIN A		ANXIN A
			IN ANXIN	M ANXIN A		ANXIN A
			ANXIN ANXIN	ANXIN ANXIN A		WXIN P
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN
			ANXIN ANXIN	ANXIN ANXIN A		ANXIN ANXIN

5. PHOTOGRAPHS OF EUT

Photo 1.

View:

[√] Front

🚺] Rear

[] Right side

1 Left side

[] Top

[] Bottom

[] Internal

Photo 2

View:

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

Bottom

[] Internal

View: R20

[] Front

Rear []

[1] Right side

Left side []

[] Top

Bottom []

[] Internal

Photo 4

View: R20

[] Front

[] Rear

IRight side

[] Left side

Top

 $[\sqrt{}]$ **Bottom**

Internal

View: R20

Γ1 Front

Rear []

Right side T 1

Left side []

[] Top

Bottom [-1]

[√] Internal

Photo 6

View: R20

Front

Rear []

Right side [H]

Left side []

Top

Bottom []

 $[\sqrt{}]$ Internal

ANXIII	ANXIN OR	XIN IX	IN AIR	IN VHY
I TESTING	THE WAYING A.	Shenzhen A Report N	n-Xin Testing Ser o.: AXJC202305	rvice Co., Ltd 322000307H
Photo 7	20 30 20 30 30 90 11			
View: R20	90100 10 50 60 70			
[] Rear [] Right side	70 80 30 40 £		-[]	-
[] Left side	10 20	<u> </u>		mmania.
[] Bottom [√] Internal	20 40 30 50 S	(19)	90 80 70 60	
ANX.		imilmilarimh		

View: R10

[] Front

[√] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 10

View: R10

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

View: R30

[√] Front

Rear []

T 1 Right side

Left side []

Top

[]. **Bottom**

[] Internal

Photo 12

View: R30

[√] Front

[] Rear

 $\{i\}$ Right side

Left side []

Top

[] **Bottom**

Internal

View: R30

Γ1 Front

Rear []

T 1 Right side

Left side []

[] Top

[1] **Bottom**

[] Internal

Photo 14

View: R30

[] Front

[] Rear

[1]Right side

Left side []

Top

 $[\sqrt{}]$ **Bottom**

Internal

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[√] Internal

Photo 16

View: R30

[] Front

[] Rear

Right side

[] Left side

[] Top

[] Bottom

[√] Internal

MXIN ANXIN ANXIN

RoHS TEST REPORT

For

Bluetooth audio transmitter

Model No.: R20, R10, R30

Applicant: Shenzhen yueerte Technology Co., Ltd

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Manufacturer: Shenzhen yueerte Technology Co., Ltd

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Issued By: Shenzhen An-Xin Testing Service Co., Ltd.

Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial Park, Xixiang Street, Bao'an District, Shenzhen,

Guangdong, China

Tel: +86 755 23009643

Fax: +86 755 23009643

Report Number: AXJC20230522000307R

Issued Date: May. 26, 2023

Date of Report: May. 26, 2023

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen An-Xin Testing Service Co., Ltd. This document may be altered or revised by Shenzhen An-Xin Testing Service Co., Ltd personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Lead(Pb), Cadmium(Cd)

Mercury(Hg)

AHXIN AHXIN

Hexavalent Chromium (Cr(VI))

Polybrominated Biphenyls (PBBs), Polybrominated Diphenyl Ethers(PBDEs), DIBP, DBP, DEHP, BBP

ANXIN

MXIM

Test Method:

AME			
STING AND ADDRESS OF THE STING	IN ANXIN	Shenzhen An-Xin Tes Report No.: AXJ	sting Service Co., Ltd C20230522000307R
est Method:	VINX.	WAXILE CHI	THY THY
Tested Item(s)	Test Method	Measured equipment(s)	Limits
Cadmium(Cd)	IEC 62321-5:2013	ICP-OES	0.01%(100 ppm)
Hexavalent chromium(Cr VI)	IEC 62321-7-1:2015 IEC 62321-7-2:2017	UV-Vis	0.1%(1000 ppm)
Mercury(Hg)	IEC 62321- 4:2013+A1:2017	ICP-OES	0.1%(1000 ppm)
Lead(pb)	IEC 62321-5:2013	ICP-OES	0.1%(1000 ppm)
Polybrominated Biphenyls(PBBs)	IEC 62321-6:2015	GC-MS	0.1%(1000 ppm)
Polybrominated Dispheny1 Ethers(PBDEs)	IEC 62321-6:2015	GC-MS	0.1%(1000 ppm)
Diisobutyl phthalate(DIBP)	IEC 62321-8:2017	GC-MS	0.1%(1000 ppm)
Di-(2-ethylhexyl) phthalate (DEHP)	IEC 62321-8:2017	GC-MS	0.1%(1000 ppm)
Dibutyl phthalate (DBP)	IEC 62321-8:2017	GC-MS	0.1%(1000 ppm)
Benzylbutyl phthalate (BBP)	IEC 62321-8:2017	GC-MS	0.1%(1000 ppm)
DIL DILL	ANXII	MXIN WING	-112
118		N, VI	- NT

Result	IL	Pass XIN AND
Conclusio n	:	An independent evaluation on the above-mentioned product(s) has been conducted pursuant to EU 2015/863 with 2011/65/EU of the European Parliament and of the
		Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment, and concluded that the equipment under evaluation met the legislative requirements of this directive.

ANXIN ANXIN Kevin Liu Manager May. 26, 2023

AMXII

Test Data Summary

SAMP LE NO.	COMPONENTS	Item	Results of EDXRF (P/F/D)	Results of testing(mg/kg)	Chemical testing limit (mg/kg)	Conclusio n (P/F)
	VID I	Cd	P	N.D.	<100	P
	1.	Cr VI	P(I	N.D.	<1000	Р
	VI.	Hg 🕨	P	N.D.	<1000	P (1)
	MIN	Pb	Р	N.D.	<1000	P N
	MX	PBBs	D VIB	1	<1000	N.A.
1	USB cord	PBDEs	D	1	<1000	N.A.
	(A)	DIBP	D	1	<1000	N.A.
	"MXII	DEHP	D	1	<1000	N.A.
	No.	DBP	D NY	1	<1000	N.A.
	4.	BBP	D	1	<1000	N.A.
M	7/4/12	Cd	P	N.D.	<100	P
	VI.	Cr VI	P	N.D.	<1000	P (N)
	M	Hg	P	N.D.	< 1000	RN
	1751.	Pb	P	N.D.	<1000	P
P	" AM	PBBs	D	N.D.	< 1000	P
2	AV cord	PBDEs	D	N.D.	<1000	P
	NXII.	DIBP	D N	N.D.	< 1000	P
	BIA.	DEHP	D	N.D.	<1000	P
		DBP	D	N.D.	<1000	P
	11/1/19	BBP 🕠	D	N.D.	<1000	P
	AR	Cd	P	N.D.	<1000	Pul
	, M	Cr VI	P	N.D.	< 1000	P
	(1)		P			P
	AMA	Hg	P	N.D.	<1000	P (II
	10.	Pb		N.D.	<1000	P
3	Black plastic case	PBBs	D	N.D.	<1000	
	VIA.	PBDEs	D	N.D.	<1000	P
		DIBP	D	N.D.	<1000	Р
	XIM	DEHP	D	N.D.	<1000	P
	API	DBP	D	N.D.	<1000	P
	A ,	BBP	D Mr	N.D.	<1000	P
	MIL	Cd	Р	N.D.	<100	P
	Why.	Cr VI	P	N.D.	<1000	P
		Hg	Р	N.D.	<1000	P
	PCB AND	Pb	Р	N.D.	<1000	P
4	PCB N	PBBs	D.	N.D.	<1000	Р
7 ,	. 35	PBDEs	D	N.D.	<1000	Р
	My.	DIBP	D	N.D.	<1000	P 1/7
	Whi.	DEHP	D JN	N.D.	<1000	Р
		DBP	D N	N.D.	<1000	P
MA	(A)	BBP	D	N.D.	<1000	Р

SAMP LE NO.	COMPONENTS	Item	Results of EDXRF (P/F/D)	Results of testing(mg/kg)	Chemical testing limit (mg/kg)	Conclusio n (P/F)
" MXII	17/12	Cd	P	N.D.	<100	P
bi.	AM	Cr VI	Р	N.D.	<1000	Р
	la.	Hg	P AP	N.D.	< 1000	P
- N	(1)	Pb	P	N.D.	<1000	Р
5	Internal vive	PBBs	D	N.D.	< 1000	Р
1 2	Internal wire	PBDEs	D	N.D.	<1000	P
	11/1/4	DIBP	D .	N.D.	<1000	PAR
	VIA.	DEHP	D	N.D.	<1000	Р
(A)	r	DBP	D	N.D.	<1000	Р
7.411	MY	BBP	D	N.D.	< 1000	P
	VL.	Cd	P	N.D.	< 100	P
	4	Cr VI	P All	N.D.	<1000	Р
47	My.	Hg	P	N.D.	<1000	Р
VI.	WHY	Pb	Р	N.D.	<1000	Р
_	Dutter	PBBs	D	N.D.	< 1000	P
6	Button	PBDEs	D	N.D.	< 1000	P
	L. W	DIBP	D	N.D.	<1000	Р
' Un		DEHP	D	N.D.	< 1000	P
	1XIM	DBP	D	N.D.	< 1000	P A
	AM	BBP	D A	N.D.	<1000	P
la:		Cd	Р	N.D.	<100	Р
" MXIII.	My	Cr VI	P	N.D.	<1000	P
21.	VIII.	Hg	Р	N.D.	<1000	Р
	In	Pb	P AP	N.D.	< 1000	P
7 1	Inculation pages	PBBs	Dad	N.D.	<1000	Р
7.19	Insulation paper	PBDEs	D	N.D.	< 1000	P
7		DIBP	D	N.D.	<1000	P AIR
	11/14	DEHP	D	N.D.	<1000	P
	VL,	DBP	D	N.D.	<1000	Р
la.		BBP	D	N.D.	< 1000	Р

Note: ANXIN

- (1) N.D. = Not detected (<MDL)
- (2) ppm = mg/kg
- (4) Negative = the concentration of Hexavalent Chromium extracted from 50cm² sample is less than the detection limit.
- (5) Cadmium(Cd), Lead(Pb), Mercury(Hg), Hexavalent Chrormium(Cr), PBBs, PBDEs, Dibutyl Phthalate(DBP), Butyl benzyl phthalate (BBP), Di-(2-ethylhexyl) Phthalate(DEHP), Diisobutyl phthalate (DIBP).

Appendix 1

Photo documentation

Photo 1 View: 90 100 [√] Front 20 90 100 10 Rear [A]Right side [] 80 2 Left side 9 [] Top \ 20 mm of os os os os os os os os oe 00for os os os Bottom Internal #Underdackedededinglankarlanderderderdedinglankerbederderderde

Photo 2

View:

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

View: R20

[] Front

[] Rear

[√] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 4

View: R20

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

Photo 5 View: R20 Front 2 [] [] Rear 9 Right side [] 8 [] Left side [] Top յուկույլումիակումիակայիրըի թվարակականականական mm of 02 06 04 06 06 07 08 06 00101 05 06 04 02 05 Ĺ **Bottom** [√] Internal OS OE OP OS OS OE OB OE OO LOT OS OE OP OS OS OF O8 OE OO O

Page 10 of 14

Page 11 of 14

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

] Internal

Photo 14

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

Page 12 of 14

Page 13 of 14

ANXIN

---END---

CE-LVD TEST REPORT

For

Bluetooth audio transmitter

Models No.: R20, R10, R30

Prepared for: Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Manufacturer: Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue

village, Bantian, Longgang, Shenzhen

Prepared By: Shenzhen An-Xin Testing Service Co., Ltd.

Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial

Park, Xixiang Street, Bao'an District, Shenzhen, Guangdong,

China

Tel: +86 755 23009643 Fax: +86 755 23009643

AXJC20230522000307S **Report Number:**

Issued Date: May. 26, 2023 Date of Report: May. 26, 2023

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen An-Xin Testing Service Co., Ltd. This document may be altered or revised by Shenzhen An-Xin Testing Service Co., Ltd personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

TEST REPORT

EN 62368-1

Audio/video, information and communication technology equipment

Report Number	AXJC20230522000307S				
Date of issue:	May. 26, 2023				
Testing Laboratory:	Shenzhen An-Xin Testing Service Co., Ltd.				
Address:	Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial Park, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China				
Applicant's name :	Shenzhen yueerte Technology Co., Ltd.				
Address :	Second floor, building C, Huaxing Industrial Park, shangxue				
14/12	village, Bantian, Longgang, Shenzhen				
Test specification:					
Standard :	EN 62368-1:2020				
Test procedure:	LVD-CE				
Non-standard test	N/A				
method					
Test Report Form No	N/A APP				
Test Report Form(s) Originator:	N/A				
Master TRF:	N/A				
. (179)	. 57				

Copyright © 2014 IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE System). All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description:	Bluetooth audio transmitter
Trade Mark:	N/A ANY
Manufacturer	Shenzhen yueerte Technology Co., Ltd.
Address:	Second floor, building C, Huaxing Industrial Park, shangxue
VIL. VINY	village, Bantian, Longgang, Shenzhen
Models/Type reference:	R20, R10, R30
Ratings:	DC 5V

MXIN

				Festing Service Co., L
ESTING			кероп по.	:AXJC202305220003
A. C.	YL, WX		IXIP IX	h. h
Possible test case verd	licts:	N Pi		
test case does not apply to the test object		N(/A.)		
test object does meet the requirement		P(ass)		
Mr. Why.		NXIN		
test object does not me	eet the requirement	F(ail)		
VINE OF	KII TKILI	1	12. M	
Name and address of the	he testing laboratory :		MXIII	
MXIII	Shenzhen	An-Xin Testir	ng Service Co., Ltd.	
N A			h, Building C, Yuxing	
1XIIA IXIM	Industrial F Guangdon		Street, Bao'an Distri	ct, Shenzhen,
AR	Oddingdon	g, Orlina		
W/N				
AMY AMY	A. Sicher			
Tested by :	Jer chang	AM	May. 26, 2023	
anx" ax	Signature		Date	
in P	AMA			
en, MXIII	<u>Jet Chen / Enginee</u> Name/title	er r		
N Pi	ARIJATIANIO			
WIN THE	ALC: A SANCE			
YIL VINE	Henry Tim			
Witnessed by:		Bl.	May. 26, 2023	
Why.	Signature		Date	
in the	Library Time (non-	ANC		MXIM
WAY!	Henry Tian / proj Name/title			
IN IN	ANY			
XIM ANXIM				ANXIN ANXIN
, Alex	ATTENDED OF			
WINE W	N P			AME AT
Approved by :		$$ $\chi N $		i d
ANXIN	Signature		Date	ANXIN A
AMIL	Kevin Liu / Manager	AN'		
My M	Name/title	AM		VHXIL)
BHXIII	HXIP			VI.
			ANXIN AT	NIN MIX

GENERAL PRODUCT INFORMATION:

Product Description -

Model Differences -

N/A

Additional application considerations – (Considerations used to test a component or sub-assembly) –

Some components are pre-certified, which have been evaluated according to the relevant requirements of IEC 62368-1, are employed in this product. Their suitability of use has been checked according to clauses 4.1.1 and 4.1.

Copy of marking plate:

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.

Bluetooth audio transmitter

Model: R20 Input: DC 5V

Shenzhen yueerte Technology Co., Ltd.

ANXI

MY	EN 62368-1	ANXII	MXIM
Clause	Requirement + Test	Result - Remark	Verdict

100	OFNEDAL DEGLIDEMENTS		
4	GENERAL REQUIREMENTS	V/2.	P
4.1.1	Acceptance of materials, components and subassemblies	(See appended Table 4.1.2.)	Р
4.1.2	Use of components	Safeguard components are certified to IEC and/or national standards and are used correctly within their ratings.	N/P
4.1.3	Equipment design and construction		Р
4.1.15	Markings and instructions:	(See Annex F)	Р
4.4.4	Safeguard robustness	See below and Annex P.4	Р
4.4.4.2	Steady force tests:	(See Annex T.4)	IN P
4.4.4.3	Drop tests:	(See Annex T.7)	Р
4.4.4.4	Impact tests:	"HXILD TXILD	N/A
4.4.4.5	Internal accessible safeguard enclosure and barrier tests:	My Phy	N/A
4.4.4.6	Glass Impact tests:	(See Annex T.9)	N/A
4.4.4.7	Thermoplastic material tests:	is the	Р
4.4.4.8	Air comprising a safeguard:	Mr. Mark	Р
4.4.4.9	Accessibility and safeguard effectiveness	All safeguards remain effective.	Р
4.5	Explosion	No explosion observed during normal / abnormal / single fault conditions.	Р
4.6	Fixing of conductors	VIL. VILLE	P
4.6.1	Fix conductors not to defeat a safeguard	412	Р
4.6.2	10 N force test applied to:	10 N test was applied to conductors.	PAT
4.7	Equipment for direct insertion into mains socket - outlets	en Anxin	N P
4.7.2	Mains plug part complies with the relevant standard:	MXIN NXIN	P
4.7.3	Torque (Nm):	A Pris	Р
4.8	Products containing coin/button cell batteries	WXILL IXIN	N/A
4.8.2	Instructional safeguard	A KA	N/A
4.8.3	Battery Compartment Construction	112.	N/A
AN	Means to reduce the possibility of children removing the battery:	KIN KIN KINS	_
4.8.4	Battery Compartment Mechanical Tests:	Why.	N/A
4.8.5	Battery Accessibility	12	N/A

Shenzhen An-Xin Testing Service Co., Ltd

	EN 62368-1		
Clause	Requirement +Test	Result - Remark	Verdict
4.9	Likelihood of fire or shock due to entry of conductive object:	IN MAY ANXIN	N/A
5	ELECTRICALLY-CAUSED INJURY	tis 1970	Р
5.2.1	Electrical energy source classifications:	(See appended table 5.2)	P
5.2.2	ES1, ES2 and ES3 limits	(See appended table 5.2)	Р
5.2.2.2	Steady-state voltage and current:	WALL TAIL	Р
5.2.2.3	Capacitance limits:	The Plan	P
5.2.2.4	Single pulse limits:	Mr. Mys	N/A
5.2.2.5	Limits for repetitive pulses:	May Aldre	N/A
5.2.2.6	Ringing signals	Kly	N/A
5.2.2.7	Audio signals:	, AR AK	N/A
5.3	Protection against electrical energy sources	41/2	P
5.3.1	General Requirements for accessible parts to ordinary, instructed and skilled persons	We Willy	AMP
5.3.2.1	Accessibility to electrical energy sources and safeguards	M ANX	P
5.3.2.2	Contact requirements	" " " XIII"	N/A
7.4	a) Test with test probe from Annex V:	W Y	N/A
IN P	b) Electric strength test potential (V):	MXIII MXIII	N/A
	c) Air gap (mm):	Pile	N/A
5.3.2.4	Terminals for connecting stripped wire	Willy Tilly	N/A
5.4	Insulation materials and requirements	Y Y	P
5.4.1.2	Properties of insulating material	My Myles	Р
5.4.1.3	Humidity conditioning:	(See sub-clause 5.4.8 and 5.4.9)	Р
5.4.1.4	Maximum operating temperature for insulating materials:	(See appended table 5.4.1.4)	KIM P
5.4.1.5	Pollution degree:	List Files	_
5.4.1.5.2	Test for pollution degree 1 environment and for an insulating compound	VIAN VINE	N/A
5.4.1.5.3	Thermal cycling	MXIII IXIN	N/A
5.4.1.6	Insulation in transformers with varying dimensions	M. VIEW	N/A
5.4.1.7	Insulation in circuits generating starting pulses	11212	N/A
5.4.1.8	Determination of working voltage	W No VI	Р
5.4.1.9	Insulating surfaces	11×11/4	√//B
5.4.1.10	Thermoplastic parts on which conductive metallic parts are directly mounted	MY AIX	Р
5.4.1.10.2	Vicat softening temperature:	VIA. VIXII	N/A

	EN 62368-1		
Clause	Requirement +Test	Result - Remark	Verdict
5.4.1.10.3	Ball pressure:	My. WXIII	P. N
5.4.2	Clearances	M M	P P
1	All Ale	ANT.	
5.4.2.2	Determining clearance using peak working voltage	MY IN	P
5.4.2.3	Determining clearance using required withstand voltage:	THE BUX!	MXIR,
	a) a.c. mains transient voltage:	Mr. My	_
MXIM	b) d.c. mains transient voltage:	W. W.	
X	c) external circuit transient voltage:	, THY	<i>N</i> –
ANY	d) transient voltage determined by measurement	ALL ALL	_
5.4.2.4	Determining the adequacy of a clearance using an electric strength test	ANXII P	N/A
5.4.2.5	Multiplication factors for clearances and test voltages:	ANXIN ANXIN	N/A
5.4.3	Creepage distances:	h. 1912.	Р
5.4.3.1	General	Why Why	P
5.4.3.3	Material Group:	M IN	_
5.4.4	Solid insulation	ANX.	Р
5.4.4.2	Minimum distance through insulation:	Mr.	Р
5.4.4.3	Insulation compound forming solid insulation	The Why	N/A
5.4.4.4	Solid insulation in semiconductor devices	10.	N/A
5.4.4.5	Cemented joints	Why May	N/A
5.4.4.6	Thin sheet material	19	N/A
5.4.4.6.1	General requirements	WAY, MA	N/A
5.4.4.6.2	Separable thin sheet material	11 M	N/A
N	Number of layers (pcs):	L. Mille	N/A
5.4.4.6.3	Non-separable thin sheet material	IN P	N/A
5.4.4.6.4	Standard test procedure for non-separable thin sheet material:	VINXII. VINXIII	N/A
5.4.4.6.5	Mandrel test	MY. MY	N/A
5.4.4.7	Solid insulation in wound components	Y BIE. BUY	N/A
5.4.4.9	Solid insulation at frequencies >30 kHz	1 XIM	N/A
5.4.5	Antenna terminal insulation	VIA. VIA.	Р
5.4.5.1	General	Mr. My	Р
5.4.5.2	Voltage surge test	VI BUY	Р
	Insulation resistance (MΩ):	500 M	_

la.	EN 62368-1	Report No.: AXJC2023052	20003078
Clause	Requirement +Test	Result - Remark	Verdict
(1)	, Nie Vigy	MAIN WIND	
5.4.6	Insulation of internal wire as part of supplementary safeguard:	IN AIN AIR	N/A
5.4.7	Tests for semiconductor components and for cemented joints	IN ANY ANY	N/A
5.4.8	Humidity conditioning	MX112	P
Y.	Relative humidity (%):	93%.	_
bi	Temperature (°C)	25°C.	_
MXIII	Duration (h)	48 h.	
5.4.9	Electric strength test:	(See appended table 5.4.9)	Р
5.4.9.1	Test procedure for a solid insulation type test	IN PLANT	PAT
5.4.9.2	Test procedure for routine tests	XIII	N/A
5.4.10	Protection against transient voltages between external circuit	IN ALL ALL	N/A
5.4.10.1	Parts and circuits separated from external circuits	VIA. WHY.	N/A
5.4.10.2	Test methods	bi Mr.	N/A
5.4.10.2.1	General	VILL WALL	N/A
5.4.10.2.2	Impulse test:	14	N/A
5.4.10.2.3	Steady-state test	Why WX	N/A
5.4.11	Insulation between external circuits and earthed circuitry:	MXIN MXIN	N/A
5.4.11.1	Exceptions to separation between external circuits and earth	WALL STATE OF THE PARTY OF THE	N/A
5.4.11.2	Requirements	VIA. VIA.	N/A
ZI.	Rated operating voltage U _{op} (V)	hi 1/12.	
. 4	Nominal voltage U _{peak} (V):	VLV VILLE	_
· Plan	Max increase due to variation U _{sp} :	KIM MA	_
<i>'</i>	Max increase due to ageing U _{sa} :	A ANY AN	_
MY	U _{op} = U _{peak} + U _{sp} + U _{sa} :	ANXIII	_
5.5	Components as safeguards	in his	VIA.
5.5.1	General	anti, entile	P
5.5.2	Capacitors and RC units	H 12 12 12 12 12 12 12 12 12 12 12 12 12	P
5.5.2.1	General requirement	MXIII MXII	N/A
5.5.2.2	Safeguards against capacitor discharge after disconnection of a connector	MY. MY	P P
5.5.3	Transformers	(See Annex G.5.3)	N/A
5.5.4	Optocouplers	(See sub-clause 5.4 or Annex G.12)	N/A

