
485 TO ETH (B) User Manual

1 / 36 www.waveshare.com

RS485 TO ETH (B)
MQTT and JSON Manual

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

2 / 36 www.waveshare.com

CONTENTS

1. Overview...3

2. JSON simple example...3

2.1. Modbus RTU to JSON...3

2.2. Modbus table..3

2.3. Device configuration.. 4

2.4. Create a new Modbus analog meter.. 10

3. JSON complex example... 11

3.1. Enable NTP... 11

3.2. Nested JSON design...11

3.3. Read the bits of the byte register... 13

3.4. 01 and 02 function codes...14

3.5. Show design results... 15

3.6. Excel editing... 16

3.7. Brackets and arrays..17

3.8. Cannot read and clear..21

3.9. Device offline... 22

3.10. Pan and zoom...23

3.11. Data change reporting...23

3.12. JSON issuance...24

3.13. 645 Timing of the agreement..25

4. JSON to Modbus RTU...26

5. MQTT..28

5.1. Device configuration..28

5.2. Data Test...33

6. MQTT+JSON to Modbus RTU.. 34

7. HTTP POST/GET+JSON..34

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

3 / 36 www.waveshare.com

1. OVERVIEW

MQTT and JSON can be used alone or together. Among them, JSON supports Modbus

convert RTU format to JSON format.

The Main FEATURES:

1. Use the MQTT-based protocol to establish a connection with the server, and use the form

of subscription to publish data communication.

2. Support independent design and automatic collection of Modbus RTU registers.

3. Support the conversion of specific Modbus register content into JSON format and send it

regularly and actively.

4. Support adding device ID, time, and any string in JSON format.

5. Support nested writing method in JSON format.

6. Support NTP protocol, get the time automatically.

7. Support unsigned data and signed data, support decimal point representation, and

support 4-byte length data.

8. All configurations can be completed in interface configuration, and the user's independent

configuration does not need to be customized.

9. In addition to choosing MQTT, the protocol can support HTTP POST and GET methods.

2. JSON SIMPLE EXAMPLE

2.1. MODBUS RTU TO JSON

ZLANModbus RTU to JSON can realize automatic collection of Modbus RTU tables, and

follow

The JSON format is automatically uploaded to the cloud server.

Here we explain this usage through a specific case.

2.2. MODBUS TABLE

Suppose there is a Modbus table with a function code of 3 and an address of 1. Its

register addresses and parameter names are as follows. Where the byte length is 4, it means

that 2 registers need to be read continuously.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

4 / 36 www.waveshare.com

Register

address

Parameter name Byte

length

Remarks

0 Current total active

energy

4 Unsigned,keep 2 decimal

places

97 Phase A voltage 2

Unsigned, 1 decimal place is

reserved
98 Phase B voltage 2

99 Phase C voltage 2

100 Phase A current 2

Unsigned, 2 decimal place is

reserved
101 Phase B current 2

102 Phase C current 2

119 Frequency 2

356 A phase active power 4

Unsigned, 3 decimal place is

reserved

358 B phase active power 4

360 C phase active power 4

362 Total active power 4

The so-called signed means that the highest bit of 2 bytes or 4 bytes is the sign bit, for

example, 0xFFFF will be recognized as -1. Keeping 2 decimal places means that after the data

is converted as an integer, the decimal point moves from the rightmost to the left2 digits.

2.3. DEVICE CONFIGURATION

We configure the device as a client.

Use the serial port tool to monitor a TCP server on port 1883 of the local computer.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

5 / 36 www.waveshare.com

Figure 1 Socket simulated server receiving data

Use ZLVircom to configure the device.

Figure 2 Device configuration

Click Modify configuration to connect the device to the SocketDlgTest tool. Enter device

editing again dialog box. Click the "Firmware and Configuration" button.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

6 / 36 www.waveshare.com

Figure 3 Download interface

First click "Web Directory Download" to enter the configuration download mode. Then

select a new empty directory, such as the MQTTHTTPD directory. To prevent the previous

design from remaining, please click the "Clear All" button first, so that the previous design

content can be cleared. The design file will be saved in this directory and can be downloaded

to the device by clicking the "download" button later.

Click the "JSON Configuration" button.

Figure 4 JSON configuration main interface

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

7 / 36 www.waveshare.com

The parameters here are as follows:

1. Server upload time: The default JSON data is sent to the server every time. The server is

the destination IP set in the device configuration interface just now, and the unit is

milliseconds.

2. Add/View: After clicking, you can design every JSON node, or you can view the currently

designed content.

3. Delete all: Delete all Modbus registers designed by the "Add/View" button to facilitate the

restart of the design.

4. Save JSON settings: After the design is completed, only click this button to save the data

to the download directory just now, and then download it to the inside of the device.

Now click the "Add/View" button. For the first row of the previous Modbus table:

Register

address

Parameter name Byte

length

Remarks

0 Current total active

energy

4 Unsigned,keep 2 decimal

places

The corresponding configuration is as follows:

Figure 5 Register settings

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

8 / 36 www.waveshare.com

The parameters here are as follows:

1. The figure below shows the first JSON keyword: "1." here means the first few JSON

keywords of the current design interface, if the second one is "2.", if it is a node nested

under the second JSON That is "2.1", and so on.

2. Already added: If it is checked, it means it has been added. When viewing the configured

information, a check will appear, indicating that it is in the editing state. If there is an

unchecked one, it is in the added state.

3. Corresponding JSON keyword: the name of this JSON node.

4. Data source: select the source of JSON data

a) Modbus RTU: For example, in the form of CurrentW: 123.45, it means that the data

comes from a certain Modbus RTU table and is collected through the serial port. The left

half of the figure is related to the design of Modbus RTU parameters.

b) Fixed string: For example, in the form of DevName: "MyDev", enter MyDev in the fixed

string on the right, and the JSON name is DevName, so that a fixed string of JSON nodes

can be generated.

c) Device ID: If the JSON node name is DevID, the string of the sent node is DevID:

"285301020304", where "285301020304" is the MAC address or unique number of the

device.

d) Current time: If the JSON node name is ColletTime, the uploaded string is ColletTime:

"2019-05-13 22:23:31". The time is the time obtained by the system through the NTP

protocol.

e) Embedding JSON: If the node name is Alarm, the format of its upload has

Alarm: {temp1: "25.1", temp2: "26.2"}, that is, the content of Alarm is still a JSON

collection

5. Modbus related settings

a) Slave address: Modbus table address.

b) Modbus function code: currently supports 03 and 04 function codes.

c) Register address: the corresponding 0 here.

d) Data length: This corresponds to 4 bytes.

e) Data format: This corresponds to an unsigned integer.

f) Keep the decimal point: 2 digits are reserved here.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

9 / 36 www.waveshare.com

g) Increase the unit after the data: For example, when "CurrentW": 25.6W, the W behind

25.6 is the large unit to increase. Write "W" into this box.

h) Add quotation marks to the data: if checked, change "CurrentW": 25.6W to "CurrentW":

"25.6W" form.

i) Serial port polling time: here is set to 100ms. Refers to the polling of this register and

the next register instead of the polling interval for this command.

6. Fixed string: When the source is selected as a fixed string, you can enter the content of

the string.

7. Button

a) Nested JSON: When the current node source is selected as "nested JSON" type, you

must click this button to enter the design of nested JSON, if it is currently "2.", it will enter

the design of the node "2.1" .

b) Return to the previous level: If the current node is nested at the Nth level, clicking this

button will return to the design of the N-1 level node and stay on a new node at the N-1

level.

c) Design the next one: Click to enter the next local JSON node. If there is no next node in

the previous design, the "Already Added" checkbox will be cancelled, indicating that it is a

new node.

d) Save the design: After completing the design, click "Save Design" at the last design node

interface. Then return to the main interface, and then click "Save JSON Configuration".

e) Cancel design: cancel all current designs, if you are viewing the design content, you can

click this button to exit

Here, click the "Design Next" button to continue designing other registers in the

Modbus table. After all the registers in the form are designed, click "Finish Design", and then

click "Save JSON Configuration" to exit. Then click the "download button" on the "download

web" page

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

10 / 36 www.waveshare.com

Figure 6 Download

Then click "OK" and the device will automatically restart. If there is no restart, please

restart manually.

2.4. CREATE A NEW MODBUS ANALOG METER

Here, Modbus Slave is used to simulate a meter

Figure 7 Test results

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

11 / 36 www.waveshare.com

The test result shows that the meter simulated by the Modbus slave tool can be

collected by the gateway. at the same time,it can be sent to the server software simulated

by SocketDlgTest according to the json format regularly.