MIL	EN 62368-1	Report No.: AXJC20230	IXIM
Clause	Requirement +Test	Result - Remark	Verdict
5.5.5	Relays	Y WAY	N/A
5.5.6	Resistors	The Trilly	N/A
5.5.7	SPD's	N Al	N/A
5.5.7.1	Use of an SPD connected to reliable earthing	MXIII MXIII	N/A
5.5.7.2	Use of an SPD between mains and protective earth	MY AIN	N/A
5.5.8	Insulation between the mains and external circuit consisting of a coaxial cable:	y big by	N/A
5.6	Protective conductor	ANXIII	N/A
5.6.2	Requirement for protective conductors	MY IN	N/A
5.6.2.1	General requirements	N. W.	N/A
5.6.2.2	Colour of insulation	119	N/A
5.6.3	Requirement for protective earthing conductors	WALL MALL	N/A
WY.	Protective earthing conductor size (mm²):	P.	_
5.6.4	Requirement for protective bonding conductors	MXIII IXIN	N/A
5.6.4.1	Protective bonding conductors	M N N	N/A
	Protective bonding conductor size (mm²):	" AXIII	v -
	Protective current rating (A):	AN AN	_
5.6.4.3	Current limiting and overcurrent protective devices	WXIII	N/A
5.6.5	Terminals for protective conductors	N. All	N/A
5.6.5.1	Requirement	MXIN IXIN	N/A
MXII	Conductor size (mm²), nominal thread diameter (mm):	My New	N/A
5.6.5.2	Corrosion	Why Why	N/A
5.6.6	Resistance of the protective system	All IN	N/A
5.6.6.1	Requirements	AMA	N/A
5.6.6.2	Test Method Resistance (Ω):	hi hiv	N/A
5.6.7	Reliable earthing	VLY VIXII	N/A
5.7	Prospective touch voltage, touch current and prote	ective conductor current	Р
5.7.2	Measuring devices and networks	WALL WALL	P
5.7.2.1	Measurement of touch current	M IN	P
5.7.2.2	Measurement of prospective touch voltage	Why.	Р
5.7.3	Equipment set-up, supply connections and earth connections	HXIN MXIN AI	AIL I
X	System of interconnected equipment (separate connections/single connection):	IXIN AIR	N _

A	THE ANXING ANXING		
TESTIN	GUXIN WXIN WAN	Shenzhen An-Xin Testing Serv Report No.: AXJC202305	
My	EN 62368-1	ANY ANXII	NXIN
Clause	Requirement +Test	Result - Remark	Verdict
AMX	Multiple connections to mains (one connection at a time/simultaneous connections)	IN WHY WAY	_
5.7.4	Earthed conductive accessible parts	My M	N/A
5.7.5	Protective conductor current	hi hiv	N/A
VIM	Supply Voltage (V)	My Why	_
	Measured current (mA)	412	P
My.	Instructional Safeguard	VHX VHXIII	N/A
5.7.6	Prospective touch voltage and touch current due to external circuits	in him	N/A
5.7.6.1	Touch current from coaxial cables	May Alex	N/A
5.7.6.2	Prospective touch voltage and touch current from external circuits	XII. WAXIN	N/A
5.7.7	Summation of touch currents from external circuits	hi hiv	N/A
WXIN	a) Equipment with earthed external circuits Measured current (mA)	VILLE WAY	N/A
	b) Equipment whose external circuits are not referenced to earth. Measured current (mA):	WALL WALL	N/A

ELECTRICALLY- CAUSED FIRE		Р
Classification of power sources (PS) and potential ig	gnition sources (PIS)	P
Power source circuit classifications	THE WAY	Р
General	his My.	Р
Power measurement for worst-case load fault:	VILLE VILLE	BXIII
Power measurement for worst-case power source fault	mxin mxin	Р
PS1	UN VI	N/A
PS2	Supplied by external power supply which is complied with LPS.	KIM P
PS3	TAIN THE	Р
Classification of potential ignition sources	See below.	NP
Arcing PIS	All conductors and devices are considered as Arcing PIS.	Р
Resistive PIS	All conductors and devices are considered as Resistive PIS.	P
Safeguards against fire under normal operating and	abnormal operating conditions	Р
No ignition and attainable temperature value less than 90 % defined by ISO 871 or less than 300 °C for unknown materials	(See appended table 5.4.1.4, 6.3.2, 9.0, B.2.6)	1XIN
Combustible materials outside fire enclosure	MXIII	P
	Classification of power sources (PS) and potential ig Power source circuit classifications General Power measurement for worst-case load fault: Power measurement for worst-case power source fault: PS1: PS2: PS3: Classification of potential ignition sources Arcing PIS: Resistive PIS: Safeguards against fire under normal operating and No ignition and attainable temperature value less than 90 % defined by ISO 871 or less than 300 °C for unknown materials:	Classification of power sources (PS) and potential ignition sources (PIS) Power source circuit classifications General Power measurement for worst-case load fault: Power measurement for worst-case power source fault

MIL	EN 62368-1	My White	IXIN
Clause	Requirement +Test	Result - Remark	Verdict
6.4	Safeguards against fire under single fault conditions	WHY. WHY!	P. N
6.4.1	Safeguard Method	Method of Control fire spread used.	N P
6.4.2	Reduction of the likelihood of ignition under single fault conditions in PS1 circuits	No PS1 circuits	N/A
6.4.3	Reduction of the likelihood of ignition under single fault conditions in PS2 and PS3 circuits	THE WAY	N/A
6.4.3.1	General	Willy Tilly	N/A
6.4.3.2	Supplementary Safeguards	Y VI	N/A
,	Special conditions if conductors on printed boards are opened or peeled	ANXING SHXIN	N/A
6.4.3.3	Single Fault Conditions:	XIM IN	N/A
IN	Special conditions for temperature limited by fuse	Why "H	N/A
6.4.4	Control of fire spread in PS1 circuits	No such circuit provided.	N/A
6.4.5	Control of fire spread in PS2 circuits	See below.	PIP
6.4.5.2	Supplementary safeguards:	in the	Р
6.4.6	Control of fire spread in PS3 circuit	My William	P
6.4.7	Separation of combustible materials from a PIS	12 12	N/A
6.4.7.1	General:	anti	N/A
6.4.7.2	Separation by distance	and has	N/A
6.4.7.3	Separation by a fire barrier	Mr. MxIII	N/A
6.4.8	Fire enclosures and fire barriers	P	Р
6.4.8.1	Fire enclosure and fire barrier material properties	Equipment enclosure was evaluated as a fire enclosure.	RXIN
6.4.8.2.1	Requirements for a fire barrier	My MA	N/A
6.4.8.2.2	Requirements for a fire enclosure	VILLE VILLE	P
6.4.8.3	Constructional requirements for a fire enclosure and a fire barrier	XIIA WAXIN	KIM P
6.4.8.3.1	Fire enclosure and fire barrier openings	AL PARTIES	Р
6.4.8.3.2	Fire barrier dimensions	Mr. Wille	N/A
6.4.8.3.3	Top Openings in Fire Enclosure: dimensions (mm)	No opening	N/A
NXII	Needle Flame test	Y All	N/A
6.4.8.3.4	Bottom Openings in Fire Enclosure, condition met a), b) and/or c) dimensions (mm)	No opening	N/A
IN AT	Flammability tests for the bottom of a fire enclosure	HXIN MXIN	N/A
6.4.8.3.5	Integrity of the fire enclosure, condition met: a), b) or c):	All All IN	N/A
		. 1917	117

AMA	anxii willia ixii	A UN FOR	VI.
N TESTING	ANXIN ANXIN ANXIN ANXIN AN	Shenzhen An-Xin Testing Servic Report No.: AXJC20230522	
My	EN 62368-1	Nopol(110.: 77002020022	3/100000
Clause	Requirement +Test	Result - Remark	Verdict
	VI VI	Mr. Alle	
6.4.8.4	Separation of PIS from fire enclosure and fire barrier distance (mm) or flammability rating	THY WIND WIND	N/A
6.5	Internal and external wiring	West wit	Р
6.5.1	Requirements	See below.	Р
6.5.2	Cross-sectional area (mm²):	The material of VW-1 on internal wiring were considered compliance equal to equivalent to IEC/TS 60695-11-21 relevant standards.	_
6.5.3	Requirements for interconnection to building wiring	No such interconnection to building wiring.	N/A
6.6	Safeguards against fire due to connection to additional equipment	(See Annex Q)	PAN
IL.	External port limited to PS2 or complies with Clause Q.1	(See Annex Q)	Р

Alex	VHZ.	MIX
INJURY CAUSED BY HAZARDOUS SUBSTANC	ES	ANP.
Reduction of exposure to hazardous substances	No hazardous chemicals within the equipment	PNX
Ozone exposure	" WALLE	N/A
Use of personal safeguards (PPE)	Y AM	N/A
Personal safeguards and instructions:	11/1/2 IXIN	_
Use of instructional safeguards and instructions	, Alex	N/A
Instructional safeguard (ISO 7010)	MX MXIN	_
Batteries:	bi. Vla	N/A
	Reduction of exposure to hazardous substances Ozone exposure Use of personal safeguards (PPE) Personal safeguards and instructions	Ozone exposure Use of personal safeguards (PPE) Personal safeguards and instructions: Use of instructional safeguards and instructions Instructional safeguard (ISO 7010)

T*	by My	Mr. Myse	
8	MECHANICALLY-CAUSED INJURY		P
8.1	General	The Thy	MP
8.2	Mechanical energy source classifications	MS1	Р
8.3	Safeguards against mechanical energy sources	MY MY	N/A
8.4	Safeguards against parts with sharp edges and corners	Accessible edges and corners of the equipment are rounded and are classified as MS1.	AMP.
8.4.1	Safeguards	M Y	N/A
8.5	Safeguards against moving parts	No moving parts.	N/A
8.5.1	MS2 or MS3 part required to be accessible for the function of the equipment	INH AIR ARE	N/A
8.5.2	Instructional Safeguard:	W. W.	_
8.5.4	Special categories of equipment comprising moving parts	VHXILY PIXILY	N/A

My	EN 62368-1	ALL ALXII	NXIM
Clause	Requirement +Test	Result - Remark	Verdict
8.5.4.1	Large data storage equipment	y My	N/A
8.5.4.2	Equipment having electromechanical device for destruction of media	THE WAYING	N/A
8.5.4.2.1	Safeguards and Safety Interlocks	IN MY	N/A
8.5.4.2.2	Instructional safeguards against moving parts	My.	N/A
	Instructional Safeguard:	La. 1912.	_
8.5.4.2.3	Disconnection from the supply	VILL VILLE	N/A
8.5.4.2.4	Probe type and force (N)	in the same	N/A
8.5.5	High Pressure Lamps	No such Lamps provided.	N/A
8.5.5.1	Energy Source Classification	hi My	N/A
8.5.5.2	High Pressure Lamp Explosion Test:	VILLE OF	N/A
8.6	Stability	Classification MS1 according to table 35, line 5 and no stability requirements	N/A
8.6.1	Product classification	19 in	N/A
11/2	Instructional Safeguard:	Mys. Mysic	_
8.6.2	Static stability	M M	N/A
8.6.2.2	Static stability test	WHY.	N/A
P.	Applied Force:	My My	_
8.6.2.3	Downward Force Test	THE WAY	N/A
8.6.3	Relocation stability test	hi My.	N/A
NXIN	Unit configuration during 10° tilt	ANY,	_
8.6.4	Glass slide test	hi Hir.	N/A
8.6.5	Horizontal force test (Applied Force):	VHY. VHXIII	N/A
VI.	Position of feet or movable parts	XIP IN	_
8.7	Equipment mounted to wall or ceiling	No such equipment	N/A
8.7.1	Mounting Means (Length of screws (mm) and mounting surface)	ANXIN MXIN	N/A
8.7.2	Direction and applied force:	in Pi	N/A
8.8	Handles strength	No handles provided.	N/A
8.8.1	Classification	N N	N/A
8.8.2	Applied Force	MXIII IX	N/A
8.9	Wheels or casters attachment requirements	My V. VIA	N/A
8.9.1	Classification	Mr. Miles	N/A
8.9.2	Applied force	A A	
8.10	Carts, stands and similar carriers	17/1	N/A

VIN	VIXII VIXIA	N MY	VIA.
N TESTING	XIN ANXIN ANXIN ANXIN AN	Shenzhen An-Xin Testing Servic	
Mr	EN 62368-1	Report No.: AXJC2023052	20003075
Clause	Requirement +Test	Result - Remark	Verdict
	De la Play	My Marin	. 4
8.10.1	General	No.	N/A
8.10.2	Marking and instructions	in axile	N/A
. 1	Instructional Safeguard:	ALL ALL	_
8.10.3	Cart, stand or carrier loading test and compliance	UXILE IXIN	N/A
12/1/2	Applied force	V. VIII.	_
8.10.4	Cart, stand or carrier impact test	Mr. My	N/A
8.10.5	Mechanical stability	W. W.	N/A
120	Applied horizontal force (N)	Mr. Mys	_
8.10.6	Thermoplastic temperature stability (°C)	Yes Why	N/A
8.11	Mounting means for rack mounted equipment	XIIA XIIA	N/A
8.11.1	General	Ald All	N/A
8.11.2	Product Classification	Whi All	N/A
8.11.3	Mechanical strength test, variable N:	VI. VIII.	N/A
8.11.4	Mechanical strength test 250N, including end stops	MY MY	N/A
8.12	Telescoping or rod antennas	ble Why	N/A
K	Button/Ball diameter (mm):	ly Aly	

	IXIN IN SI	VIA. WHY	
9	THERMAL BURN INJURY		Р
9.2	Thermal energy source classifications		Р
9.3	Safeguard against thermal energy sources	Temperature of enclosure classed as TS1	Р
9.4	Requirements for safeguards		Р
9.4.1	Equipment safeguard		Р
9.4.2	Instructional safeguard:		Р

10	RADIATION			Р
10.2	Radiation energy source classification	RS1	TAIN	RM
10.2.1	General classification	1	VI.	N/A
10.3	Protection against laser radiation	" MXIII	, XIM	N/A
WXIII	Laser radiation that exists equipment:	in Pri	VI.	_
P	Normal, abnormal, single-fault	775	Kly W	N/A
. ~	Instructional safeguard	:	AM	_
IN N	Tool		IXIM	_
10.4	Protection against visible, infrared, and UV radiation	My	VIL. VI	Р
10.4.1	General	VI.	WAX	P

MIV	EN 62368-1	VIN WAY	NAM
Clause	Requirement +Test	Result - Remark	Verdict
10.4.1.a)	RS3 for Ordinary and instructed persons:	' BUX. BUXIL	N/A
10.4.1.b)	RS3 accessible to a skilled person:	IN VIN	N/A
N.	Personal safeguard (PPE) instructional safeguard	AND AND AND	_
10.4.1.c)	Equipment visible, IR, UV does not exceed RS1:	My Mylly	J/P
10.4.1.d)	Normal, abnormal, single-fault conditions:	10 10	N/A
10.4.1.e)	Enclosure material employed as safeguard is opaque	VINE VIXIE	N/A
10.4.1.f)	UV attenuation	11/12	N/A
10.4.1.g)	Materials resistant to degradation UV:	Y BIS	N/A
10.4.1.h)	Enclosure containment of optical radiation:	Kly 1Xly	N/A
10.4.1.i)	Exempt Group under normal operating conditions	WIND WAY	N/A
10.4.2	Instructional safeguard	Why.	N/A
10.5	Protection against x-radiation	14 1	N/A
10.5.1	X- radiation energy source that exists equipment	M ANXIII	N/A
- 1	Normal, abnormal, single fault conditions	" TXIN	N/A
7.	Equipment safeguards	Y MY	N/A
N P	Instructional safeguard for skilled person:	4XIII	N/A
10.5.3	Most unfavourable supply voltage to give maximum radiation:	WIND DIE	_
MIXI	Abnormal and single-fault condition:	AMY ANXII	N/A
VI	Maximum radiation (pA/kg)	is the	N/A
10.6	Protection against acoustic energy sources	WHY!	N/A
10.6.1	General	MM IN	N/A
10.6.2	Classification	ANX" N	N/A
C	Acoustic output, dB(A)	All A	N/A
MY	Output voltage, unweighted r.m.s:	Why.	N/A
10.6.4	Protection of persons	118 K.	N/A
112	Instructional safeguards:	WALL WALLS	N/A
AMXII	Equipment safeguard prevent ordinary person to RS2	H CXIM BY	_
AN	Means to actively inform user of increase sound pressure:	THE DIE	_
KIM	Equipment safeguard prevent ordinary person to RS2	ALL ALLEY	_
10.6.5	Requirements for listening devices (headphones,	Mr. Mr.	N/A

My	EN 62368-1	AN (NODE) 20002	TXIN
Clause	Requirement +Test	Result - Remark	Verdict
11/14	earphones, etc.)	YHY. WHY!	N
10.6.5.1	Corded passive listening devices with analog input	THE WAYING	N/A
IN AT	Input voltage with 94 dB(A) L _{Aeq} acoustic pressure output	WIN THE	_
10.6.5.2	Corded listening devices with digital input	VI.	N/A
	Maximum dB(A):	My My	_
10.6.5.3	Cordless listening device	VI. VIII.	N/A
P .	Maximum dB(A):	11/12	_

В	NORMAL OPERATING CONDITION TESTS, ABN TESTS AND SINGLE FAULT CONDITION TESTS		XIMP
B.2	Normal Operating Conditions	11/2 12/2	Р
B.2.1	General requirements	VIN CASIL	PIN
'La'.	Audio Amplifiers and equipment with audio amplifiers	No such equipment	N/A
B.2.3	Supply voltage and tolerances	of Mr. Visit	P.M.
B.2.5	Input test	(See appended table B.2.5)	N P
B.3	Simulated abnormal operating conditions	NA PHY	Р
B.3.1	General requirements	(See appended table B.3)	B
B.3.2	Covering of ventilation openings	A.F.	N/A
B.3.3	D.C. mains polarity test	No voltage selector	N/A
B.3.4	Setting of voltage selector	NA PLAY	N/A
B.3.5	Maximum load at output terminals	(See appended table B.3)	N/A
B.3.6	Reverse battery polarity	VIAN VIAN	N/A
B.3.7	Abnormal operating conditions as specified in Clause E.2.	XIM WAYIN	N/A
B.3.8	Safeguards functional during and after abnormal operating conditions	MXIN MIXIN	P
B.4	Simulated single fault conditions	VI. VII.	MP
B.4.2	Temperature controlling device open or short-circuited	ANXIN MIXIN	N/A
B.4.3	Motor tests	4	Р
B.4.3.1	Motor blocked or rotor locked increasing the internal ambient temperature:	MAN WAY	N/A
B.4.4	Short circuit of functional insulation	1×14	N/B
B.4.4.1	Short circuit of clearances for functional insulation	YI, VI	Р
B.4.4.2	Short circuit of creepage distances for functional insulation	MXIN MXIN	PUN

Shenzhen An-Xin Testing Service Co., Ltd

4	BI THE WAY	Report No.: AXJC2023052	2000307S
MIXI	EN 62368-1	VLs. VIZZ.	MXIL
Clause	Requirement +Test	Result - Remark	Verdict
119	y Visit Visi	Mr. Axll.	
B.4.4.3	Short circuit of functional insulation on coated printed boards	My My	N/A
B.4.5	Short circuit and interruption of electrodes in tubes and semiconductors	ing buy. But	N/A
B.4.6	Short circuit or disconnect of passive components	MXIII MXIII	N/A
B.4.7	Continuous operation of components	7 20	N/A
B.4.8	Class 1 and Class 2 energy sources within limits during and after single fault conditions	(See appended Table B.4)	P
B.4.9	Battery charging under single fault conditions:	in Mr.	N/A
3	VIL 114 DIST	VHY VHXIII	
С	UV RADIATION		N/A
C.1	Protection of materials in equipment from UV radiation	ALL ALL	N/A
C.1.2	Requirements	MXIII	N/A
C.1.3	Test method	No.	N/A
C.2	UV light conditioning test	WALL TAIL	N/A
C.2.1	Test apparatus	M V. VIA.	N/A
C.2.2	Mounting of test samples	in the	N/A
C.2.3	Carbon-arc light-exposure apparatus	API	N/A
C.2.4	Xenon-arc light exposure apparatus	MXIII.	N/A
	his his his	Ala.	
D	TEST GENERATORS		N/A
D.1	Impulse test generators	Y. Yu.	N/A
D.2	Antenna interface test generator	MY MY	N/A
D.3	Electronic pulse generator	VIA. VIA.	N/A

	N N		11/11	MA
E	TEST CONDITIONS FOR EQUIPMENT CONTAINING AUDIO AMPLIFIERS			
E.1	Audio amplifier normal operating conditions	TXIE	M	N/A
MXIL	Audio signal voltage (V)	by.	ALIA	_
	Rated load impedance (Ω):	IXIN	MIL	
E.2	Audio amplifier abnormal operating conditions	VIA.	VHY.	N/A

F	EQUIPMENT MARKINGS, INSTRUCTIONS, AND INSTRUCTIONAL SAFEGUARDS			Р	. 1
F.1	General requirements	IXIM	Mr	Р	1
XIL	Instructions – Language:	English	AMY.	_	
F.2	Letter symbols and graphical symbols	NIN	HILL	Р	