3. JSON complex example

3.1. ENABLE NTP

In order to be able to use JSON with time, you must first enable the NTP function of the

device. The NTP function can get the current time through the network.

In the web download directory, which is the directory where httpd.txt is located, create

an empty txt file with the content as down:

[NTP]

NTP_SERVER1=a1.a2.a3.a4

NTP_SERVER2=b1.b2.b3.b4

NTP_SERVER3=c1.c2.c3.c4

RE_ARUIRE_TIME=0

NTP_SERVER1, NTP_SERVER2, NTP_SERVER3 are the IP of the NTP time server

Address, fill in according to the actual situation. Up to 3 servers can be set up, but you must

NTP_SERVER1 starts to write, if there is only one, write NTP_SERVER1, if there are only two,

write

NTP_SERVER1 and NTP_SERVER2.

After saving, ntp.txt and other files are downloaded to the inside of the device.

3.2. NESTED JSON DESIGN

Suppose we need to design the following JSON:

{"header":{"DEVID":"285301020304",

"time":" 2019-05-13 22:23:31"},

"data": {"id":"MyData123456",

"alarm":{"alarm1":123.4C

"alarm2":567.8C

}

},

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

12 / 36 www.waveshare.com

"Value":2345

}

The design steps are as follows:

1. The keyword in step 1. is "header", then select "JSON Nesting" as the source, and then

click the "Design Nested JSON" button.

2. Enter step 1.1, here design "DEVID": "285301020304", enter the keyword as DEVID, select

"Device ID" as the source, and click "Design next".

3. Enter step 1.2, here design "time": "2019-05-13 22:23:31", enter the key word as time,

select "current time" as the source, it should be noted that although the first level has

been designed Finished, but you still need to click "Design Next". After entering step 1.3,

click "Return to the previous level". This 1.3 step will be automatically abandoned.

4. Go to step 2. Enter the keyword data here, then select "JSON Nesting" as the source, and

then click the "Design Nested JSON" button.

5. Go to step 2.1, here design "id": "MyData123456", enter the keyword id, select the source

as a fixed string, then enter "MyData123456" in the fixed string box, and click "Design

next".

6. Go to step 2.2, enter the keyword alarm here, select "JSON Nesting" as the source, and

then click the "Design Nested JSON" button.

7. Enter step 2.2.1 to design "alarm1": 123.4C, this is a Modbus data with unit, the function

code is 3, the register is 0, then the design is shown in the figure:

Figure 8 Register design

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

13 / 36 www.waveshare.com

Then click "Design Next".

8. Go to step 2.2.2 to design "alarm2": The method is similar to alarm1, and the register

address is set to 1. Similarly, first click "Design Next", and then in the "2.2.3" step, click

"Return to the previous level".

9. Enter section 2.3, because 2.3 does not need to be designed, click "return to previous

level" at this time. Because there is still "value": 2345 is not designed, otherwise you can

directly "save the design".

10. Enter section 3. Here, design a Modbus data with the keyword value. Now click "Save

Design". Note: If the "value": 2345 does not exist here, then you need to click save directly

in the previous step. If you have accidentally clicked "return to the previous level" to enter

the third here, but the third does not exist, you can use it at this time The new version of

zlvircom "Delete and go to the next" to delete this useless node.

11. Back to the JSON to Modbus RTU setting interface, click "Save JSON Settings". Then

download it to the inside of the device and use it.

When the TCP connection is established, the data is received:

{"header":{"DEVID":"2850002F0EEC","time":"2019-05-13

23:41:26"},"data":{"id":"MyData123456","alarm":{"alarm1": 123.4C," alarm2":"

567.8C"}},"value": 2345}

Note that if you are editing the current JSON design, you need to select the correct

destination on the web download interface first.In addition, click the button in accordance

with the design-time steps to fully browse all nodes.

3.3. READ THE BITS OF THE BYTE REGISTER

Sometimes the data read by Modbus using the 03/04 function code will also use bits to

express specific meanings. For example, the register of the 00 00 address read by the 03

function code is 0x8183, then bit16, bit9, bit8, bit2 and bit1 are included. All are 1. These

bits have different meanings. When they are 1, they indicate different alarms. So you also

need to upload with different json keywords. This function requires 2003 firmware 1.579

and above, and is designed with zlvircom 5.13 and above. Methods as below:

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

14 / 36 www.waveshare.com

Figure 9 Byte register

The design method is basically the same as the previous method. The only thing to pay

attention to is that the data format is selected as "Boolean", and then where the Boolean

value is located, bit2 is the json variable in the 03 function code and the bit position in the 00

register. If the register value is 00 20, where 1 is in position 2, please note that you can set

the same Modbus station address, function code, and register for different json keywords.

Different variable contents can be obtained as long as the position of the Boolean value is

different. For example, we designed bit1, bit2, bit8, bit9, bit16, when the register content is

0x8183, we get the following json data return: {"bit1":1,"bit2":1,"bit8":1,"bit9" :1,"bit16":1}

3.4. 01 AND 02 FUNCTION CODES

You can set the JSON node for the bit register of the 01/02 function code, but each

JSON node needs to set the register address once, so the number of bits read each time is

one bit. The difference with the bit of the byte register is: the bit of the byte register is still

read through the 03/04 function code, but only the value of one of the 2 bytes is taken; the

01/02 function code itself is read For bit selection, since only 1 bit is read at a time, the

position of the Boolean value is generally written with 1, if it is 1, it will display '1', otherwise

it will display '0'.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

15 / 36 www.waveshare.com

Figure 10 Byte register

When the Modbus function code is 01/02, the data length, data format, and the

number of reserved decimal places cannot be selected.

3.5. SHOW DESIGN RESULTS

Now click "Save JSON Design" to design and you can see the content of the designed

JSON format in the display box, which is convenient for overview of the design. At the same

time, there is an index for comparison when entering "Add/View".

Figure 11 shows the results

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

16 / 36 www.waveshare.com

3.6. EXCEL EDITING

Figure 12 Import and export CSV format

In order to facilitate editing, you can export the content of the design to CSV format,

then edit with EXCELL, then save it as CSV, and then import it.

However, CSV has formatting issues:

Figure 13 Data format error

At this time, you can save the CSV as XLS format for editing. After editing, save as CSV

format and import.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

17 / 36 www.waveshare.com

3.7. BRACKETS AND ARRAYS

The new version of ZLVircom supports JSON array design. Give a simple example:

{

"reqBody":

[

0,1

]

}

In this example, there is only one JSON object reqBody, its content is an array, the first

element of the array is data 0, and the second element is data 1. Here we treat the

bracketed array similarly to nested JSON, but this nested JSON does not require keyword

names and colons. The design steps are as follows:

Figure 14 Array object

Since reqBody itself is an object, not an array unit, the node type is selected as an

object

Data, not array data. Since its content is an array, according to the brackets are braces

The idea is that the data source of this reqBody is "nested JSON". Then click "Design Nested

JSON".

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

18 / 36 www.waveshare.com

Figure 15 Array content

Next, design the first content of the array because it is the content of the array. So the

node type is array data. The data source is Modbus RTU collection, fill in the relevant

Modbus registers and other parameters. Then click "Go to Next" to design the second

element of the array, and the method is similar. After designing the second element, since

there is no more design, click "Save all and exit". Go back to the previous interface and click

"Save JSON Settings", then download it. The data posted is: {"reqBody":[2,3]}.

Now look at a more complicated example:

{

"reqBody":

[

{

"workshop_id:"1008",

"machine_code":"XS114"

},

{

"workshop_id:"1008",

"machine_code":"XS116"

}

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

19 / 36 www.waveshare.com

]

}

The content of the array here is not a simple data value, it is a JSON itself.

Figure 16 Step 1

Here in 1.1, the previous example 1 is to select the node type as "array data", and then

directly design the data in Modbus format, but the data content here is a JSON object, so

you need to select the data source as "nested JSON", and then click "Design nested JSON".

Figure 17 Step 1.1

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

20 / 36 www.waveshare.com

Then design two object types in steps 1.1.1 and 1.1.2, Modbus source data

workshop_id and fixed string source data machine_code.

Figure 18 Step 1.1.1

Figure 19 Step 1.1.2

Note here that you need to click "Go to the next", in the empty content node (that is,

1.1.3), click "Return to the previous level" to enter "1.2". 1.1.3 here is actually a non-existent

node.

"1.2" is also an array type, and the data source is nested JSON, please refer to step 1.1.