47/1	EN 62368-1	k, MA	" MY.
Clause	Requirement +Test	Result - Remark	Verdict
F.2.1	Letter symbols according to IEC60027-1	Letter symbols and units are complied with IEC 60027-1	N/A
F.2.2	Graphic symbols IEC, ISO or manufacturer specific	ANY PHY	Р
F.3	Equipment markings	MXII. MXIII	P
F.3.1	Equipment marking locations	The equipment marking is located on the surface and is easily visible.	Р
F.3.2	Equipment identification markings	See below.	P.Y.
F.3.2.1	Manufacturer identification	See copy of marking plate	_
F.3.2.2	Model identification	See copy of marking plate	_
F.3.3	Equipment rating markings	See copy of marking plate	P
F.3.3.1	Equipment with direct connection to mains	ANY. M	Р
F.3.3.2	Equipment without direct connection to mains	hi hiv	N/A
F.3.3.3	Nature of supply voltage	See copy of marking plate	_
F.3.3.4	Rated voltage:	See copy of marking plate	_
F.3.3.4	Rated frequency:	See copy of marking plate	_
F.3.3.6	Rated current or rated power	See copy of marking plate	_
F.3.3.7	Equipment with multiple supply connections	ANX! NX	N/A
F.3.4	Voltage setting device	No voltage setting device.	N/A
F.3.5	Terminals and operating devices	W. WILL	1X/P
F.3.5.1	Mains appliance outlet and socket-outlet markings	WALL MAIL	N/A
F.3.5.2	Switch position identification marking	,	N/A
F.3.5.3	Replacement fuse identification and rating markings:	The fuse resistor is located within the equipment and not replaceable by an ordinary person or an instructed person. The fuse resistor marked with: RF1 10ohm/1W	VIN AL
F.3.5.4	Replacement battery identification marking:	WIXII	N/A
F.3.5.5	Terminal marking location	N. S.	N/A
F.3.6	Equipment markings related to equipment classification	WAXIN WAXIN	P
F.3.6.1	Class I Equipment	by Ally	N/A
F.3.6.1.1	Protective earthing conductor terminal	ALL WAY	N/A
F.3.6.1.2	Neutral conductor terminal	Not permanently connected equipment.	N/A
F.3.6.1.3	Protective bonding conductor terminals	and K. A	N/A
F.3.6.2	Class II equipment (IEC60417-5172)	MAN INIM	N/A

TESTING	ANXIN MAXIN AIR AXIN AS	Shenzhen An-Xin Testing Servic Report No.: AXJC2023052	
MIXI	EN 62368-1	VILL VILLE	MXII
Clause	Requirement +Test	Result - Remark	Verdict
.3.6.2.1	Class II equipment with or without functional earth	YEAR VINE	N/A
.3.6.2.2	Class II equipment with functional earth terminal marking	IN ANXIN MX	N/A
.3.7	Equipment IP rating marking:	IPX0	_
.3.8	External power supply output marking	THY WHALL	N/A
3.9	Durability, legibility and permanence of marking	All markings required are easily discernible under normal lighting conditions.	P
.3.10	Test for permanence of markings	After rubbing test by water and petroleum spirit, the marking still legible; it is not easily possible to remove the marking plate and show no curling.	AIN I
.4	Instructions	W W	Р
IXIN	a) Equipment for use in locations where children not likely to be present – marking	ANXIII	N/A
	b) Instructions given for installation or initial use	hi Mx.	N/A
11/1	c) Equipment intended to be fastened in place	Why Why	N/A
	d) Equipment intended for use only in restricted access area	in with	N/A
IN AN	e) Audio equipment terminals classified as ES3 and other equipment with terminals marked in accordance F.3.6.1	WXIN MXIN AIR	N/A
	f) Protective earthing employed as safeguard	A P	N/A
MXIN	g) Protective earthing conductor current exceeding ES 2 limits	VILY. VIXIA	N/A
	h) Symbols used on equipment	Mr. Mrs.	N/A
MX	i) Permanently connected equipment not provided with all-pole mains switch	KIN AIR ARY	N/A
	j) Replaceable components or modules providing safeguard function	IN AMY	Р
.5	Instructional safeguards	VHXIII	N/A
Kii	Where "instructional safeguard" is referenced in the test report it specifies the required elements, location of marking and/or instruction	MY AIX	N/A

G	COMPONENTS				
G.1	Switches	· M	N. P.	N/A	P
G.1.1	General requirements	No switch used	MXIII	N/A	
G.1.2	Ratings, endurance, spacing, maximum load	· lai	, b	N/A	
G.2	Relays	anxii	MXIM	N/A	N

MX	EN 62368-1	VI. VILL	MXIIIa
Clause	Requirement +Test	Result - Remark	Verdict
G.2.1	General requirements	YEST PLAY	N/A
G.2.2	Overload test	The TAIL	N/A
G.2.3	Relay controlling connectors supply power	' WILL WILL	N/A
G.2.4	Mains relay, modified as stated in G.2	Wills William	N/A
G.3	Protection Devices	V. VIII	N/A
G.3.1	Thermal cut-offs	My MA	N/A
G.3.1.1a) &b)	Thermal cut-outs separately approved according to IEC 60730 with conditions indicated in a) & b)	Mr. May	N/A
G.3.1.1c)	Thermal cut-outs tested as part of the equipment as indicated in c)	ANXII ANXII	N/A
G.3.1.2	Thermal cut-off connections maintained and secure	XIII WAXIN	N/A
G.3.2	Thermal links	his My.	N/A
G.3.2.1a)	Thermal links separately tested with IEC 60691	ANY ANXI	N/A
G.3.2.1b)	Thermal links tested as part of the equipment	[c. 12]	N/A
712.	Aging hours (H):	Why why	_
VI.	Single Fault Condition	M 11d W	_
	Test Voltage (V) and Insulation Resistance (Ω) :	ant six	_
G.3.3	PTC Thermistors	12 M	N/A
G.3.4	Overcurrent protection devices	24.	N/A
G.3.5	Safeguards components not mentioned in G.3.1 to	G.3.5	N/A
G.3.5.1	Non-resettable devices suitably rated and marking provided	VILY. VIXIA	N/A
G.3.5.2	Single faults conditions:	My William	N/A
G.4	Connectors	W W	N/A
G.4.1	Spacings	Kly o'Kly	N/A
G.4.2	Mains connector configuration	V VIA	N/A
G.4.3	Plug is shaped that insertion into mains socket-outlets or appliance coupler is unlikely	VIXIL VIXIL	N/A
G.5	Wound Components	hi Hr	N/A
G.5.1	Wire insulation in wound components	My MAIN	N/A
G.5.1.2 a)	Two wires in contact inside wound component, angle between 45° and 90°	is with	N/A
G.5.1.2 b)	Construction subject to routine testing	IN W. VIEW	N/A
G.5.2	Endurance test on wound components	11/4	N/A
G.5.2.1	General test requirements	A) A)	N/A
G.5.2.2	Heat run test	11/21 :4/12	N/A

•	Bi. W. M.	Report No.: AXJC20230522	2000307S
MIXI	EN 62368-1	VIL. VILLE	MXIN
Clause	Requirement +Test	Result - Remark	Verdict
11/1	Time (s):	YW ANKI	_
VIA.	Temperature (°C):	ly ixly	
G.5.2.3	Wound Components supplied by mains	AMY AMY	N/A
G.5.3	Transformers	Mr. Mr.	N/A
G.5.3.1	Requirements applied (IEC61204-7, IEC61558-1/-2, and/or IEC62368-1):	The transformer meets the requirements given in G.5.3.2 and G.5.3.3.	N/A
MXIII	Position:	I I'm Value	_
	Method of protection:	By protection circuit	_
G.5.3.2	Insulation	Primary windings and secondary windings are separated by Reinforced insulation	N/A
	Protection from displacement of windings:	Tape, Triple insulated wire, bobbin	_
G.5.3.3	Overload test	(See appended table B.3)	N/A
G.5.3.3.1	Test conditions	L. VIA.	N/A
G.5.3.3.2	Winding Temperatures testing in the unit	MXIN WIN	N/A
G.5.3.3.3	Winding Temperatures - Alternative test method	M. AM.	N/A
G.5.4	Motors	1112	N/A
G.5.4.1	General requirements	YIN WHY	N/A
N A	Position:	NXIN XIN	_
G.5.4.2	Test conditions	V. VIII	N/A
G.5.4.3	Running overload test	41/14	N/A
G.5.4.4	Locked-rotor overload test	VIL. VILLE	N/A
N.	Test duration (days):	Mr. Mr.	_
G.5.4.5	Running overload test for d.c. motors in secondary circuits	VIN MAN IN ANX	N/A
G.5.4.5.2	Tested in the unit	White of	N/A
D	Electric strength test (V)	IN PI	_
G.5.4.5.3	Tested on the Bench - Alternative test method; test time (h):	VILY VILY	N/A
. \	Electric strength test (V)	Will The	_
G.5.4.6	Locked-rotor overload test for d.c. motors in secondary circuits	H MA MA	N/A
G.5.4.6.2	Tested in the unit	WAY.	N/A
AM	Maximum Temperature:	in My.	N/A
IM	Electric strength test (V):	Hr White	N/A
G.5.4.6.3	Tested on the bench - Alternative test method; test time (h):	MXIN XIN A	N/A
-1113		- Di	

M	EN 62368-1	Report No.: AXJC2023	03220003073
Clause	Requirement +Test	Result - Remark	Verdict
17/1	Electric strength test (V):	HUY. WHY	N/A
G.5.4.7	Motors with capacitors	My MA	N/A
G.5.4.8	Three-phase motors	AMA	N/A
G.5.4.9	Series motors	My My	N/A
XIII	Operating voltage:	YES VIEW	
G.6	Wire Insulation	HIS MIX.	N/A
G.6.1	General	BUY WHA!	N/A
G.6.2	Solvent-based enamel wiring insulation	Me	N/A
G.7	Mains supply cords	ALIX. WH	N/A
G.7.1	General requirements	My My	N/A
lL,	Type:	ANX	N _
	Rated current (A):	hi My.	_
MIXI	Cross-sectional area (mm²), (AWG)	ALL ALX	_
G.7.2	Compliance and test method	11/2	N/A
G.7.3	Cord anchorages and strain relief for non-detachable power supply cords	W DIAS. DIAS.	N/A
G.7.3.2	Cord strain relief	MXIII	N/A
G.7.3.2.1	Requirements	IN P.	N/A
IN	Strain relief test force (N)	W. M. M.	_
G.7.3.2.2	Strain relief mechanism failure	, a)	N/A
G.7.3.2.3	Cord sheath or jacket position, distance (mm):	MXIII TXIII	_
G.7.3.2.4	Strain relief comprised of polymeric material	N. Die	N/A
G.7.4	Cord Entry:	"MXIII"	N/A
G.7.5	Non-detachable cord bend protection	IN W. YE	N/A
G.7.5.1	Requirements	XII.	N/A
G.7.5.2	Mass (g)	(a)	74, -
in law	Diameter (m)	MXIII	_
NXIII	Temperature (°C):	L. Du	_
G.7.6	Supply wiring space	MXIII IXII	N/A
G.7.6.2	Stranded wire	M K. VA	N/A
G.7.6.2.1	Test with 8 mm strand	"TXIIA	N/A
G.8	Varistors	AL AL	N/A
G.8.1	General requirements	MXIII	N/A
G.8.2	Safeguard against shock	, Kie,	N/A
G.8.3	Safeguard against fire	Mr. MXIII	N/A

MYN	EN 62368-1	VIE. VIE.	MXIII
Clause	Requirement +Test	Result - Remark	Verdict
G.8.3.2	Varistor overload test:	HILL ANXIII	N/A
G.8.3.3	Temporary overvoltage:	My My	N/A
G.9	Integrated Circuit (IC) Current Limiters	VILL. OUT	N/A
G.9.1 a)	Manufacturer defines limit at max. 5A.	WHY WH	N/A
G.9.1 b)	Limiters do not have manual operator or reset	YES.	N/A
G.9.1 c)	Supply source does not exceed 250 VA	by Alx	_
G.9.1 d)	IC limiter output current (max. 5A):	VLIV. VIXII.	_
G.9.1 e)	Manufacturers' defined drift	18	_
G.9.2	Test Program 1	VILY. WY	N/A
G.9.3	Test Program 2	My My	N/A
G.9.4	Test Program 3	VI VIII	N/A
G.10	Resistors	1/A	N/A
G.10.1	General requirements	VHY.	N/A
G.10.2	Resistor test	14 14	N/A
G.10.3	Test for resistors serving as safeguards between the mains and an external circuit consisting of a coaxial cable	IN AUXIN AUXIN	N/A
G.10.3.1	General requirements	YES WHY	N/A
G.10.3.2	Voltage surge test	NYIM WIN	N/A
G.10.3.3	Impulse test	ALL A	N/A
G.11	Capacitor and RC units	TAIN THE	Р
G.11.1	General requirements	VIE. VIJE.	P
G.11.2	Conditioning of capacitors and RC units	his My.	Р
G.11.3	Rules for selecting capacitors	ALL ALLXII	Р
G.12	Optocouplers	XILY -11/4	P
, P	Optocouplers comply with IEC 60747-5-5:2007 Spacing or Electric Strength Test (specify option and test results):	TAIN ANY AIN AN	N/A
TXIL	Type test voltage Vini:	DIA. WILLIAM	_
	Routine test voltage, Vini,b	411 1112	_
G.13	Printed boards	VILL VILLE	PU
G.13.1	General requirements	ily istly	J P
G.13.2	Uncoated printed boards	My WHY	Р
G.13.3	Coated printed boards	Why Why	N/A
G.13.4	Insulation between conductors on the same inner surface	Les Marie M.	N/A

	W. M. W.	Report No.: AXJC2023052	20003075
MXIN	EN 62368-1	BI. THE	MXIII
Clause	Requirement +Test	Result - Remark	Verdict
ANXII	Compliance with cemented joint requirements (Specify construction)	IN HIN HAY	_
G.13.5	Insulation between conductors on different surfaces	IN AUX	N/A
M	Distance through insulation	My Mylly	N/A
74	Number of insulation layers (pcs)	N. N.	_
G.13.6	Tests on coated printed boards	MXIII	N/A
G.13.6.1	Sample preparation and preliminary inspection	Y VI	N/A
G.13.6.2a)	Thermal conditioning	" XIL	N/A
G.13.6.2b)	Electric strength test	W VI	N/A
G.13.6.2c)	Abrasion resistance test	Klis	N/A
G.14	Coating on components terminals	YL. VI	N/A
G.14.1	Requirements	HXIA XIA	N/A
G.15	Liquid filled components	V. VIII	N/A
G.15.1	General requirements	My My	N/A
G.15.2	Requirements	' Buy	N/A
G.15.3	Compliance and test methods	IL KIN	N/A
G.15.3.1	Hydrostatic pressure test	VIA VIA	N/A
G.15.3.2	Creep resistance test	HIV HIXI	N/A
G.15.3.3	Tubing and fittings compatibility test	Mr. Ville	N/A
G.15.3.4	Vibration test	HILL MIX.	N/A
G.15.3.5	Thermal cycling test	VL. VLY	N/A
G.15.3.6	Force test	412	N/A
G.15.4	Compliance	Why Why	N/A
G.16	IC including capacitor discharge function (ICX)	XIM IN	N/A
a)	Humidity treatment in accordance with sc5.4.8 – 120 hours	IN ANY	N/A
b)	Impulse test using circuit 2 with Uc = to transient voltage	WAXIII	N/A
C1)	Application of ac voltage at 110% of rated voltage for 2.5 minutes	anxin mxin	N/A
C2)	Test voltage	N N	_
D1)	10,000 cycles on and off using capacitor with smallest capacitance resistor with largest resistance specified by manufacturer	WHY ANXING ANX	Р
D2)	Capacitance ::	W. W.	_
D3)	Resistance ::	THE P	_

P	ex. Williams		
TESTIN	GHXIM MXIM	Shenzhen An-Xin Tes Report No.: AXJ	sting Service Co., Ltd C20230522000307S
MIX	A Company of P	EN 62368-1	" TXIL
Clause	Requirement +Test	Result - Remark	Verdict
Н	CRITERIA FOR TELEPHONE RING	ING SIGNALS	N/A
H.1	General	15/12 15/14	N/A
H.2	Method A	id by	N/A
H.3	Method B	ET MIXIN XIE	N/A
H.3.1	Ringing signal	All All	N/A
H.3.1.1	Frequency (Hz)	TONE TOUR	- 1/2
H.3.1.2	Voltage (V)		_
H.3.1.3	Cadence; time (s) and voltage (V)	My, Whi	- (2)
H.3.1.4	Single fault current (mA):		VIJA
H.3.2	Tripping device and monitoring voltage	je	N/A
H.3.2.1	Conditions for use of a tripping device monitoring voltage complied with	e or a	N/A
H.3.2.2	Tripping device	VILLE STATE	N/A
H.3.2.3	Monitoring voltage (V)	La. (21	_

	J	INSULATED WINDING WIRES FOR USE WITHOUT INTERLEAVED INSULATION				Р
1	<u> </u>	General requirements	VIII.	ANXII	- MXIB	Р

K	SAFETY INTERLOCKS		N/A
K.1	General requirements	No such components used.	N/A
K.2	Components of safety interlock safeguard mechanism		N/A
K.3	Inadvertent change of operating mode		N/A
K.4	Interlock safeguard override		N/A
K.5	Fail-safe		N/A
	Compliance:		N/A
K.6	Mechanically operated safety interlocks		N/A
K.6.1	Endurance requirement		N/A
K.6.2	Compliance and Test method:		N/A
K.7	Interlock circuit isolation		N/A
K.7.1	Separation distance for contact gaps & interlock circuit elements (type and circuit location):		N/A
K.7.2	Overload test, Current (A)		N/A
K.7.3	Endurance test		N/A
K.7.4	Electric strength test:		N/A

ANIA	MXIII	114.	1	N	VIA.
	XIM ANXIM AN				
N TESTING	3 WXIII			n-Xin Testing Service No.: AXJC20230522	
MY	10 1	EN 62368-1	AM	ALIXII	MXIM
Clause	Requirement +Test	MXIN	Result - Remark		Verdict
		VL,	' <i>1</i> / ₂ .	18/11-	
L	DISCONNECT DEVICES				Р
L.1	General requirements		Not directly conn	ected to the mains	Р
L.2	Permanently connected equipment	t			N/A
L.3	Parts that remain energized				Р
L.4	Single phase equipment				Р
L.5	Three-phase equipment				N/A
L.6	Switches as disconnect devices				N/A
L.7	Plugs as disconnect devices				N/A
L.8	Multiple power sources				N/A

М	EQUIPMENT CONTAINING BATTERIES AND THEIR PROTECTION CIRCUITS	N/A
M.1	General requirements	N/A
M.2	Safety of batteries and their cells	N/A
M.2.1	Requirements	N/A
M.2.2	Compliance and test method (identify method):	N/A
M.3	Protection circuits	N/A
M.3.1	Requirements	N/A
M.3.2	Tests	N/A
	- Overcharging of a rechargeable battery	N/A
	- Unintentional charging of a non-rechargeable battery	N/A
	- Reverse charging of a rechargeable battery	N/A
	- Excessive discharging rate for any battery	N/A
M.3.3	Compliance	N/A
M.4	Additional safeguards for equipment containing secondary lithium battery	N/A
M.4.1	General	N/A
M.4.2	Charging safeguards	N/A
M.4.2.1	Charging operating limits	N/A
M.4.2.2 a)	Charging voltage, current and temperature:	_
M.4.2.2 b)	Single faults in charging circuitry:	_
M.4.3	Fire Enclosure	N/A
M.4.4	Endurance of equipment containing a secondary lithium battery	N/A
M.4.4.2	Preparation	N/A
M.4.4.3	Drop and charge/discharge function tests	N/A
	Drop	N/A

AR	IN ANXIII ANXIII	ANXI	W WAY!	4	TXIN DIE
N TESTING	ANXIN ANXIN ANXIN	IXIN A'			Service Co., Ltd 230522000307S
MIX	PE	EN 62368-1	AMIL	MXIII	MXIM
Clause	Requirement +Test	MIXI	Result - Remark		Verdict
	Charge	VIA	· Mr.		N/A
	Discharge				N/A
M.4.4.4	Charge-discharge cycle test				N/A
M.4.4.5	Result of charge-discharge cycle test				N/A
M.5	Risk of burn due to short circuit during	carrying			N/A
M.5.1	Requirement				N/A
M.5.2	Compliance and Test Method (Test of	P.2.3)			N/A
M.6	Prevention of short circuits and protec other effects of electric current	tion from			N/A
M.6.1	Short circuits				N/A
M.6.1.1	General requirements				N/A
M.6.1.2	Test method to simulate an internal far	ult			N/A
M.6.1.3	Compliance (Specify M.6.1.2 or altern method)				N/A
M.6.2	Leakage current (mA)	····::			N/A
M.7	Risk of explosion from lead acid and N batteries	NiCd			N/A
M.7.1	Ventilation preventing explosive gas concentration				N/A
M.7.2	Compliance and test method				N/A
M.8	Protection against internal ignition from spark sources of lead acid batteries	m external			N/A
M.8.1	General requirements				N/A
M.8.2	Test method				N/A
M.8.2.1	General requirements				N/A
M.8.2.2	Estimation of hypothetical volume Vz	(m³/s):			_
M.8.2.3	Correction factors	:			_
M.8.2.4	Calculation of distance d (mm)	:			_
M.9	Preventing electrolyte spillage				N/A
M.9.1	Protection from electrolyte spillage				N/A
M.9.2	Tray for preventing electrolyte spillage				N/A
M.10	Instructions to prevent reasonably fore misuse (Determination of compliance: data review; or abnormal testing)	inspection,			N/A

1	N	ELECTROCHEMICAL POTENTIALS		N/A
7		Metal(s) used:		_

		•	ricport No AMODZOZOOZ	20000010
My	EN	62368-1	ANY!	MXIM
Clause	Requirement +Test	MIXI	Result - Remark	Verdict
		I_{L_1}	14/10	41
0	MEASUREMENT OF CREEPAGE DIST	ANCES A	ND CLEARANCES	Р
7	Figures O.1 to O.20 of this Annex applied	:b	Measurement is in accordance with applicable figures.	_

Р	SAFEGUARDS AGAINST ENTRY OF FOREIGN INTERNAL LIQUIDS	OBJECTS AND SPILLAGE OF	Р
P.1	General requirements	No opening.	Р
P.2.2	Safeguards against entry of foreign object		N/A
	Location and Dimensions (mm)		_
P.2.3	Safeguard against the consequences of entry of foreign object		N/A
P.2.3.1	Safeguards against the entry of a foreign object		N/A
	Openings in transportable equipment		N/A
	Transportable equipment with metalized plastic parts:		N/A
P.2.3.2	Openings in transportable equipment in relation to metallized parts of a barrier or enclosure (identification of supplementary safeguard):		N/A
P.3	Safeguards against spillage of internal liquids	The equipment does not contain liquid.	N/A
P.3.1	General requirements		N/A
P.3.2	Determination of spillage consequences		N/A
P.3.3	Spillage safeguards		N/A
P.3.4	Safeguards effectiveness		N/A
P.4	Metallized coatings and adhesive securing parts		N/A
P.4.2 a)	Conditioning testing		N/A
	Tc (°C)		_
	Tr (°C):		_
	Ta (°C)		_
P.4.2 b)	Abrasion testing:		N/A
P.4.2 c)	Mechanical strength testing		N/A

Q	CIRCUITS INTENDED FOR INTERCONNECTION WITH BUILDING WIRING			
Q.1	Limited power sources	See below.	Р	
Q.1.1 a)	Inherently limited output	(See appended Tables Annex Q.1)	N/A	
Q.1.1 b)	Impedance limited output		Р	
	- Regulating network limited output under normal operating and simulated single fault condition	(See appended Tables Annex Q.1)	Р	

AMA	VHXIII VHXIIA	KIN KIN KIN	VI.
	XIM ANXIM ANXIM AI		
TESTING	ANXIN MIXIN	Shenzhen An-Xin Testing Servic Report No.: AXJC2023052	
MIX	EN 62368-	1 AM ANXI	NXIP
Clause	Requirement +Test	Result - Remark	Verdict
. 0	I V VIA	17/12	1
Q.1.1 c)	Overcurrent protective device limited output		N/A
Q.1.1 d)	IC current limiter complying with G.9		N/A
Q.1.2	Compliance and test method	(See appended Tables Annex Q.1)	Р
Q.2	Test for external circuits – paired conductor cab	le	N/A
	Maximum output current (A)	:	_
	Current limiting method	:	_

R	LIMITED SHORT CIRCUIT TEST		N/A
R.1	General requirements		N/A
R.2	Determination of the overcurrent protective device and circuit		N/A
R.3	Test method Supply voltage (V) and short-circuit current (A)):		N/A

S	TESTS FOR RESISTANCE TO HEAT AND FIRE	Р	
S.1	Flammability test for fire enclosures and fire barrier materials of equipment where the steady state power does not exceed 4 000 W	Р	
	Samples, material:	_	
	Wall thickness (mm)	_	
	Conditioning (°C)	_	
	Test flame according to IEC 60695-11-5 with conditions as set out	N/A	4
	- Material not consumed completely	N/A	4
	- Material extinguishes within 30s	N/A	4
	- No burning of layer or wrapping tissue	N/A	4
S.2	Flammability test for fire enclosure and fire barrier integrity	N/A	1
	Samples, material:	_	
	Wall thickness (mm)	_	
	Conditioning (°C):	_	
	Test flame according to IEC 60695-11-5 with conditions as set out	N/A	4
	Test specimen does not show any additional hole	N/A	4
S.3	Flammability test for the bottom of a fire enclosure	N/A	4
	Samples, material	_	
	Wall thickness (mm):		
7/1	N N		

TESTING	XIM AMXIM AMXIM AMXIM AN		Shenzhen An-Xin Testir	
(A)	EN 6236	8-1	Report No.: AXJC2	20230522000307S
Clause	Requirement +Test		esult - Remark	Verdict
. (1 Will Will		" MX"	14/16
	Cheesecloth did not ignite			N/A
S.4	Flammability classification of materials			Р
S.5	Flammability test for fire enclosures and fire barrier materials of equipment where the stead state power does not exceed 4 000 W	dy		N/A
	Samples, material	:		_
	Wall thickness (mm)	:		_
	Conditioning (test condition), (°C)	:		_
	Test flame according to IEC 60695-11-20 with conditions as set out			N/A
	After every test specimen was not consumed completely			N/A
	After fifth flame application, flame extinguished within 1 min	ed		N/A

Т	MECHANICAL STRENGTH TESTS		Р
T.1	General requirements		Р
T.2	Steady force test, 10 N:	(See appended table T.2, T.3, T.4, T.5)	Р
T.3	Steady force test, 30 N		N/A
T.4	Steady force test, 100 N	(See appended table T.2, T.3, T.4, T.5)	Р
T.5	Steady force test, 250 N		N/A
T.6	Enclosure impact test		N/A
	Fall test		N/A
	Swing test		N/A
T.7	Drop test:	(See appended table T.7)	N/A
T.8	Stress relief test		Р
T.9	Impact Test (glass)	(See appended table T.9)	N/A
T.9.1	General requirements		N/A
T.9.2	Impact test and compliance		N/A
	Impact energy (J):		_
	Height (m):		_
T.10	Glass fragmentation test:	No such glass provided.	N/A
T.11	Test for telescoping or rod antennas	No such antennas provided.	N/A
	Torque value (Nm)		_

ANXII

NXIN

TESTIN	ANXI. ANXILA	Shenzhen An-Xin Testir Report No.: AXJC2	
MY	in in	EN 62368-1	NXII
Clause	Requirement +Test	Result - Remark	Verdict
		VL. "YL.	11/11/2
U	MECHANICAL STRENGTH OF CATH AGAINST THE EFECTS OF IMPLOSI	ODE RAY TUBES (CRT) AND PROTECT ON	rion N/A
U.1	General requirements	No CRT provided within the equipment.	N/A
U.2	Compliance and test method for non-ir protected CRTs	trinsically	N/A

V	DETERMINATION OF ACCESSIBLE DAG	RTS (FINGERS, PROBES AND WEDGES)	Р
V.1	Accessible parts of equipment	No access with test probes to any hazardous parts.	<u>Р</u>
V.2	Accessible part criterion		Р
	ANXIN ANXIN ANXIN		ANXIN
		MXIN MXIN	

MIXI	EN 6	2368-1	ANXII	MXIM
Clause	Requirement + Test	IXIM	Result - Remark	Verdict

4.1.2	TABLE:	List of critical cor	nponents	"M	NA.	P.MX
Object / part	No.	Manufacturer/ trademark	Type / model	Technical data	Standard	Mark(s) of conformity ¹
Enclos	sure	GONGGUAN WENCHANG ELECTRONIC CO.,LTD	945GG	V-0, 120℃,1.9mm min.	UL 94	UL E214510
PCE ANX	14 A	DONGGUAN YUKKWONG METAL OXIDIZATION PRODUCTS CO LTD	YK-02,YK-03, YK-04	V-1,min.130℃	UL 796	UL E234403

Supplementary information:

- 1) Provided evidence ensures the agreed level of compliance. See OD-CB2039.
- 2) Description line content is optional. Main line description needs to clearly detail the component used for testing.

4.8.4, 4.8.5	TABLE: Lit	hium coin/button ce	II batteries i	mechanical te	sts	1 2,	N/A
(The follow	ving mechanica	I tests are conducted i	in the sequen	ice noted.)	. 1911		
4.8.4.2	TABLE: Str	ess Relief test	Mx.	"MXIL		MY	_
I	Part	Material		Oven Temperature (°C)			Comments
	DI.	Whi	MXII	17	IL	MN	
4.8.4.3	TABLE: Ba	ttery replacement te	st	No.		VHY	_
Battery pa	rt no		:	XIII	NXIN		-
Battery Ins	stallation/withd	rawal		Battery Installation/Removal Cycle			Comments
		ANXIN AIS	ANXIN	HINNE PHANE	3 4	NXIN.	ANXIN
			H ANY	TXIM VI	5 6 8	ANXII	Less for
4.8.4.4	TABLE: Dro	pp test	AXIN P	MXIM	10	XIN VI	
Impact Area Drop Distance		ı	Drop No.		Observations		

Shenzhen An-Xin Testing Service Co., Ltd

115	7 k.	VI.	EN 6	2368-1	Report No.: AXJC	20230322	.0003073	
Clause	Require	ement +Test	AXIIA	Result -	Remark	M	Verdict	
4.8.4, 4.8.5	TABLE	:: Lithium coin/b	utton cell batterie	es mechanical tes	es A		N/A	
(The fo	llowing mecha	anical tests are co	nducted in the sequ	uence noted.)	. 5/ \\			
	VIN	WXII	TXIL	My	1 1		, 1	
MX	1	N	· N	VIA	2 AMX		MXIM	
	VIAN	an	1112	11/2	3	M P		
4.8.4.5	TABLE	: Impact	in Ali	Y VI	AN			
Impa	cts per surfa	ce Sui	rface tested	Impact	energy (Nm)	Co	mments	
	MXIL	My.	la:	,	YI.	VIAL.	77	
P	N/A	b. D.	MXII	MXIL	My		IN M	
11.	TXIN	112.	4	A Pr	VL,	VIN		
4.8.4.6	TABLE	: Crush test	MXII	" WYIT	112.	4	_	
Te	Test position Su		rface tested	ace tested Crushing Fo			tion force plied (s)	
	Mr	, N	, Al	V.	Mr.	14/1/2	4	
AM	<u> </u>	MXIII	TXIN	Mr	- 10 F		bla.	
Suppler	mentary inforr	mation:	No.	VL)	VHX.	NXII	7	
4.8.5	TARLE	· Lithium coin/hi	utton cell hatterie	s mechanical test	result	K .	N/A	
	est position		face tested	7/3,	Force (N)			
	ot pooition	- Cui	1400 100104		roice (N)			
18	N	LIV	P. S.	VI.	ANT	71.	MXIL	
Suppler	mentary inform	nation:	MXIII	MXIM	My	L	ly.	
	MKI	Mrs		<u> </u>	'B'	MXII.	N	
5.2		DN .	electrical energy	sources	bir		P	
5.2.2.2	– Steady Stat ⊤	e Voltage and Cu	rrent conditions					
	Supply	Location (e.g.			Parameters			
No.	Voltage	circuit designation)	Test conditions		(Andrew America)	Hz	ES Class	
1	6VDC	Output	Normal	(Vrms or Vpk)	(Apk or Arms)	7//-	(
. ~1	The	terminal(+,-)	IN IN	15.06Vrms	AR		ES1	
5.2.2.3	- Capacitance	Limits						
No.	Supply Location (e.g. rest conditions		F	Parameters		F0.01-		
140.	Voltage	designation)	TOST CONTUITIONS	Capacitance, n	Capacitance, nF Upk (V)		ES Class	
7.	- 41/	12	Normal	<u>A</u>	\$1.	Al		
	4 121	V VI	Abnormal	- WY	- 4		Mr.	
	L.	1		L P	A FOR			

ANXIN

ANXIN ANXIN Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307S

	la.		YIA.	ENG	62368-1	Ket	OOIL NO A	AJC20230322	0003075
Cla	use	Requi	rement +Test	MXIM FILL	Result - Remark			Verdict	
	AN	KIN	ANXIN	Single fault – SC/OC	- 14	W VUX	-14	VHXIII	J AN
5.2.2	2.4 -	Single Puls	es						
No. Supply Voltage		Supply	Location (e.g.			Para	ameters		ES Class
			circuit designation)	Test conditions	Duration	(ms) U	ok (V)	lpk (mA)	
-		- VL	- AN	Normal	The	17/1		- 110	
	NYM		MIN	Abnormal		VI.		ZHX,	47
			Mr.	Single fault – SC/OC	WXIN		XIN	- WH	, k
5.2.2	2.5 -	Repetitive F	Pulses				'		'
	S	upply	Location (e.g.		Parameters				
No.		oltage	circuit designation)	Test conditions	Off time (ms) Up	k (V)	lpk (mA)	ES Class
	11/7		-14	Normal		VW-	N.	7/11	JXII
			Kii,	Abnormal	MIN	(N -	-	VI.
	127		IXIN A	Single fault – SC/OC	72	1 EVIX	-	- WXIII	
Test	Con	ditions:	VIA.	VHV.	ANXI		NXIM	1/2,	4
			lax. Normal load. - Output short						
		ADITION IN	- Output short						

Supplementary information: SC=Short Circuit, OC=Open Circuit

ANXIN

					iveh	OIL NO AAJ	CZ0Z303ZZ0	1003073
MIX	in the		EN 6236	8-1	N	MY		MXIM
Clause	Requirement +Test			Res	sult - Ren	nark	10.	Verdict
			VL.	•	N		12/11/2	
5.4.1.4, 6.3.2, 9.0, B.2.6	TABLE: Temperature	measureme	ents	MXM	X ,	MXIM	~!X	P
	Supply voltage (V)	:	X/N/5		5.2		VI.	
MIN	Ambient T _{min} (°C)	P.	24.6	AN	24.3	" XIL		_
71.	Ambient T _{max} (°C)	XIM :	25.0		25.0	<u> </u>	, P2	_
(N)	Tma (°C)	:	25.0	2	25.0		X14.	_
Maximum n	neasured temperature T	of part/at:			T (°C	·)		Allowed T _{max} (°C)
DC connect	tor MX	. wit	38.6	1/2.	38.9	-id		Ref.
PCB near L	J1	N	35.4	BAN	35.1	MX	- 47	130
L2	WAY.		30.2	;	30.4			130
C1 1/2		, 1	38.9	N,	38.5	-47		105
Plastic encl	osure outside	NXIE	25.6	M :	25.9	4 <u>r</u>		95
Supplemen	tary information:		J VILL	la.	VINX	P	WXIL	AN
Temperatur	e T of winding:	t ₁ (°C)	R ₁ (Ω)	t ₂ (°C)	R ₂ (Ω)	T (°C)	Allowed T _{max} (°C)	Insulation class
P	Why.	- 6	7/1/2	- 4	157	- NA		6
XIM _	My	1 <u>11</u>		- VI.		BUY.	- 4	*///
	· Mr	X1,	1179		-1			

Supplementary information:

Note 1: Tma should be considered as directed by appliable requirement

Note 2: Tma is not included in assessment of Touch Temperatures (Clause 9)

With a specified maximum ambient temperature and test temperature of 35°C, the maximum permitted temperatures are calculated as follows:

Winding components (providing safety isolation):Class 130 (B) Tmax = 120° C - 10° C = 110° C During the test, the sealing compound did not soften ormelt.

5.4.1.10.2	TABLE: Vicat so	BLE: Vicat softening temperature of thermoplastics			N/A
Penetration	(mm)	:	M	N. S.	_
Object/ Part	t No./Material		Manufacturer/t rademark	T softening ((°C)
bl.	VIN	MXIII	=1X1W	- Mx	14
Supplement	tary information:	IN IN		AM AM	

			itop	OIL 140 77.002020007	220000010
		EN 62	2368-1		
Clause	Requirement +	Test	Result - Ren	nark	Verdict
5.4.1.10.3	TABLE: Ball pre	essure test of thermoplast	ics	VIAXII.	PN
Allowed imp	oression diameter	(mm)	: ≤ 2 mm	JXIM	_
Object/Part	No./Material	Manufacturer/trademark	Test temperature	(°C) Impression d	iameter (mm)
Plastic material		Shenzhen yueerte Technology Co., Ltd.	ANX 75	6.0 AIXIN 0.8	87 NXIN
Supplement	tary information:	antin at	ily Alb	bis	PV.
			. 19/	13/11	117

5.4.2.2, 5.4.2.4 and 5.4.3	learances	s/Creepaç	ge distance	AN	XIM	ANXIN	N/A
Clearance (cl) and creepage distance (cr) at/of/between:	Up (V)	U r.m.s. (V)	Frequenc y (kHz) ¹	Require d cl (mm)	cl (mm) ²	Required ³ cr (mm)	cr (mm)
Trace of L, N before F1, F2		ANY	<u>-</u> -	MXIN	- AN	14-	MXW
Trace of F1 different polarities	VIAXII.	- 1	WAN.	ant	W	NIN	N
Primary to secondary trace under transformer T1	- AN	Klin	anxii.		NAM	~ - · ·	4 - 1 12,

Supplementary information:

B: Basic insulation, R: Reinforced insulation

- Material group: IIIb
- The core of T1 considered as primary part, the insulation between secondary to core is reinforced insulation.
- Triple insulated wire used in secondary windings.

5.4.2.3	TABLE: Minimum Cleara	roltage P		
N	Overvoltage Category (O	V):	1411	My.
	Pollution Degree:	M	N. P.	A. 2
Clearance	distanced between:	Required withstand voltage	Required cl (mm)	Measured cl (mm)
See table above	5.4.2.2, 5.4.2.4 and 5.4.3	- ANXIII	- WXIN	- MY10
Supplemen	ntary information:.	MXIN	10 /1	VI. VIII.

5.4.2.4 TABLE: Clearances based on electric strength test								
Test voltage applied between:	Required cl (mm)	Test voltage (kV) peak/ r.m.s. / d.c.	Breakd Yes / I					
VI VILL	dixii	MXIM	My	bi				

			Roportin	J.: 7 D TO OLUZOOUL	20000010
My	La	EN 62368-1	AM	WHX!!	MXIM
Clause	Requirement +Test	IXIN	Result - Remark	1	Verdict
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VL.	· Mr.	14/1/4	

Supplementary information:

5.4.4.2, 5.4.4.5 c)	TABLE: Dis	tance through insulation	n measureme	ents	P,	P[
5.4.4.9		VIL. VILL	0	MXIII	MXIM	MY
Distance the insulation d		Peak voltage (V)	Frequency (kHz)	Material	Required DTI (mm)	DTI (mm)
Enclosure	M	600	418	Plastic	0.4	1)
Insulation ta transformer	ape used for	600	VIJV.	Polyethylene	See only 5.4.4.9	See only 5.4.4.9
Supplement	tary information	u: WAXI		XIIA	My	"IN "

5.4.9	TABLE: Electric strength tests	MXIII	IN VIN	Р
Test voltag	ge applied between:	Voltage shape	Test voltage (V)	Breakdown
		(AC, DC)		Yes / No
Functiona	El La	bla.	Mr. W.	114
- MA	MAN IXI	41	12	- 2/2
Line to Ne	eutral (with fuse resistor opened)	DC N	2500 V	No
Reinforce	ditte	hi Mrs.	P	r. b
From Prim	nary (L/N) to Secondary (output)	DC	4000 V	No No
From Prim	nary (L/N) to Enclosure with metal foil	DC N	4000 V	No
Insulation	tape (one layer)	DC	4000 V	No No

Supplementary information:

All testing Including after Humidity required of clause 5.4.8, there are including unit, transformer and all material of transformer, see appended tables 4.1.2

5.5.2.2	TABLE: St	ored discharg	e on capacito	ors	ANX	N/A
Supply Vol	ltage (V), Hz	Test Location	Operating Condition (N, S)	Switch position On or off	Measured Voltage (after 2 seconds)	ES Classification
	VI.	- AM		HXIII	4 1/2/17	ES1
- 41/1		MI	- 111		4	ES1

	V. V.	Report No.: AX302023					
		EN 62368-1					
Clause	Requirement +Test	IN IXIN	Result - Remark	12	Verdict		
	d	VL.	"MY.	12/11/2			
Suppleme	ntary information:		The Prince of th				
X-capacito	ors installed for testing are:						
	eding resistor rating:						
_	1321						
	in My						
Notes:				7/1/2			
A. Test Lo	cation:						
Phase to I	Neutral; Phase to Phase; Phase	to Earth: and/or Neut	ral to Earth	10.			
		to Earth, and/or Hour	idi to Editi				
17	ating condition abbreviations:						
N – Norma	al operating condition (e.g., norr	nal operation, or oper	fuse); S –Single	ault condition			

	P	_ \					1/2.		. 67	
5.6.6.2	TABLE: Resist	tance of	protectiv	e condu	ctors an	d terminati	ons		N.	N/A
Ac	cessible part		Test o	urrent	Du	ration	Volta	age drop	Res	sistance
			(4	4)	(1	min)		(V)		(mΩ)
- N		VL.		WAY		"MXIII		11/21	<u>-</u>	MIL
TXIT	IXIN		-,11			12.		VI.		VIJY
	VI.	P.	7	0	41	. ~	TIM		MIE	
Supplementa	ry information:	IN	- 1	N		N DI		AT	71-	any

5.7.2.2, TABLE: Earthed accessible conductive par 5.7.4	All Plan	N/A
Supply voltage:	VILL WAY	_
Location	Test conditions specified in 6.1 of IEC 60990 or Fault Condition No in IEC 60990 clause 6.2.2.1 through 6.2.2.8, except for 6.2.2.7	Touch current (mA)
Line to earth, Neutral to earthed accessible parts	The state of the s	My -
My My Mills	2*	- AM
M AND	24X11 3 4X11	1XIE
" WAIR TANK	4	VL
" Alex WHY.	11/21 5 1X/P	My.
WELL THE WALL	6	VIII.
ALL ALL ALL	118 11	

Supplementary Information:

Notes:

- [1] Supply voltage is the anticipated maximum Touch Voltage
- [2] Earthed neutral conductor [Voltage differences less than 1% or more]
- [3] Specify method used for measurement as described in IEC 60990 sub-clause 4.3
- [4] IEC60990, sub-clause 6.2.2.7, Fault 7 not applicable.
- [5] (*) IEC60990, sub-clause 6.2.2.2 is not applicable if switch or disconnect device (e.g., appliance coupler) provided.

My	18	EN 62368-1	AM	WXIII	MXIN
Clause	Requirement +Test	MIXIT	Result - Remark	10.	Verdict

6.2.2	Та	ble: Electrical	power sources ((PS) measurements fo	or classification	P
Source		Description	Measurement	Max Power after 3 s	Max Power after 5 s*)	PS Classification
MY		wid K	Power (W) :	0.6	-MXIII	NXIM
Output	0	Normal condition	V _A (V) :	5	114 <u>-</u>	PS1
Mr.			I _A (A) :	0.12	24, - 44	1 XIV

Supplementary Information:

(*) Measurement taken only when limits at 3 seconds exceed PS1 limits

Note: All circuits are considered PS3 except for the circuits of output connector complied with Q.1.

6.2.3.1	Table: Determinati	N/A			
	Location	Open circuit voltage After 3 s (Vp)	Measured r.m.s current (Irms)	Calculated value (V _p x I _{rms})	Arcing PIS? Yes / No
All Interr		(VP)		(Vp X Irms)	Yes
	components	1XIM	Mrs	, M	(declaration)

Supplementary information:

An Arcing PIS requires a minimum of 50 V (peak) a.c. or d.c. An Arcing PIS is established when the product of the open circuit voltage (V_p) and normal operating condition rms current (I_{rms}) is greater than 15.

All components in the equipment are considered as arcing PIS.

6.2.3.2	Table: Dete	ermination of Potent	ial Ignition Sou	rces (Resistive	PIS)	N/A
Circuit Lo	ocation (x-y)	Operating Condition (Normal / Describe Single Fault)	Measured wattage or VA During first 30 s (W / VA)	Measured wattage or VA After 30 s (W / VA)	Protective Circuit, Regulator, or PTC Operated? Yes / No (Comment)	Resistive PIS? Yes/No
All Intern circuits/c	al components	MXIM	IXIN A	- 12	" Y	Yes (declaration)

Supplementary Information:

A combination of voltmeter, VA and ammeter IA may be used instead of a wattmeter.

If a separate voltmeter and ammeter are used, the product of (VA x IA) is used to determine Resistive PIS classification.

A Resistive PIS: (a) dissipates more than 15 W, measured after 30 s of normal operation, <u>or</u> (b) under single fault conditions has either a power exceeding 100 W measured immediately after the introduction of the fault if electronic circuits, regulators or PTC devices are used, or has an available power exceeding 15 W measured 30 s after introduction of the fault.

AM	ANXII	WAXIN WAX	M	MXIM	MXI	Vie
A	IXIN ANXIN					
IN TESTIN	GHXIN MY	in Tixing	Shenz F	zhen An-Xin To Report No.: AX	esting Service (JC202305220	Co., Ltd 000307S
MIXI	(A)	EN 62368-1	AMI	AN	XII	MXIM
Clause	Requirement +Test	Will IXIN	Result - F	Remark		Verdict

8.5.5 TABLE: High Pressure Lamp	All All	VHXI.	N/A
Description	Values	Energy Source	Classification
Lamp type:	4 - Bu	_	
Manufacturer:	, Alba	_	
Cat no:	's'_	_	
Pressure (cold) (MPa)	4×11/2 - 1×14	MS	-
Pressure (operating) (MPa)	KI	MS.	- MXII
Operating time (minutes):	11×12 - 1×18	_	
Explosion method:	- VI	_	
Max particle length escaping enclosure (mm).:	14/10	MS.	- 'N \
Max particle length beyond 1 m (mm)	DIS DE	MS.	71/11
Overall result:	KILL KILL	IN	
Supplementary information:	VIA.	VHX.	MXIIA

B.2.5	TABLE: II	nput test		VI.	P	W.	MXIII	N/A
U (V)	I (A)	I rated (A)	P (W)	P rated (W)	Fuse No	I fuse (A)	Condition/	status
- MXIII		HXIM	-	114-	412.		M AM.	P
XIL	XIN	M	-		AL.	-VIII	<u>V</u>).	1XIL

Supplementary information:

Maximum normal load: Full display with max. brightness and contrast, USB2.0 port loaded with 0.5A.

Equipment may be having rated current or rated power or both. Both should be measured.