After that until "1.2.2", click "Save all and exit" directly.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

21 / 36 www.waveshare.com

The format of the last uploaded data is as follows, among which the workshop_id is

read from the Modbus register.

Figure 21 Step 1.1.3

3.8. CANNOT READ AND CLEAR

When a register cannot be read, a data value of 0 can be used to indicate that the data

has not been read.

Figure 22 Clear data

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

22 / 36 www.waveshare.com

Here we design a test JSON, pay attention to check the RS485 device offline data

clearing. When the register can be read, the data sent is {"test":123}, where 123 is the actual

register content. Once the device is offline or the data cannot be read, it will be uploaded as

{"test":0}. This way can avoid saying that the data still exists after the device is offline, which

can give people a misunderstanding.

3.9. DEVICE OFFLINE

If the data cannot be read, the data is 0. In some cases, it is impossible to judge that the

device is offline. For example, if the data content itself is 0, it is impossible to judge whether

the device is offline or the data is 0. In addition, sometimes the device has multiple registers

that need to be read, so a separate JSON keyword should be used, such as {online1:0} as 0 or

1 to indicate that the device is online. For this, you can design online1 as follows. First design

all the registers, and then add a JSON node:

Figure 23 Device online

The name here is online1, which can be taken at will. The register number can select an

arbitrary existing register. The most important thing is to check the Rs485 device offline data

clearing and if the device is online, regardless of the register content, it is forcibly set to 1. In

this way, even if the data read is 0, it will be 1 as long as the data read. That is, online1 has

only two data, 0 and 1. 1 means online, 0 means offline.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

23 / 36 www.waveshare.com

3.10. PAN AND ZOOM

Pan and zoom are the data content read by Modbus register minus a 2-byte integer,

and then divide by a single-precision floating-point number to get a single-precision

floating-point number, as shown in the figure below:

Figure 24 Pan and zoom

As shown in the figure, design a JSON keyword test, read station address 1, 1 register (2

bytes) of register 0, then subtract 1 and divide by 123.123. This is equivalent to shifting the

data read by the register down by 2 units, and then shrinking it by 123.123 times. When the

register content is 124, the uploaded data is {"test":0.99"}, (124-1)/123.123=0.99.

Note that this only supports Modbus RTU data source, the data length is 2, 03 or 04

function code , Floating point output. The number of decimal points can be selected from 0

to 4. The most important thing is to check the option to enable pan and zoom. Enter an

integer in the minus integer, the range is -32768 to 32767, divided by the float Enter a

floating point number in Points.

3.11. DATA CHANGE REPORTING

In some cases, in order to reduce data traffic, it is not necessary to upload data

frequently. Only need to upload the collected data when there is a change. At present,

ZLVircom version 5.30 and above can realize this function with 1.589 firmware. The actual

method is to set the upload time period to be very large, the maximum is 8.8 hours. From

the traffic point of view, this is equivalent to not uploading data at this time, but if you check

the data change upload, every time a node's data changes, it will trigger the upload of all

data. The data change here can be configured for each JSON node, and can be used to

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

24 / 36 www.waveshare.com

trigger upload after the device is offline (at this time, the data content changes so it can also

be uploaded). As a typical case, we collect DI status and upload it when it changes.

Figure 25 Data change upload

Here you need to check the data change to upload data. If the RS485 device is offline

reset, it will trigger the report when the device is offline. However, this offline report is

limited to the original data value of 1. If any offline report is required, a separate JSON node

needs to be added. Refer to the introduction in the "Device Offline" section.

In addition, add another node of alarm2 with address 11, but uncheck the data change

upload.

Normal data is uploaded once in 10 seconds. If the bit of address 10 changes (alarm) at

this time, the report will be triggered immediately (actually, it takes several hundred

milliseconds for the data to change due to the rotation, and the upload will be slightly

delayed). But if the bit of address 11 changes, the report will not be triggered because the

change report option is not checked.

When the alarm is 1, the report will be triggered immediately if the device is offline.

3.12. JSON ISSUANCE

JSON issuance realizes the matching of a single JSON keyword and the output of the

corresponding Modubs command. This does not require that the issued string matches

exactly, but as long as there are corresponding JSON keywords and related data in the issued

data.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

25 / 36 www.waveshare.com

Figure 26 Sending JSON to Modbus

Click the "JSON Download" button of "JSON to Modbus RTU Settings" to open the

above dialog box. It is divided into three categories: Modbus setting coil instructions,

Modbus write register instructions, and transparent transmission instructions.