Shenzhen An-Xin Testing Service Co., Ltd Report No: AXJC20230522000307S

			Troport 14	0 7 V (0 O Z O Z O O O	220000010
MY	119	EN 62368-1	MA	MXII	NXIN
Clause	Requirement +Test	IL IXIN	Result - Remark		Verdict
		V 13.			•

B.3	TABLE: Abn	ormal operating	g conditi	on tests	MXIL		XIM	. 1	N/A
Ambient temperature (°C)									
Power source for EUT: Manufacturer, model/type, output rating:									
Component No.	Abnormal Condition	Supply voltage, (V)	Test time (ms)	Fuse no.	Fuse current, (A)	T-couple	Temp. (°C)	Obse	ervation
-	-	-	-	-	-	-		-	

Supplementary information:

Test table is provided to record abnormal and fault conditions for all applicable energy sources including Thermal burn injury. Column "Abnormal/Fault." Specify if test condition by indicating "Abnormal" then the condition for a Clause B.3 test or "Single Fault" then the condition for Clause B.4.

B.4	TABLE: Faul	LE: Fault condition tests								
Ambient temp	Ambient temperature (°C)								_	
Power source for EUT: Manufacturer, model/type, output rating:					MY	,	la.	_		
Component No.	Fault Condition	Supply voltage, (V)	Test time (ms)	Fuse no.	Fuse current, (mA)	T-coupl e	Temp. (°C)	Obse	ervation	
-	-	-	-	-	-	-	-	-		

Supplementary information:

CD = Components damaged (damaged components indicated);

TRSR = Test Repeated Similar Results (test times)

Annex M	TABLE: Batto	eries	JXIM	.41	N				N/A
The tests o	f Annex M are	applicable	only when app	ropriate ba	attery data	is not ava	ilable	NXIM	
Is it possible	e to install the l	battery in a	reverse polar	ity position	1?	:	No		PL
	Non-re	echargeable	e batteries		F	Rechargeal	ble batteri	es	
	Disch	Discharging Un-intention			Charging Disch			Reverse	d charging
	Meas. Current	Manuf. Specs.	al charging	Meas. Current	Manuf. Specs.	Meas. Current	Manuf. Specs.	Meas. Current	Manuf. Specs.
Max. currer during norm condition		IN AL	T.	MXIII	P	11XIL	AN	YIL!	ANX
Max. currer during fault condition			- FUX	- AN	''''	- MX	5	ANXIN	P
Test results	:: 1971		IIA	Ии		1N P		, Pa	Verdict
- Chemical	leaks	VI.	P	W.	No s	uch result	occurred.	lh l	N/A

N TESTIN	G XIM ANXIM ANXIM ANXIM ANXIM	Shenzhen An-Xin Testing Ser	vice Co. Ltd
Ип	EN 62368	Report No.: AXJC20230	
Clause	Requirement +Test	Result - Remark	Verdict
- Explosio	n of the battery	No such result occurred.	N/A
- Emissior	n of flame or expulsion of molten metal	No such result occurred.	N/A
- Electric s	strength tests of equipment after completion of tes	sts No such result occurred.	N/A
Suppleme	entary information:	MXIM XIM	la.

Annex M.4	Table: Add	le: Additional safeguards for equipment containing secondary lithium batteries N/A								
Battery/Cell No.		Test conditions		3	Observation					
			U	I (A)	Temp I					
VINI		Normal		N		Ar				
M	la:	Abnormal	ANY	V.	1/11/2	1XIM				
MXII		Single fault –SC/OC	M	in h		Nico				
Supplement	ary Informa	tion:		MXII	IXILA	MIN				

VIA.	Mr.	MIN IN		, by
Battery identification	Charging at T _{lowest} (°C)	Observation	Charging at T _{highest} (°C)	Observation
1/1/2		V. VA	VINI	MXIII
AMA	WXII	"AXILA	MY	ing h.
Supplementary Inf	formation:	N. C.	VL.	Mxi, Kly

Annex Q.1	TABLE: Cir	cuits intended fo	or interconnect	ion with buildi	ng wiring (LPS	6) N/A	
Note: Meas	sured UOC (V) with all	load circuits disco	onnected:	Mr	- p	N	
Output	Components	omponents U _{oc} (V)		(A)	S (VA)		
Circuit			Meas.	Limit	Meas.	Limit	
Output	- 412	N K	-VL	- AN	-	MXII.	
	itary Information: circuit, OC=Open circui	it AN	XIL,	MXIM	MXIN	JXIN	

T.2, T.3, T.4, T.5	TABI	E: Steady force	test	AIX,	in b	Mr.	ANXII	N/A
Part/Loca	tion	Material	Т	hickness (mm)	Force (N)	Test Duration (sec)	Obser	vation
- N P		- PLA	-	VHX.	- MXIL	- 141	7	MIL
Supplement	ary inf	ormation:		. ~	KIM K.	VIM DE		72.

MIXIMA

ANXIN ANXIN Shenzhen An-Xin Testing Service Co., Ltd

			EN	62368-1			
Clause	Requir	rement +Test	MXIII	NIN	Result - Re	emark	Ver
T.6, T.9	TABLE	E: Impact tests	411-		NA IN	Nix!	N/
Part/Loca	tion	Material	Thickness (mm)	Vertion distance		Observation	
N	171-	"MX"	1/21	•	4911	No hazard	

T.7 TA	BLE: Drop tests	My	bi	PP
Part/Location	Material	Thickness (mm)	Drop Height (mm)	Observation
Enclosure top	p1)	1.5	1,000	Enclosure remained intact, no crack ,N insulation breakdown.
Enclosure side	1) ANX	1.5	1,000	Enclosure remained intact, no crack ,N insulation breakdown.
Enclosure bottom	pr/XIP1)	1.5	1,000	Enclosure remained intact, no crack ,N insulation breakdown.
Supplementary i	nformation:		VI.	Why while

VL		MXII	MXIL	MX	MIL		Bis
T.8	TABL	E: Stress relief	test	, MA	AMXII	MY I	I/A
Part/Loca	ation	Material	Thickness (mm)	Oven Temperature (°C)	Duration (h)	Observation	
-	VL.	- 21	- "	47/1/2 -	1XIN-	- 412	
Supplemen	tary info	rmation:	in F	, P	le.	WHY.	7/1
				VHXILA	ANXIN		
			ANXIN			N	
			Al Al			N ANXIN	
		XIN					
				AXIN P			

Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307S

la.	k, Vi	EN 62368-1	MXIII	Ally Ally
Clause	Requirement +Test	MILE	Result - Remark	Verdict

MX	CENELEC COMMON MODIFICATIONS (EN)	N. Pir	P
1	NOTE Z1	MXIN IXIN	Р
4.Z1	Protective devices included as integral parts of the equipment or as parts of the building installation:	A PLANTER PROPERTY OF	N/A
7	a) Included as parts of the equipment	anx" "	N/A
, AN	b) For components in series with the mains; by devices in the building installation	KIN THE PR	N/A
1XIL	c) For pluggable type B or permanently connected; by devices in the building installation	ANY	N/A
5.4.2.3.2.4	Interconnection with external circuit	IXIP III	N/A
10.2.1	Additional requirements in 10.5.1	AMX.	N/A
10.5.1	RS1 compliance measurement conditions	M	Р
10.6.2.1	EN 71-1:2011, 4.20 and methods and distances	Why Why	N/A
10.Z1	Non-ionizing radiation from radio frequencies in the range 0 to 300 GHz	IN IXIN	N/A
G.7.1	NOTE Z1	PLA,	N/A

ZB	ANNEX ZB, SPECIAL NATIONAL CONDITIONS (I	EN)	N/A
4.1.15	Denmark, Finland, Norway and Sweden: Class I pluggable equipment type A marking	by May	N/A
4.7.3	United Kingdom: Torque test socket-outlet BS 1363, and the plug part BS 1363.	IN ANXIII AN	N/A
5.2.2.2	Denmark: Warning for high touchcurrent	IXI. WAXIN	N/A
5.4.11.1 and Annex G	Finland and Sweden: Separation of the telecommunication network from earth	ANXIN MXIN	N/A
5.5.2.1	Norway: Capacitors rated for the applicable line-to-line voltage (230 V).	MXIN WX	N/A
5.5.6	Finland, Norway and Sweden: Resistors used as basic safeguard or bridging basic insulation comply with G.10.1 and G.10.2.	W WALL BY	N/A

AMX	ANXIII AN	XILY WIXIT	a axir	, X,	IN VIN
A			Shenzhen An-Xin	Testing Service	a Co. I td
TESTING	MXIIS IXIN	MILL	Report No	o.: AXJC202305	522000307S
l la	y, VL,	EN 62368-1	MXIII	NXIM	MIL
Clause	Requirement +Test	N W	Result - Remark	ZI.	Verdict
	V. Vis.	Phys.	- AXIII-	11/2	

	Die Ville	Mr. Myle	
5.6.1	Denmark: Protection for pluggable equipment type A; integral part of the equipment	AIN AM	N/A
5.6.4.2.1	Ireland and United Kingdom: The protective current rating is taken to be 13 A	I BLILL	N/A
5.6.5.1	Ireland and United Kingdom: Conductor sizes of flexible cords to be accepted by terminals for equipment rated 10 A to 13 A	THE WASH	N/A
5.7.5	Denmark: The installation instruction affixed to the equipment if high protective conductor current	YNXIN YNXIN	N/A
5.7.6.1	Norway and Sweden: Television distribution system isolation text in user manual	ANXIN ANXIN	N/A
5.7.6.2	Denmark: Warning for high touch current	" TXIN	N/A
B.3.1 and B.4	Ireland and United Kingdom: Tests conducted using an external miniature circuit breaker or protective devices included as an integral part of the direct plug-in equipment	OXIN DIS WXIN DE	N/A
G.4.2	Denmark: Appliances rated ≤13 A provided with a plug according to DS 60884-2-D1:2011.	ANXIN MXIN	N/A
VIJY.	Class I equipment provided with socket-outlets provided with a plug in accordance with standard sheet DK 2-1a or DK 2-5a.	MXIN W	N/A
IL BUX	If a single-phase equipment having rated >13 A or poly-phase equipment provided with a supply cord with a plug, plug in accordance with the standard sheets DK 6-1a in DS 60884-2-D1 or EN 60309-2.	IN ANXIN AIR	N/A
MXIN A	Mains socket outlets intended for providing power to Class II apparatus rated 2,5 A in accordance with DS 60884-2-D1:2011 standard sheet DKA 1-4a.	MXIN MXIN	N/A
My.	Other current rating socket outlets in compliance with Standard Sheet DKA 1-3a or DKA 1-1c.	VHXIII VHXIII	N/A
ARI	Mains socket-outlets with earth in compliance with DS 60884-2-D1:2011 Standard Sheet DK 1-3a, DK 1-1c, DK1-1d, DK 1-5a or DK 1-7a	" ANXIN	N/A
G.4.2	United Kingdom: The plug part of direct plug-in equipment assessed to BS 1363	XIM MXIM	N/A
G.7.1 ANXIN	United Kingdom: Equipment fitted with a 'standard plug' in accordance with the Plugs and Sockets etc (Safety) Regulations 1994, Statutory Instrument 1994 No. 1768	(See table 4.1.2)	N/A
G.7.1	Ireland: Apparatus provided with a plug in accordance with Statutory Instrument 525: 1997, "13 A Plugs and Conversion Adapters for Domestic Use	IN WHY WAY	N/A

ANT

ANXIN

MXIM

ANXIN Shenzhen An-Xin Testing Service Co., Ltd

	Mr. AXII. AB	Report No.: AXJC2023	30522000307S
lan.	EN 62368-1	MX111	My
Clause	Requirement +Test	Result - Remark	Verdict
	Mr. W.	12/10	N
G.7.2	Ireland and United Kingdom: A power supply cord for equipment which is rate over 10 A and up to and including 13 A.	ed An	N/A
	All last	VL.	MX
ZC AN	ANNEX ZC, NATIONAL DEVIATIONS (EN)	WXIN WXIN	N/A
10.5.2	Germany: Cathode ray tube intended for the display of vising images, authorization or application of type approval and marking.	ual ANAM	N/A
F.1	Italy: The power consumption in Watts (W) indicated TV receiver and in instruction for use	on AMA	N/A
	TV receivers provided with an instruction for use schematic diagrams and adjustments procedure in Italian language.		N/A
	Marking for controls and terminals in Italian language.	MAKIN PHYLICA	N/A
	Conformity declaration according to the above requirements in the instruction manual	14/14	N/A
	First importers of TV receivers manufactured outside EEC previous conformity certification to the Italian Post Ministry and Certification number on the backcover.		N/A

ANXIN

ANXIN

Appendix 1

Photo documentation

Photo 1 View: [√] Front [] Rear Right side Left side [] [] Top [] **Bottom** [] Internal

Photo 2

View:

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

View: R20

[] Front

[] Rear

[√] Right side

[] Left side

[] Top

1 Bottom

[] Internal

Photo 4

View: R20

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

View: R20

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[√] Internal

Photo 6

View: R20

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

View: R10

[] Front

[√] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 10

View: R10

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 12

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

Photo 14

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[√]

Internal

Photo 15 80 90 100 10 View: R30 Front 90 100 10 2 Rear [] 9 20 Right side 8 台 30 [] Left side 8 Top 20 անվումինայինային (Մայիկայիայիային թովակայիայիային արևայ [] **Bottom** AM OF 02 0E 04 05 09 07 08 06 00 101 02 08 04

500 ao 80 40 90 90 30 50 10100 ao 80 40 90 90 50 90 30 50 9

The End Report

Certificate of Conformity

Certification No. : AXJC20230522000307D

Applicant : Shenzhen yueerte Technology Co., Ltd

Second floor, building C, Huaxing Industrial Park, shangxue village,

Address

Bantian, Longgang, Shenzhen

Manufacturer : Shenzhen yueerte Technology Co., Ltd

Second floor, building C, Huaxing Industrial Park, shangxue village,

Address

Bantian, Longgang, Shenzhen

Certification Marking : CE-RED

Product Description : Bluetooth audio transmitter

Model : R20, R10, R30

Trademark : N/A

Sufficient samples of the product have been tested and found to be in conformity with

	Test Standards	
2014/53/EU Safety	EN 62368-1:2020	AXJC20230522000307S
2014/53/EU EMC	ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)	AXJC20230522000307G
2014/53/EU Radio	ETSI EN 300 328 V2.2.2(2019-07)	AXJC20230522000307D
2014/53/EU Health	EN 62311:2020	AXJC20230522000307H

The certificate is based on a single evaluation of one sample of above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test laboratory logo.

Authorized Signer:

Kevin Liu /Manager May. 26, 2023

TEST REPORT

Bluetooth audio transmitter

R20, R10, R30

Test Report Number: AXJC20230522000307D

Issued Date: May. 26, 2023

Applicant:

Shenzhen yueerte Technology Co., Ltd. Second floor, building C, Huaxing Industrial Park, shangxue village, Bantian, Longgang, Shenzhen

Issued by

Shenzhen An-Xin Testing Service Co., Ltd. Room 402-405, Floor 4th, Building C, Yuxing Technology Industrial Park, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

TEL: +86 755 23009643

Fax: +86 755 23009643

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Testing Service Co., Ltd. I his document may be altered or revised by Shenzhen An-Xin
Testing Service Co., Ltd. personnel only, and shall be noted in the revision section of the document.
The test results in the report only apply to the tested sample.

1 GENERAL INFORMATION

Applicant\ Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue village, Bantian, **Address**

Longgang, Shenzhen

Manufacturer Shenzhen yueerte Technology Co., Ltd.

Second floor, building C, Huaxing Industrial Park, shangxue village, Bantian, **Address**

Longgang, Shenzhen

Equipment under Test (EUT)

Name: Bluetooth audio transmitter

Model No .: T10 **EUT Power Supply:** DC5V

ETSI EN 300 328 V2.2.2 (2019-07) Standards:

Test Result: **PASS**

- In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 2 of this report for further details.
- The tests required in RED Directive 2019/53/EU were included in the report, The European Union's new Radio Equipment Directive (RED) 2019/53/EU was published on April 16, 2014, and EU member states must adopt and publish the laws, regulations and administrative provisions needed to comply with the new Directive by June 12, ANXIN ANXIN 2016.

2016.	M ANXIN A	, VIM VIE	IN AMX	P
	WAXIN YOU			XIV
Tested By:	Let chen	Date:	May. 26, 2023	AN
ANXIN AN		MAX. ANX	W. WAIN	
	Contract State of the State of		KIN MIXIN	
Approved By:	(Colore)	Date:	May. 26, 2023	
	Kevin Liu			

2 Contents

ANXIN

	VER PAGE	Killy.	AN	174 M
I GENE		MXIII	NXIA	My.
2 CO	NIENIS			
3 TES	ST SUMMARY	(A)	112	
4 GE	NERAL INFORMATION		V _L	My.
4.1	GENERAL DESCRIPTION OF	EUT	1/1/2	MM.
4.2	TEST MODE		<u> </u>	
4.3	TEST FACILITY			
4.4	TEST LOCATION			
4.5	DESCRIPTION OF SUPPORT			
4.6	DEVIATION FROM STANDAR			
4.7 4.8	ABNORMALITIES FROM STAI OTHER INFORMATION REQU			
	ST INSTRUMENTS LIST			
	DIO TECHNICAL SPECIFIC	AN	MY.	
6 RA				
6.1	TEST ENVIRONMENT AND M	10DE	<u> </u>	
6.2	TRANSMITTER REQUIREMEN	NT		
6.2	1 RF Output Power		<u> </u>	N.
6.2	2 Power Spectral Densi	ity		
6.2	.3 Adaptivity			
6.2				
6.2				
6.2				
6.3	RECEIVER REQUIREMENT			
6.3				
6.3	2 Receiver Blocking		<i>M</i>	<u> </u>
ANNEX				VL,
<u> </u>	MA	· MXIII	XIA	NA
7 EU	T PHOTOGRAPHS	ANXIN ANXIN		

ANXIN

3 **Test Summary**

	- V		a Pl	17/1	
	Radio Spect	rum Matter (RSM)	Part of Tx		
Test	Test Requirement	Test method	Limit/Severity	Uncertainty	Result
RF Output Power	Clause 4.3.2.2	Clause 5.4.2.2	20dBm	±1.5dB	PASS
Power Spectral Density	Clause 4.3.2.3	Clause 5.4.3.2	10dBm/MHz	±3dB	PASS
Duty Cycle, Tx- sequence, Tx-gap	Clause 4.3.2.4	Clause 5.4.2.2.1.3	Clause 4.3.2.4.3	±5 %	N/A
Medium Utilisation (MU) factor	Clause 4.3.2.5	Clause 5.4.2.2.1.4	≤ 10%	±5 %	N/A
Adaptivity	Clause 4.3.2.6	Clause 5.4.6.2	Clause 4.3.2.6.2.2 & Clause 4.3.2.6.3.2 & Clause 4.3.2.6.4.2	IN - N	PASS
Occupied Channel Bandwidth	Clause 4.3.2.7	Clause 5.4.7.2	Clause 4.3.2.7.3	±5 %	PASS
Transmitter unwanted emissions in the OOB domain	Clause 4.3.2.8	Clause 5.4.8.2	Clause 4.3.2.8.3	±3dB	PASS
Transmitter unwanted emissions in the spurious domain	Clause 4.3.2.9	Clause 5.4.9.2	Clause 4.3.2.9.3	±6dB	PASS
	Radio Spect	rum Matter (RSM)	Part of Rx		
Receiver spurious emissions	Clause 4.3.2.10	Clause 5.4.10.2	Clause 4.3.2.10.3	±6dB	PASS
Receiver Blocking	Clause 4.3.2.11	Clause 5.4.11.2	Clause 4.3.2.11.4	VHZ.	PASS
Geo-location capability	Clause 4.3.2.12	" BUY	ANXIII	WHXIL.	N/A

Remark:

The EUT belongs to receiver category 2.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Humidity(Uncertainty): ±5% Temperature (Uncertainty): ±1°C

Uncertainty: ± 3%(for DC and low frequency voltages)

NXIN

MXIM 4

4.1 General Description of EUT

<u>P</u> V	General Description	of EUT Bluetooth audio transmitter
	Model No.:	R20
		are identical in the same PCB layout, interior structure and electrical circuits.
	The only difference is the m	nodel name for commercial purpose.
	Operation Frequency:	2412MHz~2472MHz(802.11b/802.11g/802.11n(H20)) 2422MHz~2462MHz(802.11n(H40))
N	Channel numbers:	13 for 802.11b/802.11g/802.11n(HT20) 9 for 802.11n(HT40)
F-	Channel separation:	5MHz
	Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum(DSSS)
N	Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
	(IEEE 802.11g/802.11n)	The The Wall
-/16	Antenna Type:	FPCB Antenna
	Antenna gain:	2.39dBi
	Power Supply:	DC 5V 2 and 3 were tested, and found adapter 1 was the worst case. So only the
		ANXIN
		ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN

ANXIN ANXIN ANXIN ANXIN ANXIN

WIFI Opera	tion Frequency	each of char	nnel		AMX	NY	114
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	5	2432MHz	9	2452MHz	13	2472MHz
2	2417MHz	6	2437MHz	10	2457MHz	MIN	
3	2422MHz	7	2442MHz	11	2462MHz	MY.	
4	2427MHz	8	2447MHz	12	2467MHz	110	

The EUT operation in above frequency list, and used test software to control the EUT for staying in continuous transmitting and receiving mode. So test frequency is below:

	Toot shound	Frequenc	cy (MHz)
	Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)
. ~ .	Lowest channel	2412MHz	2422MHz
111	Middle channel	2442MHz	2442MHz
	Highest channel	2472MHz	2462MHz

4.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
Receiving mode	Keep the EUT in receiving mode.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps
bla.	MA	ANXII	IXIM	MIL
		<i>\</i>		

4.3 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

		4 .
4.4	I Det I	Location
7.7	1691	LOCALIOII

	All tests were performed at:
	MAXIN MAXIN MAIN ANXIN ANXIN ANXIN
4.5	Description of Support Units
	The EUT has been tested as an independent unit.
4.6	Deviation from Standards
	None.
4.7	Abnormalities from Standard Conditions
P	None.
4.8	Other Information Requested by the Customer
	None.

MXIM

5

tem	7.	Mr. M	, , ,		VL,	WHY
tem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due dat (mm-dd-yy)
1,	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	June. 03, 2022	June. 02, 202
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 03, 2022	June. 02, 202
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 03, 2022	June. 02, 202
5	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 03, 2022	June. 02, 202
6	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 03, 2022	June. 02, 202
7	RF Amplifier	HP All	8347A	GTS204	June. 03, 2022	June. 02, 202
8	RF Amplifier	, XIPHP	8349B	GTS206	June. 03, 2022	June. 02, 202
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 03, 2022	June. 02, 202
10	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 03, 2022	June. 02, 202
11	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 03, 2022	June. 02, 202
12	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
13	Coaxial cable	GTS	N/A	GTS210	N/A	N/A
14	Coaxial Cable	GTS	N/A	GTS211	N/A	N/A
15	Thermo meter	N/A	ANXIN	GTS256	June. 03, 2022	June. 02, 202

ANXIN

ANY

MXIM

Cond	ducted:	<i>N</i>	VI.	AHX	NXIII	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due d (mm-dd-y
1	Signal Analyzer	Agilent	N9010A	MY48030494	June. 03, 2022	June. 02, 20
2	vector Signal Generator	Agilent	E4438C	MY49070163	June. 03, 2022	June. 02, 20
3	splitter	Mini-Circuits	ZAP-50W	NN256400424	June. 03, 2022	June. 02, 20
4	Directional Coupler	Agilent	87300C	MY44300299	June. 03, 2022	June. 02, 20
5	vector Signal Generator	Agilent	E4438C	US44271917	June. 03, 2022	June. 02, 20
6	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	June. 03, 2022	June. 02, 20
7	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	June. 03, 2022	June. 02, 20
8	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY53480008	June. 03, 2022	June. 02, 20
9	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080019	June. 03, 2022	June. 02, 20
10	4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063507	June. 03, 2022	June. 02, 20
11	4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	June. 03, 2022	June. 02, 20
12	splitter	Mini	PS3-7	4463	June. 03, 2022	June. 02, 20

ANXIN

NIXIN

6 Radio Technical Specification in ETSI EN 300 328

Test Environment and Mode

	Test mode:							
1	Transmitting mode:		Keep th	e EUT in trar	nsmitting mode with n	nodulation.	MXII	
	Receiving mode	N	Keep th	e EUT in rec	eiving mode.	,	N	
	Operating Environme	ent:						
	14	Nor	mal	Extreme condition				
	Item	cond	ition	NVHT		NVLT		
	Temperature	+25	5°C	IN.	+45°C	1	-10°C	VHY
	Humidity	, ,	AN	7	20%-95%	IXIM	MIL	,
	Atmospheric Pressure:	MXIL		MIXI	1008 mbar	14.	ALIX	

Setting	Value
Modulation	Other
Adaptive	Yes
Antenna Gain 1	2.39dBi
Nominal Channel Bandwidth	20MHz/40MHz
DUT Frequency not configurable	No 11
Frequency Low	2412MHz/2422MHz
Frequency Mid	2442MHz
Frequency High	2472MHz/2462MHz
ANXIN	

6.2 Transmitter Requirement

6.2.1 RF Output Power

Test Requirement:	ETSI EN 300 328 clause 4.3.2.2
Test Method:	ETSI EN 300 328 clause 5.4.2.2.1.2
Limit:	20dBm
Test setup:	Attenuator & DC Block EUT Power Supply
	Power sensor Power meter
Test procedure:	Step 1:
	Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s. Use the following settings: - Sample speed 1 MS/s or faster.
	- The samples must represent the power of the signal.
	- Measurement duration: For non-adaptive equipment: equal to the observation period defined in
	clauses 4.3.1.3.2 or 4.3.2.4.2. For adaptive equipment, the measureme duration shall be long enough to ensure a minimum number of bursts (a least 10) are captured.
	For adaptive equipment, to increase the measurement accuracy, a high number of bursts may be used.
	Step 2:
	For conducted measurements on devices with one transmit chain:
	-Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.
	For conducted measurements on devices with multiple transmit chains:
	-Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.
	-Trigger the power sensors so that they start sampling at the same time Make sure the time difference between the samples of all sensors is les than 500ns.
	-For each individual smpling point(time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.
	Step 3:
	Find the start and stop times of each burst in the stored measurement samples.
	The start and stop times are defined as the points where the power is a least 30 dB below the highest value of the stored samples in step 2.
	In case of insufficient dynamic range, the value of 30dB may need to be reduced appropriately.
	Step 4:
	Between the start and stop times of each individual burst calculate the

MXIM

THY. WINNE	RMS power over the burst using the formula below. Save these P _{burst} values, as well as the start and stop times for each burst.
ANXIN ANXIN	$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$
Y VIE VILL	With "k" being the total number of samples and "n" the actual sample
XIN MA	number
Why.	Step 5:
MXIN WAY	The highest of all P _{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
L. VIA	Step 6:
MXIM MXIM	Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
IN STATE	If applicable, add the additional beamforming gain "Y" in dB.
ANXIIA AN	If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
his his	The RF Output Power (P) shall be calculated using the formula below:
THE WAY!	P = A + G + Y
in his	Step 7:
ANXIII ANXIM	This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode
	LIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN
	IL DIE WILL WAS AUXIL

ANXIN

Measurement Data

ANXIN

MXIM

Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Resul
TIES -	Lowest	14.98	2.39	17.37	-	MXIII
Normal	Middle	14.85	2.39	17.24		
Mr	Highest	14.76	2.39	17.15	MXIII	
AM	Lowest	15.32	2.39	17.71	~,	
NVHT	Middle	15.01	2.39	17.41	20	Pass
MXIII	Highest	15.13	2.39	17.52	VIA.	
4	Lowest	15.36	2.39	17.75		
NVLT	Middle	15.09	2.39	17.48	P	
V VI	Highest	15.12	2.39	17.51	MIN	
		802.1	1g mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Resul
P.	Lowest	11.95	2.39	14.34		' Un
Normal	Middle	11.97	2.39	14.36	an'	
	Highest	12.05	2.39	14.44	N	
VIM 1	Lowest	11.87	2.39	14.26		MXIIA
NVHT	Middle	12.09	2.39	14.48	20	Pass
MIL	Highest	12.32	2.39	14.71	MXIII	
" ML.	Lowest	12.56	2.39	14.95		
	NA: al all a	12.18	2.39	14.57	1/1/	
NVLT	Middle	12.10				

		802.11n(HT20) mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
AM	Lowest	12.17	2.39	14.56	N	
Normal	Middle	11.98	2.39	14.37		
L. WIT	Highest	11.99	2.39	14.38		
la:	Lowest	11.87	2.39	14.36	JXIM	
NVHT	Middle	11.92	2.39	14.31	20	Pass
	Highest	11.88	2.39	13.27	.1	
NXIII	Lowest	12.05	2.39	14.44	AMI	
NVLT	Middle	11.87	2.39	14.26		
1/2,	Highest	11.87	2.39	14.36		
		802.11n(HT40) mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Resul
NXIIA	Lowest	10.01	2.39	12.4	VHV.	
Normal	Middle	9.96	2.39	12.35	,	
Mr	Highest	9.81	2.39	12.2	N	
VL.	Lowest	9.92	2.39	12.31	M K.	
NVHT	Middle	9.84	2.39	12.23	20	Pass
	Highest	9.73	2.39	12.12		
bis	Lowest	9.97	2.39	12.36	IXIN	
NVLT	Middle	9.76	2.39	12.15	11.4	
P	Highest	9.83	2.39	12.22		

ANXIN

MXIM

ANXIN ANXIN ANXIN

6.2.2 Power Spectral Density

Test Requirement:	ETSI EN 300 328 clause 4.	3.2.3	la la
Test Method:	ETSI EN 300 328 clause 5.	4.3.2.1	MXII
Limit:	10dBm/MHz	n. Mr.	7
Test setup:	Attenuator DC block		Power Supply
Test procedure:	Spectrum Analyser Step 1:	MXII	المالا

Connect the UUT to the spectrum analyser and use the following settings:

Start Frequency: 2400 MHz
Stop Frequency: 2483.5 MHz
Resolution BW: 10 kHz

Video BW: 30 kHz Sweep Points: > 8350

For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented.

Detector: RMS
Trace Mode: Max Hold

Sweep time: 10s; the sweep time may be increased further

until a value where the sweep time has no impact on the RMS value of the signal

For non-continuous signals, wait for the trace to stabilize. Save the (trace data) set to a file.

Step 2:

For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each sampling point(frequency domain), add up the coincident power values(in mW) for the different transmit chains and use this as the new data set.

Step 3:

Add up the values for power for all the samples in the file using the formula below.

$$P_{5um} = \sum_{n=1}^{k} P_{sample}(n)$$

With "k" being the total number of samples and "n" the actual sample Number.

Step 4:

Normalize the individual values for power(in dBm) so that the sum is equal to the RF output Power (e.i.r.p.) measured in clause 5.4.2 and save the corrected data. The following formulas can be used:

$$C_{Corr} = P_{Sum} - P_{v,l,r,n}$$

IXIN

IN

ANXIN

MXIM

With "n" being the actual sample number Step 5: Starting from the first sample P _{samplecorini} (lowest frequency), add upower (in mW) of the following samples representing a 1 MHz segn record the results for power and position (i.e. sample #1 to #100), the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment with shall be recorded. Step 6: Shift the start point of the samples added up in step 5 by one sample at the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power Start Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pyspectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode					
With"n" being the actual sample number Step 5: Starting from the first sample P _{sampleconfin} (lowest frequency), add upower(in mW) of the following samples representing a 1 MHz segn record the results for power and position (i.e. sample #1 to #100). the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment wishall be recorded. Step 6: Shift the start point of the samples added up in step 5 by one samprepeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power S Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pospectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Transmitting mode	HXIN MXIN	D	Inl - P	ml t'-	P
Step 5: Starting from the first sample P _{samplecorr(n)} (lowest frequency), add up power (in mW) of the following samples representing a 1 MHz segn record the results for power and position (i.e. sample #1 to #100). the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded. Step 6: Shift the start point of the samples added up in step 5 by one sample repeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power Sign Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pospectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Transmitting mode		¹ Sample of	$g_{T_i}(n) = \Gamma g_{0nip}$	leftii - Con	7
Starting from the first sample Psamplecorr(n) (lowest frequency), add up power (in mW) of the following samples representing a 1 MHz segn record the results for power and position (i.e. sample #1 to #100). the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment wis shall be recorded. Step 6: Shift the start point of the samples added up in step 5 by one sample repeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power Stoensity values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pospectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Transmitting mode		With"n" being the actual san	nple number		
power(in mW) of the following samples representing a 1 MHz segn record the results for power and position (i.e. sample #1 to #100). the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded. Step 6: Shift the start point of the samples added up in step 5 by one sample repeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power S Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pospectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Transmitting mode		Via.			
Shift the start point of the samples added up in step 5 by one sample repeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power S Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pospectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Transmitting mode		power(in mW) of the following record the results for power the Power Spectral Density	ng samples repre- and position (i.e.	senting a 1 MF sample #1 to a	lz segn #100).
repeat the procedure in step 5 (i.e. sample #2 to #101). Step 7: Repeat step 6 until the end of the data set and record the Power S Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pound Spectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode		Step 6:			
Repeat step 6 until the end of the data set and record the Power S Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pound Spectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode					ne samp
Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Pound Spectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode		Step 7:			
From all the recorded results, the highest value is the maximum Pound Spectral Density for the UUT. This value, which shall comply with the given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode					ower S
Spectral Density for the UUT. This value, which shall comply with t given in clause 4.3.2.3.3, shall be recorded in the test report. Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode		N N	J -		num D
Measurement Record: Uncertainty: ±3dB Test Instruments: See section 6.0 Test mode: Transmitting mode		Spectral Density for the UU7	Г. This value, whi	ch shall compl	ly with t
Test Instruments: See section 6.0 Test mode: Transmitting mode		given in clause 4.3.2.3.3,sha	all be recorded in	the test report	t.
Test mode: Transmitting mode	(15)	11 (1 (.0.15			
IN ANXIN	A XII	1/10	Vis.	VHV.	P
ANXIN	Test Instruments:	See section 6.0	VI.	Vyr.	P
ANXIN	Test Instruments:	See section 6.0	H ANXIN	TH VINX	N P
ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	Test Instruments: Test mode:	See section 6.0 Transmitting mode	WALLY BUX	IL VILL	HXIN AN
	Test Instruments: Test mode:	See section 6.0 Transmitting mode	ANXIN ANXIN	ANXIN ANXIN	KIN AN'
	Test Instruments: Test mode:	See section 6.0 Transmitting mode	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN ANXIN ANXIN	ALL

ANXIN

ANXIN ANXIN ANXIN ANXIN ANXIN

Measurement Data

ANXIN

MXIN

Measurement Data			
	802.11b mode		
Channel	Power Spectral Density (dBm/l	MHz) Limit (dBm/MHz)	Result
CH 1	9.24	VHV.	MXIII
CH 7	9.09	10.00	Pass
CH 13	9.13	Why.	MXIN
	802.11g mode		
Channel	Power Spectral Density (dBm/N	MHz) Limit (dBm/MHz)	Result
CH 1	7.12	The Man	VIN
CH 7	7.34	10.00	Pass
CH 13	6.98	VL.	VAL.
	802.11n-HT20 mc	ode	
Channel	Power Spectral Density (dBm/N	MHz) Limit (dBm/MHz)	Result
CH 1	7.01	M.	7 K.
CH 7	6.93	10.00	Pass
CH 13	6.84	, , , , , , , , , , , , , , , , , , ,	VI.
(535)	802.11n-HT40 mc	ode	N. II
Channel	Power Spectral Density (dBm/N	MHz) Limit (dBm/MHz)	Result
CH 1	3.88	TIL	My
CH 7	4.06	10.00	Pass
CH 13	3.95	1414	
	ANXIN		

ANXIN

ANXIN ANXIN ANXIN ANXIN ANXIN

Test plots are followed:

802.11g mode

802.11n-HT20 mode

802.11n-HT40 mode

Adaptivity

shall be sufficient to cover the period over which the Channel Occupancy Time is spread out.

Trace Mode: Clear/Write

Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload to resulting in a minimum transmitter activity ratio(TxOn+TxOff)) of 0.3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that, for equipment with a dwell time greater than the maximum allowable Channel Occupancy Time, the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clauses 4.3.1.7.2.2 and 4.3.1.7.3.2.

Step 3: Adding the interference signal

An interference signal as defined in clause B.6 is injected centred on the hopping frequency being tested. The Power Spectral Density level(at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clauses 4.3.1.7.2.2 or 4.3.1.7.3.2.

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected hopping frequency with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall stop transmissions on the hopping frequency being tested.

The UUT is assumed to stop transmissions on this hopping frequency within a period equal to the maximum Channel Occupancy Time defined in clauses 4.3.1.7.2.2 or clause 4.3.1.7.3.2 As stated in clause 4.3.1.7.3.2, the Channel Occupancy Time for non-LBT based frequency hopping systems may be non-contiguous.

ii) For LBT based frequency hopping equipment, apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this hopping frequency, as long as the interference signal remains present.

For non-LBT based frequency hopping equipment, apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this hopping frequency for a (silent) period defined in clause 4.3.1.7.3.2 step 2. After that, the UUT may have normal transmissions again for the duration of a single Channel Occupancy Time period (which may be non-contiguous). Because the interference signal is still present, another silent period as defined in clause 4.3.1.7.3.2 step 2 needs to be included. This sequence is repeated as long as the interfering signal is present.

In case of overlapping channels, transmissions in adjacent channels may generate transmission bursts on the channel being investigated, however they will have a lower amplitude as on-channel transmissions. Care should be taken to only evaluate the on-channel transmissions. The Time Domain Power Option of the analyser may be used to measure the RMS power of the individual bursts to distinguish on-channel transmissions from transmissions on adjacent channels. In some cases, the RBW may need to be reduced.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be

60s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the hopping frequency being tested while the interference signal is present. These transmissions shall comply with the limits defined in clause 4.3.1.7.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 2 of clause 4.3.1.7.2.2, step 6 or table 3 of clause 4.3.1.7.3.2,step 6.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected hopping frequency. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

 The UUT shall not resume normal transmissions on the hopping frequecy being tested as long as both the interference and unwanted signals remain present

To verify that the UUT is not resuming normal transmissions as long as the interference and blocking signals are present, the monitoring time may need to be 60s or more. If transmissions are detected during this period, the settings of the analyser may need to be adjusted to allow an accurate assessment to verify the transmissions comply with the limits for Short Control Signalling Transmissions.

ii) The UUT may continue to have Short Control Signalling
Transmissions on the hopping frequency being tested while the
interference and unwanted signal are present. These
transmissions shall comply with the limits defined in clause
4.3.1.7.4.2

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed(e.g.sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal, the UUT is allowed to re-include any channel previously marked as unavailable; however, for non-LBT based equipment, it shall be verified that this shall only be done after the period defined in clause 4.3.1.7.3.2 point 2.

Step 7:

The steps 2 to 6 shall be repeated for each of the hopping frequencies to be tested.

2. Non-LBT based adaptive equipment using modulations other than FHSS

The different steps below define the procedure to verify the efficiency of the non-LBT based DAA adaptive mechanism of equipment using wide band modulations other than FHSS.

For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.

Step 1:

The UUT shall connect to a companion device during the test. The interference signal generator, the uwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5 although the interference and unwanted signal generator do not generate any signals at this point in

time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.

Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table table 9 (clause 4.3.2.6.2.2).

Testing of Unidirectional equipment does not require a link to be established with a companion device.

The analyzer shall be set as follows:

RBW: ≥ Occupied Channel Bandwidth (if the analyser

does not support this setting, he highest

available setting s hall be used)

VBW: 3 × RBW (if the analyser does not suppot this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Cenre Frequnc: Equal to the hopping frequency to be teste

Span: 0Hz

Seep ime: > Channel Occupancy Time of the UUT

Trace Mode: Clear/Write
Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn+TxOff)) of 0.3 .Where this is not possible , the UUT shall be configured to the maximum payload possible.

Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.2.2.

Step 3: Adding the interference signal

An interference signal as defined in clause B.6 is injected centred on the current operating channel of the UUT. The Power Spectral Density level(at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clauses 4.3.2.6.2.2 step 5).

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered bythe start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall stop transmissions on the current operating channel being tested.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.2.2 step 4

ii) Apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this operating channel for a (silent) period defined in clause 4.3.2.6.2.2 step 2. After that, the UUT may have normal transmissions again for the duration of a single Channel Occupancy Time period. Because the interference signal is still present, another silent period as defined in clause 4.3.2.6.2.2 step 2 needs to be included. This sequence is repeated as long as the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interference signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 9 of clause 4.3.2.6.2.2.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall not resume normal transmissions on the current operating channel as long as both the interference and blocking signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and blocking signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interference and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal the UUT is allowed to start transmissions again on this channel however, it shall be verified that this shall only be done after the period defined in clause 4.3.2.6.2.2 step 2.

Step 7:

The steps 2 to 6 shall be repeated for each of the frequencies to be tested.

3. LBT based adaptive equipment using modulations other than **FHSS**

Step 1 to step 7 below define the procedure to verify the efficiency of the LBT based adaptive mechanism of equipment using wide band modulations other than FHSS. This method can be applied on Load Based Equipment and Frame Based Equipment.

Step 1:

The UUT may connect to a companion device during the test. The interference signal generator, the unwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a setup equivalent to the example given by figure 5 although the interference and unwanted signal generator do not generate any signals at this point in time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.

Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.

Testing of Unidirectional equipment does not require a link to be

established with a companion device.

The analyzer shall be set as follows:

≥ Occupied Channel Bandwidth (if the analyser

does not support this setting, the highest

availabe setting shall be used)

VBW: 3 × RBW (if the analyser does not support this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Cente Frequency: Equal to the centre frequency of the operating

channel

0Hz Span:

> aximum Channel Occupancy Time Sweep tim:

Clear Write Trace Mode: Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0,3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

For Frame Based Equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.2 step 3). When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device. For Load Based equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.3, step 2 and step 3. When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device

For the purpose of testing Load Based Equipment referred to in the first paragraph of clause 4.3.2.6.3.2.3 (IEEE 802.11™ [i.3] or IEEE 802.15.4[™] [i.4] equipment), the limits to be applied for the minimum Idle Period and the maximum Channel Occupancy Time are the same as defined for other types of Load Based Equipment (see clause 4.3.2.6.3.2.3 step 2) and step 3). The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3 step 1) and step 2).

Step 3: Adding the interference signal

An interference signal as defined in clause B.7 is injected on the current operating channel of the UUT. The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clause 4.3.2.6.3.2.2 step 5) (frame based equipment) or clause 4.3.2.6.3.2.3 step 5) (load based equipment).

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

The UUT shall stop transmissions on the current operating

channel.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.3.2.2 (frame based equipment) or clause 4.3.2.6.3.2.3 (load based equipment).

ii) Apart from Short Control Signalling Transmissions, there shall be no subsequent transmissions while the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 6 of clause 4.3.2.11.3.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal. Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that:

i) The UUT shall not resume normal transmissions on the current

operating channel as long as both the interference and unwanted signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and unwanted signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal the UUT is allowed to start transmissions again on this channel however this is not a requirement and therefore does not require testing.

Step 7:

The steps 2 to 6 shall be repeated for each of the frequencies to be tested.

4. Generic test procedure for measuring channel/frequency usage

This is a generic test method to evaluate transmissions on the operating (hopping) frequency being investigated. This test is performed as part of the procedures described in clause 5.4.6.2.1.2 to clause 5.4.6.2.1.4.

The test procedure shall be as follows:

Step 1:

The analyzer shall be set as follows:

Centre Frequency: Equal to the hopping frequency or centre

frequency of the channel beinginvestigated

Frequency Span: 0Hz

RBW: ~ 50 % of the Occupied Channel Bandwidth (if

the analyser does not support this setting, the

highest available setting shall be used)

VBW: ≥ RBW (if the analyser does not support this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Sweep time: > the Channel Occupancy Time. It shall be

noted that if the Channel Occupancy Time is non-contiguous (for non-LBT based Fequency Hopping Systems), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out

Number of sweep points:

The time resolution has to be sufficient to meet the maximum measurement uncertainty of 5 % for the period to be measured. In most cases, the Idle Period is the shortest period to be measured and thereby defining the time resolution. If the Channel Occupancy Time is non-contiguous (non-LBT based Frequency Hopping Systems), there is no Idle Period to be measured and therefore the time resolution can be increased (e.g. to 5 % of the dwell time) to cover the period over which the Channel Occupancy Time is spread out, without resulting in too high a number of sweep points for the analyzer.

EXAMPLE 1: For a Channel Occupancy Time of 60 ms, the minimum Idle Period is 3 ms, hence the minimum time resolution should be $< 150 \mu s$.

EXAMPLE 2: For a Channel Occupancy Time of 2 ms, the minimum Idle Period is 100 μ s, hence the minimum time resolution should be < 5 μ s.

EXAMPLE 3: In case of a system using the non-contiguous Channel Occupancy Time approach (40 ms) and using 79 hopping frequencies with a dwell time of 3,75 ms, the total period over which the Channel Occupancy Time is spread out is 3,2 s. With a time resolution 0,1875 ms (5 % of the dwell time), the minimum number of sweep points is ~ 17 000.

Trace mode: Clear / Write

Trigger: Video

In case of Frequency Hopping Equipment, the data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used.

Step 2:

Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.