Modbus setting coil command: It is the 05 command, where you can specify the slave

address, register address and set it to On and Off. In terms of data, if it corresponds to the

JSON of "alarm":"1", you need to write the complete ""alarm":"1"" into the box, including

quotation marks and colons.

Modbus register write instruction: it is the 06 instruction, currently supports 2 to 4

bytes, that is, 1 and 2 register writes. The data must be integer (without decimal point). Here

you can set the sending station address, register address, and the number of bytes. If it is 4

bytes, you can select the big-endian format or the little-endian format. For data convenience,

if the corresponding method is "temp":"1234", you need to enter ""temp":"" in the input

box. Here, you need to enter the characters before 1234, including quotation marks.

For the transparent transmission method, the issued command will be transparently

transmitted to the serial port without analysis. Once the pass-through party is selected

In this way, all JSON delivery and parsing will be disabled.

3.13. 645 TIMING OF THE AGREEMENT

The time service of the 645 protocol is 68 99 99 99 99 99 99 68 08 06 SS MM HH DD

MM YY CS 16, where SS MM HH DDMM YY are seconds, minutes, hours, days, months, and

years.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

26 / 36 www.waveshare.com

Cooperate with ZLVircom5.32 and 4.99 (ZLSN7044)/5.92 (ZLSN2043) firmware to realize

timing configuration. Copy the following character string "68 99 99 99 99 99 99 68 08 06

TIME[25...30] CRC[3] 16" to the serial port for simultaneous output command when sending;

copy "TIME[0]" to the output condition .

Note that you must set at least one JSON data to be sent in order to implement timing

and delivery. In addition, the time service can only be done after the TCP connection is

established, because the time service occurs when the network is sent. If the TCP is not

established, it will not be sent, and there is no time service.

Figure 27 645 timing configuration

The "TIME[0]" here is optional. If it is filled in, the time service will be sent after the

device obtains the effective time. If you do not fill in, the time service will be sent under any

circumstances. If the time service is incorrect, it will cause problems.

4. JSON TO MODBUS RTU

JSON to Modbus RTU supports 05/06/16 command. If you need to use the 15 command

to set multiple coils, please use the 05 command multiple times.

According to the length of the number of bytes, the system will automatically select the

06 or 16 command to send. Here are examples of setting coils and setting registers.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

27 / 36 www.waveshare.com

If you receive {alert:"on"} JSON data, you need to use the 05 command to set the

station address 02 and the coil starting with register 03. Then in: JSON to Modbus interface,

click "JSON Delivery"

Figure 28 Enter JSON to send

The configuration interface is as follows: pay attention to the alert: "on setting that

needs to be written.

Figure 29 Configure coil

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

28 / 36 www.waveshare.com

Click "Next" to add another delivery conversion, otherwise click "Save all and exit".

After returning to the main interface, click "Save JSON Settings", and then click "Return".

Then pay attention to click "Download" on the download interface. This completes the

configuration.

If {power:"12345"} is sent now, the power value 12345 needs to be set to station

address 2 and register 3. The settings are as follows:

Figure 30 JSON setting register

Note that the keyword here only needs to enter power:", and you do not need to enter

the following 12345, because this value is changed, but you need to enter a colon. If the

quotation marks are in the issued data, you also need to enter quotation marks.

5. MQTT

MQTT can be used alone or in conjunction with the JSON function. When used alone,

the MQTT function transparently transmits serial port data to the MQTT server. That is, the

data received by the serial port is used as the load of MQTT. At the same time, the payload

of MQTT will be output from the serial port in a transparent way. Realize serial port to

MQTT.

5.1. DEVICE CONFIGURATION

First search for the device, then click Edit Device:

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

29 / 36 www.waveshare.com

Figure 31 MQTT configuration 1

Click "Firmware and Configuration", the configuration download and design dialog box

will pop up:

Figure 32 MQTT configuration 2

Here select "Web Directory Download", and then select an empty directory, such as the

MQTTHTTPD directory, and then click "Clear All" to clear the previous design (note that if the

previous design was designed according to JSON, do not clear all, otherwise the previous

design will be cleared. JSON design). Then click MQTT configuration.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

30 / 36 www.waveshare.com

Figure 33 MQTT configuration 3

The configuration instructions here are as follows:

1 Server domain name or IP: here is the IP of the MQTT server, the maximum length is 30

characters.