Step 3:

MXIM

THE THE PLANT	Indentify the data points related to the frequency being investigated by applying a threshold.
IN ANXIN ANXIN	Count the number of consecutive data points identified as resulting from single transmission on the frequency being investigated and multiply this number by the time difference between two consecutive data points.
in extly	Repeat this for all the transmissions within the measurement window.
WXIN MYXIN ANY	For measuring idle or silent periods, count the number of consecutive dat points identified as resulting from a single transmitter off period on the frequency being investigated and multiply this number by the time difference between two consecutive data points.Repeat this for all the
Magazzament Dagardi	transmitter off periods within the measurement window.
Measurement Record: Test Instruments:	Uncertainty: N/A See section 6.0
Test mode:	Normal link mode
Test Result:	Pass
	ANXIN MXIN MXIN AIR ANX
	IXIN ANXIN ANXIN ANXIN
	ANXIN

ANXIN ANXIN

ANXIN ANXIN ANXIN ANXIN

Test plots are below:			
	P	yr anxi, mx,	N
802.11b mode lowest channel	MY	802.11b mode highest channel	P
AWGN Interference Level (dBm)	-67.05	AWGN Interference Level (dBm)	-67.13
Unwanted CW Signal Level (dBm)	-35	Unwanted CW Signal Level (dBm)	-35
AWGN Interference Start Time (ms)	10171.00	AWGN Interference Start Time (ms)	10182.00
Unwanted CW Signal Start Time (ms)	70005.00	Unwanted CW Signal Start Time (ms)	70013.00
Max COT (ms)	1.31	Max COT (ms)	1.31
CCA Time (ms)	0.084	CCA Time (ms)	0.091
Outy Cycle (%)	2.49	Duty Cycle (%)	2.49
23		10 - 10 ON	
COT Time	- Pare (State)	COT Time	- Proof (ding)

MXM

02.11g mode lowest channel	AT	802.11g mode highest channel	**
WGN Interference Level (dBm)	-64.17	AWGN Interference Level (dBm)	-64.05
nwanted CW Signal Level (dBm)	-35	Unwanted CW Signal Level (dBm)	-35
WGN Interference Start Time (ms)	10187.00	AWGN Interference Start Time (ms)	10200.00
nwanted CW Signal Start Time (ms)	70021.00	Unwanted CW Signal Start Time (ms)	70036.00
lax COT (ms)	1.26	Max COT (ms)	1.26
CA Time (ms)	0.130	CCA Time (ms)	0.132
uty Cycle (%)	1.49	Duty Cycle (%)	1.00
13 - 00 m on	The State of the S	10	SA Proof
Altern Service		Nemo Sefrash	
COT Time	- hour slin)	20.5 COT Time	Proof (disk)
-0.2	YIN'	-0.1 -0.1	
बाल बाह्य बाब बाल बाल बाल बाल बाल बाल	9.00	80.00 RLDS 40.90 80.00 80.00 6	15.00

MXIN

802.11n(HT20) mode lowest channel	(11,	802.11n(HT20) mode highest channel	N W.
AWGN Interference Level (dBm)	-64.08	AWGN Interference Level (dBm)	-63.99
Unwanted CW Signal Level (dBm)	-35	Unwanted CW Signal Level (dBm)	-35
AWGN Interference Start Time (ms)	10210.00	AWGN Interference Start Time (ms)	10220.00
Unwanted CW Signal Start Time (ms)	70047.00	Unwanted CW Signal Start Time (ms)	70057.00
Max COT (ms)	2.15	Max COT (ms)	2.15
CCA Time (ms)	0.131	CCA Time (ms)	0.094
Duty Cycle (%)	3.98	Duty Cycle (%)	2.49
Time (ma)		(S)	
Tas COT Time	Proc (dis)	COT Time	N - Paver Intend
46.5		40.5 Aug. 1	
	1.00	200 2.50 3.00 3.00 6.00 Tares (1994)	+10

Note:

During the test, the signal observed on the channel being investigated is the Short Control Signalling ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN

6.2.3 Occupied Channel Bandwidth

Test Requirement:	ETSI EN 300 328 clause 4.3.2.7
Limit: ANXIN ANX	The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2400MHz ~ 2483.5MHz. In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p. greater than10 dBm, the occupied channel bandwidth shall be less than 20 MHz.
Test setup:	Attenuator & DC block DC block EUT Power Supply
enxlle exily	Spectrum Analyser
Test Precedure:	Step 1: What is the state of th
IXII ANXIN AN	Connect the UUT to the spectrum analyser and use the following setting: Centre Frequency: The centre frequency of the channel under test
WALLA WALLA	Resolution BW: ~ 1 % of the span without going below 1 % Video BW: 3 × RBW
ANXIN ANXIN	Frequency Span 2 × Nominal Channel Bandwidth Detector Mode: RMS
in while	Trace mode: Max Hold Sweep time: 1 s
V. V. VIA.	Step 2:
My. All	Wait for the trace to stabilize.
AM AM	Find the peak value of the trace and place the analyser marker on th peak.
Why.	Step 3:
MXIN PIN	Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.
XIM WAXIN WA	Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

ANXIN

MXIM

Measureme	ent Data:	N.	MAL	MXII.	1XIL
,	100	. 1517)2.11b	(1)3	
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F∟/F _H (MHz)	Limit	Result
Lowest	12.477	20	2418.239	2400MHz ~	Pass
Highest	12.511	20	2478.3	2483.5MHz	Pass
		80)2.11g		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Resul
Lowest	16.842	20	2420.453	2400MHz ~	Pass
Highest	16.803	20	2480.438	2483.5MHz	Pass
		802.	11n(H20)		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F∟/F _H (MHz)	Limit 17XII	Resul
Lowest	17.704	20	2420.862	2400MHz ~	Pass
Highest	17.763	20	2480.94	2483.5MHz	Pass
		802.	11n(H40)		1
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F∟/F _H (MHz)	Limit	Resul
Lowest	36.077 36.149	40	2440.07	2400MHz ~	Pass
Highest	36.077 36.149	ANXIN	2479.3	2400MHz ~ 2483.5MHz	Pass

MXIN

MXW

ANXIN

ANXIN

ANXIN

ANXIN

Test plots are followed:

36,605 kHz

22.20 MHz

OBW Power

w dB

99.00 %

-28.00 dB

Transmit Freq Error

ANXIN

x dB Bandwidth

ANXIN

ANXII

ANXIN ANXIN

ANXIN

ANXIN ANXIN

ANT

AN

ANXIN

ANXI

ANXIN

Mode: 802.11n(HT40) Channel: Highest

ANXIN ANXIN

ANXIA

ANXIN

- Dia				
i ransmitter unwante	d emissions in the OOB	domain		
Test Requirement:	ETSI EN 300 328 clause	e 4.3.2.8		
Test Method:	ETSI EN 300 328 clause	e 5.4.8.2	7511	14
Limito XIII ANI	The transmitter unwan outside the allocated bar mask in figure 1 Within the band specifier fulfilled by compliance win clause 4.3.1.8.	and, shall not exce d in table 1, the Ou	eed the values provi ut-of-band emissions	ded by are
		55		
	Spurious Domain Out Of Band Domai	in (OOB) Allocated Band	Out Of Band Domain (OOB)	Spuriou
	A			
	8			
	DT 0			
	7 400 MILE 2014 2 400 MILE	DW 2400 MW- 2402 EV	UN- 0.402 E MU- 2.000 2.407 E M	us a south
	2 400 MHz - 2BW 2 400 MHz - 1 A: -10 dBm/MHz e.i.c.p.	BW 2 400 MHz 2 483,51	MHz 2 483,5 MHz + BW 2 483,5 M	riz + 2BW
	B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	BW = Occupie	ed Channel Bandwidth in MHz or 1 MHz	whichever is
Test setup:		a solution		
ANY AN	Spectrum Analyser		EUT Po	ower Sup
Test procedure:	The applicable mask is o			
	tests performed under cl			
	The Out-of-band emission mask provided in figures			
	step 6 below. This method	od assumes the sp		
	with the Time Domain Po	ower option.		
	Step 1:	MXII	MXIM	MN
	Connect the UUT to the Centre Frequency:	spectrum analysei 2 484 MHz	and use the followir	ig sett
	Span:	2 404 MINZ 0Hz		
	Resolution BW:	1 MHz		
	Filter mode:	Channel filter		
	Video BW:	3 MHz		
	Detector Mode:	RMS		
	Trace Mode:	Max Hold		
	Sweep Mode:	Continuous		
	Sweep Points:	Sweep Time [s] greater	/ (1 µs) or 5 000 which	cheve
		greater		
	Trigger Mode:	Video trigger		

Sweep Time:

>120 % of the duration of the longest burst detected during the measurement of the

RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

Adjust the trigger level to select the transmissions with the highest power level.

For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz -BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz -2BW + 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be

ANXIN

MXIM

WANTH WATER	repeated for each of the assembly gain "G" in de results. If more than one setting, the antenna with Comparison with the ap options given below:	Bi for a single anten e antenna assembly h the highest gain s	na shall be added to r is intended for this hall be considered.	these power
XIN ANXIN ANX	Option 1: the results for 1 MHz segments shall to dB shall be added as w limits provided by the m	oe added. The addit ell and the resulting	ional beamforming of values compared w	gain "Y" in
ANXIN ANXIN A	Option 2: the limits prov be reduced by 10 x log ² dB. The results for each compared with these re	10(A _{ch}) and the addi n of the transmit cha	tional beamforming	gain "Y" in
	NOTE: A _{ch} refers to the	number of active tra	ansmit chains.	P.
	It shall be recorded whe provided in figure 1 or fi		complies with the n	nask
Measurement Record:	Uncertainty: ± 1.5dB	· hu-	. 2	
Test Instruments:	See section 6.0	VIJY.	MXIII	JXIM
Test mode:	Transmitting mode	4		
		MYIN ANXIN	IN ANXIN	AN
		WXIN ANXIN	XIM AMXIM	IN AN
		ANXIN ANXIN	ANXIN ANXIN	IN ANXIN
		ANXIN ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN	IN ANY ANY ANY ANY
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	IN ANXIN ANXIN ANXIN
	ANXIN	ANXIN	ANXIN	IN ANY ANY ANY ANY ANY ANY ANY ANY ANY AN

ANXIN ANXIN ANXIN ANXIN ANXIN

Measurement Data:

Test plots at normal condition are followed:

6.2.5 Transmitter unwanted emissions in the spurious domain

Took Mothor-I	ETSI EN 300 328 clause	7.1, 1113	r
Test Method:	ETSI EN 300 328 clause	5.4.9.2	MIXI
Limit: XIII	Frequency Range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
	30 MHz to 47 MHz	-36 dBm	100 kHz
	47 MHz to 74 MHz	-54 dBm	100 kHz
	74 MHz to 87.5 MHz	-36 dBm	100 kHz
	87.5 MHz to 118 MHz	-54 dBm	100 kHz
	118 MHz to 174 MHz	-36 dBm	100 kHz
	174 MHz to 230 MHz	-54 dBm	100 kHz
	230 MHz to 470 MHz	-36 dBm	100 kHz
	470 MHz to 862 MHz	-54 dBm	100 kHz
	862 MHz to 1 GHz	-36 dBm	100 kHz
	1 GHz to 12.75 GHz	-30 dBm	1 MHz
Test Frequency range:	30MHz to 12.75GHz	<i>y</i> .	la, Obje
Test setup:	Below 1GHz	MIX.	- Williams
	AE EUT	Antenna Anten	na Tower
		Ground Rifference Plane ecelver	AN AND
	Test Ri	Hors Arterns Ground Reference Plane	Tower And
	Above 1GHz	Hors Arterna Antoni Ground Rateserse Plane	ANXII ANXII

emissions of the UUT.

Step 1:

The sensitivity of the measurement set-up should be such that the noise floor is at least 12 dB below the limits given in table 4 or table 12.

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak Max Hold Trace Mode: ≥19 400 Sweep Points:

For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

Sweep time: For non continuous transmissions (duty cycle

> less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT.on

any channel

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further

increased to capture multiple transmissions on

the same hopping frequency in different

hopping sequences.

The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.4.9.2.1.3 and compared to the limits given in table 4 or table 12.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak Trace Mode: Max Hold ≥ 23 500 Sweep Points:

For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

For non continuous transmissions (duty cycle Sweep time:

> less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.on

any channel

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequencies

The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.4.9.2.1.3 and compared to the limits given in table 4 or table 12.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.4.9.2.1.3.

Step 4:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (A_{ch}). The limits used to identify emissions during this pre-scan need to be reduced by $10 \times \log_{10}(A_{ch})$

2. Measurement of the emissions identified during the pre-scan

The procedure in step 1 to step 4 below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. This method assumes the spectrum analyser has a Time Domain Power function.

Step 1:

The level of the emissions shall be measured using the following spectrum analyser settings:

Measurement Mode: Time Domain Power

Centre Frequency: Frequency of emission identified during the

pre-scan

Resolution BW: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz) Video BW 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)

Frequency Span: Zero Span
Sweep mode: Single Sweep

Sweep time: > 120 % of the duration of the longest burst

detected during the measurement of the

RF Output Power

Sweep points: Sweep time $[\mu s] / (1 \mu s)$ with a maximum of

30 000

Trigger: Video (burst signals) or Manual (continuous

signals)

Detector: RMS

Step 2:

Set a window where the start and stop indicators match the start and end of the burst with the highest level and record the value of the power measured within this window. If the spurious emission to be measured is a continuous transmission, the measurement window shall be set to

MXIN

A STATE				
AT.		Shenzhen An-Xi	n Testing Service C	o Itd
IN TESTING		Report No.:	AXJC2023052200	0307D
AM				
Thy. "MXIII	match the start and stop	times of the sweet	D	NA.
	Step 3:	· MXII		
4/1/2	In case of conducted me			
W. Why	(equipment with multiple		step 2 needs to be re	peated for
Mr. Mr.	each of the active transi		ved window) for eac	h of the
Why.	active transmit chains.	ci (within the obser	ved willdow) for each	ii oi tiic
IN P	Step 4:		MXIII	MIXI
use, axile	The value defined in ste	p 3 shall be compa	red to the limits defin	ned in
Measurement Record	table 4 or table 12.	MAIN	My	(1)
Test Instruments:	: Uncertainty: ± 6dB See section 6.0	Al.	BULL	MX
Test mode:	Transmitting mode	IIN II	IN .	/ P.
	ANXIII			
	WALL BUXILD			
	ANXIN ANXIN			
	ANXIN ANXIN	ANXIN A		
	ANXIN ANXIN	Y ANXIN E		
	ANXIN ANXIN ANXIN	ANXIN ANXIN		
	W ANXIN ANXIN ANXIN	ANXIN ANXIN		
	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN		
	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN	ANXIN ANXIN ANXIN		
	ANXIN	ANXIN ANXIN ANXIN		
	ANXIN	ANXIN ANXIN		INXIN ANXIN
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN AN		ANXIN ANXIN IN ANX
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN		ANXIN ANXIN IN ANXIN
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN		ANXIN ANXIN ANXIN ANXIN
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN		ANXIN ANXIN ANXIN ANXIN
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN IN ANXIN		ANXIN ANXIN ANXIN ANXIN
	ANXIN	ANXIN		IXIN ANXIN ANXIN ANXIN ANXIN
	ANXIN	ANXIN ANXIN ANXIN ANXIN ANXIN ANXIN		XIN ANXIN INXIN ANXIN ANXIN ANXIN

Measurement Data

		The lowest char	nnel	
equency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requericy (Wiriz)	polarization	Level(dBm)	MX Filling (GDIII)	Test Nesult
30.00	Vertical	-65.90	-54.00	VHX.
216.61	V	-61.90	-36.00	M
480.98	V G	-66.60	-30.00	L.
2362.73	V	-62.40	-30.00	N PI
3589.18	V	-56.20	-30.00	MXIR
4917.84	A VIII V	-32.10	-30.00	Dana
6825.65	Horizontal	-50.10	-36.00	Pass
70.82	MH,	-76.20	-54.00	MA
3112.22	AMH	-64.00	-30.00	H
3589.18	H 1	-67.20	-30.00	NIT
4917.84	HUX	-57.70	-30.00	in h
6825.65	H H	-50.10	-30.00	4711
		The highest cha	nnel	
	Spurious	Emission	Limit (dDay)	TIXIP
requency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
47.49	Vertical	-75.40	-54.00	11/2
335.19	V	-53.70	-36.00	AMIL
504.31	V	-67.10	-30.00	M
2430.86	V V	-54.10	-30.00	a Mi
4917.84	V	-30.90	-30.00	in h
6825.65	V	-50.20	-30.00	NY
47.49	Horizontal	-64.40	-36.00	Pass
177.74	н, Р	-64.80	-54.00	1XIM
480.98	H	-67.00	-30.00	VIs
3112.22	Н	-58.20	-30.00	4
4917.84	H J/N	-31.10	-30.00	AMX
		-50.70	-30.00	1

L. DI				
N. D.		The lowest cha	annel	
Francisco (MIII-)	Spurious	Emission	Limit (dDay)	T-24 H
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Re
94.18	Vertical	-70.98	-54.00	
345.36	V	-67.68	-36.00	
4824.00	V	-51.75	-30.00	
7236.00	V	-45.19	-30.00	
9648.00	V	-41.96	-30.00	
12060.00	V Alle	-44.15	-30.00	NXIN
121.57	Horizontal	-68.99	-36.00	Pass
678.68	Н	-68.30	-54.00	
4824.00	H/J	-50.79	-30.00	
7236.00	NH	-44.62	-30.00	
9648.00	Н	-42.20	-30.00	
12060.00	Harrin	-44.89	-30.00	
	10.	The highest cha	onnol	
			allilei	
ANT W	Spurious	Emission		
Frequency (MHz)	Spurious polarization	Emission Level(dBm)	Limit (dBm)	Test Re
Frequency (MHz)	. 19			Test Re
· in	polarization	Level(dBm)	Limit (dBm)	Test Re
150.18	polarization Vertical	Level(dBm) -70.12	Limit (dBm) -36.00	Test Re
150.18 942.70	polarization Vertical V	-70.12 -62.64	-36.00 -36.00	Test Re
150.18 942.70 4944.00	polarization Vertical V	-70.12 -62.64 -51.47	-36.00 -36.00 -30.00	Test Re
150.18 942.70 4944.00 7416.00	polarization Vertical V V	Level(dBm) -70.12 -62.64 -51.47 -44.55 -42.56	-36.00 -36.00 -30.00 -30.00	UN AN'
150.18 942.70 4944.00 7416.00 9888.00	polarization Vertical V V V V	Level(dBm) -70.12 -62.64 -51.47 -44.55	-36.00 -36.00 -36.00 -30.00 -30.00	Test Re
150.18 942.70 4944.00 7416.00 9888.00 12360.00	polarization Vertical V V V V V	Level(dBm) -70.12 -62.64 -51.47 -44.55 -42.56 -42.67	-36.00 -36.00 -36.00 -30.00 -30.00 -30.00	UN AN
150.18 942.70 4944.00 7416.00 9888.00 12360.00 121.38	polarization Vertical V V V V V Horizontal	Level(dBm) -70.12 -62.64 -51.47 -44.55 -42.56 -42.67 -69.38	-36.00 -36.00 -36.00 -30.00 -30.00 -30.00 -30.00 -36.00	UN AN
150.18 942.70 4944.00 7416.00 9888.00 12360.00 121.38 754.68 4944.00	polarization Vertical V V V V V Horizontal	Level(dBm) -70.12 -62.64 -51.47 -44.55 -42.56 -42.67 -69.38 -71.21 -50.71	Limit (dBm) -36.00 -36.00 -30.00 -30.00 -30.00 -30.00 -36.00 -54.00 -30.00	UN AN
150.18 942.70 4944.00 7416.00 9888.00 12360.00 121.38 754.68	polarization Vertical V V V V V Horizontal H H	Level(dBm) -70.12 -62.64 -51.47 -44.55 -42.56 -42.67 -69.38 -71.21	-36.00 -36.00 -36.00 -30.00 -30.00 -30.00 -30.00 -36.00 -54.00	UN AN

		802.11n(HT20) m		
		The lowest chan	nel	
requency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requericy (MHZ)	polarization	Level(dBm)	Lillit (ubili)	rest Result
190.19	Vertical	-69.39	-54.00	MY
743.16	V	-63.84	-54.00	AMIL
4824.00	V	-52.15	-30.00	My
7236.00	P V	-44.77	-30.00	My
9648.00	V	-43.06	-30.00	in h
12060.00	V	-42.98	-30.00	MXIII
199.27	Horizontal	-69.62	-54.00	Pass
692.57	н, Р	-61.86	-54.00	TXIN
4824.00	H	-52.10	-30.00	VI.
7236.00	Н	-45.69	-30.00	11/2
9648.00	H VI	-43.08	-30.00	Why.
12060.00	HA	-44.49	-30.00	Mr
		The highest char	nnel	
AM	Spurious	Emission	The Thirty Charles	
requency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
280.18	Vertical	-68.76	-36.00	
884.45	V	-65.55	-36.00	TXIM
4944.00	V	-51.66	-30.00	VIA.
7416.00	V	-43.79	-30.00	TH
9888.00	V	-42.66	-30.00	WAY
12360.00	V M	-43.58	-30.00	118
141.24	Horizontal	-71.60	-36.00	Pass
862.35	H ~	-70.99	-36.00	1
4944.00	H	-50.32	-30.00	MXIII
7416.00	MH	-46.21	-30.00	" L.
9888.00	Н	-42.77	-30.00	"XIK
12360.00	HIXIM	-45.03	-30.00	VI.
- P	DL.	· NA	12/1	11B

		The lowest char	illei	
Frequency (MHz)	Spurious	Emission	CAXII.	Too! Boould
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
110.77	Vertical	-69.17	-54.00	21/1
449.54	VXIII	-60.00	-36.00	V VIA.
4844.00	V	-51.94	-30.00	XIN
7266.00	V	-45.04	-30.00	AT
9688.00	V AP	-42.48	-30.00	MN
12110.00	VAV	-44.61	-30.00	VHY.
149.02	Horizontal	-68.05	-36.00	Pass
677.11	H	-63.06	-54.00	MXIII
4844.00	MH	-51.64	-30.00	N N
7266.00	Н	-45.18	-30.00	1/2
9688.00	H	-41.83	-30.00	VI.
12110.00	H	-44.46	-30.00	XIM
		The highest cha	nnel	
The Ale	Spurious	Emission	TIL.	40.
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
113.31	Vertical	-68.87	-54.00	100
829.94	V	-61.97	-54.00	MXIII
4924.00	V	-51.73	-30.00	in hi
		45.00		
7386.00	V	-45.36	-30.00	1
7386.00 9848.00	V	-45.36 -41.82	-30.00 -30.00	Y'' AN
11/2	4			AN' AN'
9848.00	V	-41.82	-30.00	Pass
9848.00 12310.00	V V V	-41.82 -44.45	-30.00 -30.00	21
9848.00 12310.00 191.86	V V Horizontal	-41.82 -44.45 -66.58	-30.00 -30.00 -54.00	21
9848.00 12310.00 191.86 588.83	V V Horizontal	-41.82 -44.45 -66.58 -63.72	-30.00 -30.00 -54.00 -54.00	ANXIN
9848.00 12310.00 191.86 588.83 4924.00	V V Horizontal H	-41.82 -44.45 -66.58 -63.72 -49.84	-30.00 -30.00 -54.00 -30.00	21

6.3 Receiver Requirement 6.3.1 Spurious =

			The second secon
Test Requirement:	ETSI EN 300 328 clause	4.3.2.10	MY
Test Method:	ETSI EN 300 328 clause	5.4.10.2	AM
Limit: AMA	Frequency	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Measurement bandwidth
	30MHz to 1000 MHz	-57 dBm	100 Hz
	1GHz to 12.75GHz	-47 dBm	1 MHz
Test Frequency range:	30MHz to 12.75GHz	IN IN	
Test setup:	Below 1GHz	MX	ol XIIIa
	AE EUT (Turntable)	Antenna Antenna Ground Reference Plane	a Tower Anyth
	Above 1GHz	Receiver Annaher Controlles	ANXIM
	AE EUT (Turntable)	Hors Antenna Antonna Ground Reference Plane	Tower XIM XIM
MIXINA MIXINA MIXINA	AMXIII AM	Controller	ANXIN AN

Test procedure:

Pre-scan

The procedure in step 1 to step 4 below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 5 or table13.

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3dB (Gaussian)

Detector mode: Peak Trace Mode: Max Hold Sweep Points: ≥ 19 400 Sweep time: Auto

Wait for the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.4.10.2.1.3 and compared to the limits given in table 5 or table 13.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak Trace Mode: Max Hold

≥ 23500; for spectrum analysers not Sweep Points:

supporting this high number of sweep

points, the frequency band may be segmented

Sweep time: Auto

Wait for the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below, the applicable limit or above, shall be individually measured using the procedure in clause 5.4.10.2.1.3 and compared to the limits given in table 5 or table 13.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.4.10.2.1.3.

Step 4:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (Ach). The limits used to identifyemissions during this pre-scan need to be reduced with

 $10 \times \log_{10}(A_{ch})$

Measurement of the emissions identified during the pre-scan

The procedure in step 1 to step 4 below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. This method assumes the spectrum analyser has

Shenzhen An-Xin Testing Service Co., Ltd.

Page 64 of 85

MXIM

WAY WAY	a Time Domain Power fun Step 1:	oction.
	The level of the emissions spectrum analyser setting Measurement Mode:	
	Centre Frequency: Resolution Bandwidth:	Frequency of the emission identified during t pre-scan 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
	Video Bandwidth:	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
	Frequency Span:	Zero Span
	Sweep mode:	Single Sweep
	Sweep time:	30 ms
	Sweep points:	≥ 30 000
	Trigger: Detector:	Video (for burst signals) or Manual (for continuous signals RMS
	of the burst with the highe measured within this wind a continuous, transmission start and stop times of the Step 3: In case of conducted mea (equipment with multiple reach of the active receive the observed window) for Step 4:	tart and stop indicators match the start and end st level and record, the value of the power ow. If the spurious emission to be measured is n, the measurement window shall be set to the sweep. surements on smart antenna systems eceive chains), step 2 needs to be repeated for chains A _{ch} . Sum the measured power (within each of the active receive chains. 3 shall be compared to the limits defined in
Measurement Record:	Uncertainty: ± 6dB	Will The
Test mode:	Kept Rx in receiving mode	Her. Ways.
Test Instruments:	See section 6.0	IN IN IN

Measurement Data:

		The lowest chan	inel	
Eroguenov (MU=)	Spurious	Emission	Limit (dBm)	Test Resul
Frequency (MHz)	polarization	Level(dBm)	LIMIT (GPIII)	rest Resul
112.35	Vertical	-71.37	b	N. Direction
803.67	V	-65.33	anx" ext	
4824.00	V	-64.49	4 AIT	
7236.00	A 7/2	-57.72	2nW/ -57dBm	
9648.00	V/NV	-54.24	below 1GHz,	
12060.00	V	-53.68	My. My.	D. All
225.63	Horizontal	-71.11	00a\A// 47dDaa	Pass
521.21	AHA	-64.24	20nW/ -47dBm	
4824.00	Н	-61.42	above 1GHz.	
7236.00	HJXIM	-58.11	'M' N'	
9648.00	, All	-55.36		
12060.00	CIE H	-53.89	M L. AL	
		The highest char	nnel	
17/12	Spurious	Emission	DI.	M
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Resul
94.30	Vertical	-71.96	VIA. VIA.	MXII
626.40	V	-65.12	· Mr.	
4944.00	V	-62.74	Why.	
7416.00	V	-57.98	2nW/ -57dBm	
9888.00	V	-54.25	below 1GHz,	
12360.00	VIII V	-52.77	P. P.	D
176.04	Horizontal	-70.00	2001/1/ 47-10	Pass
541.66	-H/-	-63.60	20nW/ -47dBm	
	MAH	-62.09	above 1GHz.	
4944.00		100	14	
4944.00 7416.00	Н	-55.36	L. VIA.	
N .	H	-55.36 -52.28	L. VIG	

Frequency (MHz)				
MXII.		The lowest char	nnel	
MXII.	Spurious	Emission	Limit (dBm)	Test Resu
	polarization	Level(dBm)	Lillit (dBill)	Test Nest
101.93	Vertical	-70.40	NYIN MIXIN	4
659.41	V	-66.36		N
4944.00	V	-62.79	2 11/12	in h.
7416.00	y V	-57.92	2nW/ -57dBm	KIII
9888.00	V	-53.70	below 1GHz,	P
12360.00	V Alle	-53.02		1XIN
118.81	Horizontal	-70.03	00 a M/ 47 d D as	Pass
592.41	Н	-66.17	20nW/ -47dBm above 1GHz.	112
4944.00	HM	-61.56	above IGHz.	W.
7416.00	AMH	-55.35		B
9888.00	Н	-53.64		
12360.00	HAZII	-52.43		by.
		The highest cha	nnel	
My. W.	Spurious	Emission	18	
	77		Limit (dBm)	Test Resu
Frequency (MHz)	polarization	Level(dBm)		18/1/2
139.33	Vertical	-71.81	LINE SHAPE	VHXII.
· lan	-		MY ANY	ALIXIN
139.33	Vertical	-71.81	ANXIN ANXIN	ANXIIA
139.33 665.42	Vertical V	-71.81 -72.50	2nW/ -57dBm	HANNIN ANX
139.33 665.42 4944.00	Vertical V	-71.81 -72.50 -62.12		KIN ANX
139.33 665.42 4944.00 7416.00	Vertical V V	-71.81 -72.50 -62.12 -57.18		
139.33 665.42 4944.00 7416.00 9888.00	Vertical V V V V	-71.81 -72.50 -62.12 -57.18 -53.25	below 1GHz,	Pass
139.33 665.42 4944.00 7416.00 9888.00 12360.00	Vertical V V V V V V	-71.81 -72.50 -62.12 -57.18 -53.25 -52.66	below 1GHz, 20nW/ -47dBm	
139.33 665.42 4944.00 7416.00 9888.00 12360.00 151.01	Vertical V V V V V Horizontal	-71.81 -72.50 -62.12 -57.18 -53.25 -52.66 -71.27	below 1GHz,	
139.33 665.42 4944.00 7416.00 9888.00 12360.00 151.01 750.10	Vertical V V V V V Horizontal	-71.81 -72.50 -62.12 -57.18 -53.25 -52.66 -71.27 -67.57	below 1GHz, 20nW/ -47dBm	
139.33 665.42 4944.00 7416.00 9888.00 12360.00 151.01 750.10 4944.00	Vertical V V V V V Horizontal H H	-71.81 -72.50 -62.12 -57.18 -53.25 -52.66 -71.27 -67.57 -61.40	below 1GHz, 20nW/ -47dBm	

Frequency (MHz)				
- AXIII		The lowest char	nnel	
- AXIII	Spurious	Emission	Limit (dBm)	Test Resu
100.40	polarization	Level(dBm)	Lillit (dBill)	Test Nest
122.43	Vertical	-70.70	AIXIN MIXIS	
616.71	V	-68.82		M
4824.00	V	-55.97	2 11/12	in hi
7236.00	V	-60.28	2nW/ -57dBm	XIII
9648.00	V	-57.76	below 1GHz,	F
12060.00	V	-55.41		1412
129.02	Horizontal	-70.79	00 a M/ 47 d D as	Pass
750.64	Н	-63.33	20nW/ -47dBm	112
4824.00	HM	-55.37	above 1GHz.	W.
7236.00	WH	-60.83		N
9648.00	Н	-58.34		
12060.00	HAXII	-54.50		N Pri
		The highest cha	nnel	
Why.	Spurious	Emission	Limit (dBm)	
	. 19		I IMIT (ABM)	Test Resu
Frequency (MHz)	polarization	Level(dBm)	Ellint (dBill)	10011100
Frequency (MHz) 236.45	polarization Vertical	Level(dBm) -69.21	Zillik (dBill)	NAX III
· Lan			NXW XW	VAXIIA
236.45	Vertical	-69.21	ANXIN ANXIN	ANXIII
236.45 929.10	Vertical V	-69.21 -66.57	2nW/ -57dBm	ANXIN
236.45 929.10 4944.00	Vertical V	-69.21 -66.57 -63.27	2nW/ -57dBm	ANXIN
236.45 929.10 4944.00 7416.00	Vertical V V V	-69.21 -66.57 -63.27 -60.03	2nW/ -57dBm	KIN ANX
236.45 929.10 4944.00 7416.00 9888.00	Vertical V V V V	-69.21 -66.57 -63.27 -60.03 -56.08	2nW/ -57dBm below 1GHz,	ANXIN ANX
236.45 929.10 4944.00 7416.00 9888.00 12360.00	Vertical V V V V V	-69.21 -66.57 -63.27 -60.03 -56.08	2nW/ -57dBm below 1GHz, 20nW/ -47dBm	KIN ANX
236.45 929.10 4944.00 7416.00 9888.00 12360.00 324.01	Vertical V V V V V Horizontal	-69.21 -66.57 -63.27 -60.03 -56.08 -54.28 -66.17	2nW/ -57dBm below 1GHz,	KIN ANX
236.45 929.10 4944.00 7416.00 9888.00 12360.00 324.01 940.52	Vertical V V V V V Horizontal	-69.21 -66.57 -63.27 -60.03 -56.08 -54.28 -66.17 -62.42	2nW/ -57dBm below 1GHz, 20nW/ -47dBm	KIN ANX
236.45 929.10 4944.00 7416.00 9888.00 12360.00 324.01 940.52 4944.00	Vertical V V V V V Horizontal H H	-69.21 -66.57 -63.27 -60.03 -56.08 -54.28 -66.17 -62.42 -61.06	2nW/ -57dBm below 1GHz, 20nW/ -47dBm	KIN ANX

Frequency (MHz)			node	
Frequency (MHz)		The lowest cha	nnel	
r requericy (Mriz)	Spurious	Emission	Limit (dBm)	Test Resu
	polarization	Level(dBm)	Lillit (dbill)	Test Nest
119.96	Vertical	-68.09	NYIM WIN	
799.43	V	-71.87		MY
4844.00	V	-63.25	0.11/1/2 ID	in h.
7266.00	V	-56.55	2nW/ -57dBm	Kille
9688.00	V	-52.92	below 1GHz,	F
12110.00	V Alle	-53.07		14/2
170.28	Horizontal	-67.14	00mM/ 47dDm	Pass
904.13	Н	-71.18	20nW/ -47dBm	112
4844.00	HH	-61.56	above 1GHz.	W/X
7266.00	AMH	-57.42		N
9688.00	Н	-54.84		. 0
12110.00	HUXIII	-52.61		, Pi
		The highest cha	innel	. 6
Mr. M	Spurious	The highest cha	, N P	T(D
Frequency (MHz)	Spurious polarization	~ \	Limit (dBm)	Test Resu
Frequency (MHz)		Emission	, N P	Test Resu
	polarization	Emission Level(dBm)	, N P	Test Resu
311.56	polarization Vertical	Emission Level(dBm) -69.01	Limit (dBm)	Test Resu
311.56 650.62	polarization Vertical	Emission Level(dBm) -69.01 -71.47	Limit (dBm) 2nW/ -57dBm	Test Resu
311.56 650.62 4924.00	polarization Vertical V	Emission Level(dBm) -69.01 -71.47 -62.74	Limit (dBm) 2nW/ -57dBm	W VINX
311.56 650.62 4924.00 7386.00	polarization Vertical V V	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98	Limit (dBm) 2nW/ -57dBm	ALLXING P
311.56 650.62 4924.00 7386.00 9848.00	polarization Vertical V V V V	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98 -54.25	Limit (dBm) 2nW/ -57dBm below 1GHz,	W VINX
311.56 650.62 4924.00 7386.00 9848.00 12310.00	polarization Vertical V V V V V	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98 -54.25 -53.12	Limit (dBm) 2nW/ -57dBm below 1GHz,	ALLXING P
311.56 650.62 4924.00 7386.00 9848.00 12310.00 370.06	polarization Vertical V V V V V Horizontal	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98 -54.25 -53.12 -67.90	Limit (dBm) 2nW/ -57dBm below 1GHz,	ALLXIN
311.56 650.62 4924.00 7386.00 9848.00 12310.00 370.06 658.75	polarization Vertical V V V V V Horizontal	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98 -54.25 -53.12 -67.90 -71.32	Limit (dBm) 2nW/ -57dBm below 1GHz,	ALLXIN
311.56 650.62 4924.00 7386.00 9848.00 12310.00 370.06 658.75 4924.00	polarization Vertical V V V V V Horizontal H H	Emission Level(dBm) -69.01 -71.47 -62.74 -57.98 -54.25 -53.12 -67.90 -71.32 -61.76	Limit (dBm) 2nW/ -57dBm below 1GHz,	

6.3.2 Receiver Blocking

Test Requirement:	ETSI EN 300 328 clause	4.3.2.11	AT	. 1
Test Method:	ETSI EN 300 328 clause		NXIII	MY
Limit: JANA AND AND	While maintaining the mi 4.3.2.11.3, the blocking I equal to or greater than category provided in table 14: Receiver Block	evels at specified the limits defined le 14, table 15 or	I frequency off for the applica table 16.	sets shall be able receiver
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
	P _{mirr} + 6 dB	2 380 2 503.5	-63	cw
	P _{min} + 6 dB	2 300 2 330 2 360	-47	cw
	P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	cw
	antenna assembly Table 15; Receiver B	7		7-10-0
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
	P _{min} + 6 dB	2-380 2-503,5	-57	CW
	P _{mm} + 6.dB	2 300 2 583,5	147	cw
	NOTE 1: P _{min} is the minimum performany blocking signored. The levels specific conducted measuraterna assemblements.	mance criteria as defin na). Red are levels in front surements, the levels i	ed in clause 4.3.2. of the UUT antenn.	11.3 in the absence of
	Table 16: Receiver Blo		receiver catego	ry 3 equipment
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
	P _{min} = 12 dB	2 380 2 503,5	-57	CW
	F _{min} ≈ 12 dB	2 300 2 583.5	-47	cw
	NOTE 1: Pmin is the minimu	m level of the wanted ance criteria as defined		juired to meet the

Measurem	G nent Data:			AIXIN A	Report N	No.: AXJC20		
Test Channel	P _{min} (dBm)	PER(%)	Limit of PER(%)	Wanted signal mean power companion (P _{min} +6dB)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	Result
	MXIII	141	7	-79.41	2300.00	-47	AM	
Lowest	05.44	9.17		-79.41	2330.00	-47	1	bis
Channel	-85.41	9.17	(N)	-79.41	2360.00	-47	0	MXI.
	MA	Δ'	7.1	-79.41	2380.00	-57	in I	
NN		IN		-78.67	2503.50	-57	7.41	4
AMIL	M		10	-78.67	2523.50	-47	cw	Pass
	IN P		VI.	-78.67	2553.50	-47	NXIP	
Highest Channel	-84.67	9.25		-78.67	2583.50	-47	VI.a.	P
Chamile		VI.	P.	-78.67	2613.50	-47		M
	MXIN		M	-78.67	2643.50	-47	AM	<u> </u>
	VI.	AM		-78.67	2673.50	-47	IN.	

Note: During the blocking test. The value of PER which display on the CMW 500 was no changed. Maybe the value of PER has a slight floating, but no bigger than 10%.

Remark: According to ETSI EN 300328 V2.1.1 clause 5.4.11.1. Only the lowest data rate of 802.11b mode was tested and recorded. Because this product is an adaptive equipment and the power is greater than 10dBm e.i.r.p. .So it's belongs to category 1 device.

ANNEX E

E.1 Information as required by EN 300 328 V2.1.1, clause 5.4.1

In accordance with EN 300 328, clause 5.4.1, the following information is provided by the suppl	ier.
a) The type of modulation used by the equipment:	
FHSS AND THE STATE OF THE STATE	
Other forms of modulation	
b) In case of FHSS modulation:	
In case of non-Adaptive Frequency Hopping equipment:	
The number of Hopping Frequencies:	
In case of Adaptive Frequency Hopping Equipment:	
The maximum number of Hopping Frequencies:	
The minimum number of Hopping Frequencies:	
The (average)Dwell Time:	
c) Adaptive / non-adaptive equipment:	
☐ Non-adaptive Equipment	
☑ Adaptive Equipment without the possibility to switch to a non-adaptive mode	
☐ Adaptive Equipment which can also operate in a non-adaptive mode	
d) In case of adaptive equipment:	
The maximun Channel Occupancy Time implemented by the equipment:	ms
oxtimes The equipment has implemented an LBT based DAA mechanism	
In case of equipment using modulation different from FHSS:	
☐ The equipment is Frame Based equipment	MXIN
☐ The equipment is Load Based equipment	
\square The equipment can switch dynamically between Frame Based and Load Ba	sed equipme
The CCA time implemented by the equipment: µs	
☐ The equipment has implemented an non-LBT based DAA mechanism	
\square The equipment can operate in more than one adaptive mode	
e) In case of non-adaptive Equipment:	
The maximum RF Output Power (e.i.r.p.):	
The maximum (corresponding) Duty Cycle: %	
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):	
f) The worst case operational mode for each of the following tests:	7
RF Output Power: 802.11b	
Power Spectral Density: 802.11b	
Duty cycle, Tx-Sequence, Tx-gap: N/A	
Accumulated Transmit time, Frequency Occupation & N/A Hopping Sequence (only for FHSS equipment):	
Hopping Frequency Separation (only for FHSS equipment) : N/A	
Medium Utilisation: N/A	
Adaptivity & Receiver Blocking: 802.11 b	

Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307D

	Nominal Channel Bandwidth: 802.11 n(HT40) Transmitter unwanted emissions in the OOB domain: 802.11 n(HT40)
	Transmitter unwanted emissions in the spurious domain: 802.11 b
	Receiver spurious emissions: 802.11 b
g)	The different transmit operating modes (tick all that apply):
	☑ Operating mode 1: Single Antenna Equipment
	☐ Equipment with only one antenna
	☐ Equipment with two diversity antennas but only one antenna active at any moment in time
	Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
	☐ Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
	☐ Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
	☐ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	☐ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE 1:Add more lines if more channel bandwidths are supported.
	☐ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
	☐ Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
	☐ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	☐ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE 2:Add more lines if more channel bandwidths are supported.
h)	In case of Smart Antenna Systems:
	The number of Receive chains:
	The number of Transmit chains:
	☐ Symmetrical power distribution
	☐ Asymmetrical power distribution
	In case of beam forming, the maximum beam forming gain:
	NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i)	Operating Frequency Range(s) of the equipment:
	Operating Frequency Range 1:2412 MHz to2472 MHz
	Operating Frequency Range 2: 2422 MHz to 2462 MHz
	NOTE: Add more lines if more Frequency Ranges are supported.
j)	Occupied Channel Bandwidth(s):
	Occupied Channel Bandwidth 1: 20 MHz
	Occupied Channel Bandwidth 2: 40 MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k)	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
	⊠ Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)
	☐ Plug-in radio device (Equipment intended for a variety of host systems)
	□ Other
D .	The normal and extreme operating conditions that apply to the equipment:
AT	Normal operating conditions (if applicable):

A land					
1200					
No.				nen An-Xin Testing Ser	
TESTING			R	eport No.: AXJC202305	522000307D
Operating temperature	re: MX				
Other (please specify	if applicable):			VINY.	
Extreme operating c	onditions:		M		
Operating temperature Minimum	e range:		0 47. C	to Maxmum: 5	WX,C
Details provided are for	or the: 🛛 🖂 star	nd-alone	e equipment	M M	T- N
	☐ Cor	mbined	(or host) equipm	ent MX	
	□Tes	st jig			
m) The intended combination assemblies and their corresponding				ettings and one or mor	e antenna
Antenna Type:	NXII				
⊠ Integral Anteni	na				
Antenna Gai	n: 2.39		dBi	,	
If applicable,	additional bean	nformin	g gain (excluding	basic antenna gain):	dB
☐ Temporar	y RF connector	provide	d		Alle
☐ No tempo	rary RF connect	or provi	ided		
☐ Dedicated Anto	ennas (equipme	nt with	antenna connect	or)	
☐ Single pov	wer level with co	rrespor	nding antenna(s)		
☐ Multiple p	ower settings an	nd corre	sponding antenr	a(s)	
Number of d	ifferent Power L	evels:	My	- M	
Power Level	1:		dBm	WX.	
Power Level	2:	712	dBm	1	
Power Level	3:	B	dBm	. HXIII	
NOTE 1: Ad	ld more lines in	case the	e equipment has	more power levels.	
				evels (at antenna conne	
				antenna assemblies, the into account the beamfo	
Power Le	evel 1:		dBm		
		mblies p	provided for this	oower level:	
HXIN	Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or mode name	el prixing
N Pi	1	AMA	. 4	1112 17/4	MILE
1/11/2	2 1		12	AM	WY.
NOTE		ws in ca	se more antenna	a assemblies are suppor	ted for this power leve
	r Level 2:	N P	dBm	VL, VIII	"MXIII
		semblie	es provided for the	nis power level:	
MILE	121	Gai	Ara	VIII.	NXIII
ANX	Assembly #	n	e.i.r.p. (dBm)	Part number or mod	del
IN A	,	(dB i)	A CANA	name	MXIN
L. WXIIA	- Wh	'/	M	N	- In
in by	2	24	7,	1/2/1	HILL
. / / / - / / /	_	1			-12.

ANXIN ANXIN Shenzhen An-Xin Testing Service Co., Ltd Report No.: AXJC20230522000307D

NOT	E 4: Add more ro	ows in o	case more antenna	assemblies are supported	for this power leve
Pow	er Level 3:	MM_	dBm		
Num	ber of antenna a	ssemb	lies provided for this	s power level:	NIM
	Assembly #	Gai n (dB i)	e.i.r.p. (dBm)	Part number or model name	WAIN W
	AN1		MXIII	hi hix	
	2	P	, DI	WAY	" MXIL
	3		IXIN	M	A PI
NOT	E 5: Add more ro	ws in	case more antenna	assemblies are supported	for this power leve
The nominal voltages on the nominal voltages on the provided and the provi	ase of plug-in de	vices:		e nominal voltages of the	e combined (host)
		□ con	nbined (or host) equ	uipment	
		☐ test	t jig		
Supply Voltage	☐ AC mains☑ DC		tate AC voltage tate DC voltage	5 V	
In case of DC	, indicate the typ	e of po	wer source	YLY WYY!	
□ Intern	nal Power Supply				
⊠ Exteri □ Batter □ Other	19	y or AC	C/DC adapter		
Describe the test mode	es available which	ch can	facilitate testing:		VINXI.
The equipment type (e.	a Bluetooth® l	IFFF 8	02 11™ [i 3] propr	rietary etc)·	MX
IEEE 802.11TM	.g. Bluctootiis, i		02.11 [i.0], propr	iotary, cto.j.	ARI
If applicable, the statis (to be provided as separa	111-9	ferred	to in clause 5.4.1	d) The Man	
If applicable, the statist	tical analysis ref	ferred	to in clause 5.4.1 r) Wille	
(to be provided as separa					
Geo-location capability Yes The geograph	10.	Kin	AM	as defined in clause 4.3.1.	13 2 or
clause 4.3.2.12.2 is not a			by the equipment	actifica in clause 4.5.1.	10.2 01 NXIN
Describe the minimum					

4

EUT PHOTOGRAPHS

Photo 1

View:

[\] Front

Rear []

Right side

[] Left side

[] Top

Bottom []

Internal

Photo 2

View:

[√] Front

[]Rear

Right side []

[] Left side

Top []

Bottom

Internal []

Photo 3

View: R20

Front

Rear []

[1] Right side

Left side []

[] Top

[] **Bottom**

Internal

Photo 4

View: R20

Front

[] Rear

[] Right side

Left side []

Top

[√] **Bottom**

Internal

Photo 11

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 12

View: R30

[√] Front

[] Rear

[] Right side

[] Left side

[] Top

[] Bottom

[] Internal

Photo 13

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

Photo 14

View: R30

[] Front

[] Rear

[] Right side

[] Left side

[] Top

[√] Bottom

[] Internal

ANXIN ANXIN ANXIN