2 Username: is the username of the MQTT server.

3 Password: is the login password of this user.

4 Client ID: It is the client ID of MQTT.

5 Subscribe to the topic: It is the topic subscribed by this device. When other devices

publish this topic, the server will send it to this device. If you are only publishing, generally

you do not need to fill in this field.

6 Publish topic: The topic of the data sent to the server when the device serial port is

converted to MQTT.

7 MQTT advanced parameters: used to configure advanced parameters.

8 Save MQTT settings: After designing, click this button to save, and then click the

"download button" in the web page download directory to download.

Now click "MQTT advanced parameters" (generally no need to configure advanced

parameters):

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

31 / 36 www.waveshare.com

Figure 34 MQTT advanced parameter configuration

Described as follows:

1 Protocol version: The current mainstream is version 3.1.1, if you need to choose version

3.1, please choose here.

2 Keep-alive time: The heartbeat time of MQTT, the minimum is 10 seconds, and the

default is 60 seconds.

3 Server clear subscription: Whether the server clears the subscription information after

the client is disconnected.

4 Whether to enable the last wish: whether there is a last wish.

5 Last wish theme: Last wish theme.

6 Last will information: information about the last will.

7 Whether to save the last wish: whether the server needs to keep the last wish message

sent to the client when the client is abnormally offline.

8 Last wish quality: the delivery quality level of the last wish message sent by the server.

9 Subscription quality: The delivery quality level of the subscription. In some cases, it

needs to be set to 0 to prevent disconnection caused by retransmission.

10 Publish quality: The delivery quality level of the message published by the client. In

some cases, it needs to be set to 0 to prevent disconnection caused by retransmission.

11 Whether to save the publication: whether the server keeps the last message (if there is

a new client subscription, it will be sent to the client)

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

32 / 36 www.waveshare.com

We will not modify the advanced parameters here. Click "Save MQTT Settings" directly.

Then click "download":

Figure 35 Download

After downloading, click OK, and you will return to the device management dialog box.

You can see that the device's destination IP, working mode, and destination port have been

automatically modified to the MQTT settings:

Figure 36 Automatic modification

If there is no automatic modification, you need to set the destination IP, working mode,

and destination port in the device edit dialog box. Then click "Edit Settings".

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

33 / 36 www.waveshare.com

Figure 37 IP configuration

This configuration is complete.

5.2. DATA TEST

After the connection is completed, the LINK light (usually the blue light in the middle) of

the device turns on. It indicates that the device is normally connected to the MQTT server.

Now open the serial port tool:

Figure 38 Serial port sending and receiving

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

34 / 36 www.waveshare.com

Use the same baud rate as the device to open the serial port and send data "dev send",

and then see the returned data "dev send" in the receiving window. This is because we

publish the dev send message to the MQTT server under the subject of zlansub. But at the

same time our device is also subscribed to the topic zlansub, so the server will immediately

send us a subscription message, and the content of the subscription message is dev send.

This information is sent and downloaded as the MQTT payload, and is output from the serial

port through transparent transmission.

If other devices publish information, this device can also receive the data.

Generally speaking, users can directly transparently transmit serial port commands

(such as Modbus RTU) commands to the MQTT server. In addition, you can also use the

JSON function, using automatic Modbus RTU format collection, and regular JSON format

uploading. In addition, you can also find Shanghai ZLAN to customize some non-standard

instruments and host computer protocol formats.

6. MQTT+JSON TO MODBUS RTU

Combining the above JSON and MQTT can achieve the following functions:

1. The MQTT-based protocol is used to establish a connection with the server, and data

communication is carried out in the form of subscription and publication.

2. Support independent design and automatic collection of Modbus RTU registers.

3. Support the conversion of specific Modbus register content into JSON format and send it

regularly and actively.

4. Support adding device ID to JSON format to facilitate cloud identification of devices.

If you need MQTT+JSON to Modbus RTU function, you can design MQTT and JSON

separately, in no particular order. Do not click the "Clear Design" button after designing one

type. After the two designs are finished, click the "Download" button together to download

the contents of the device.

Generally, you can manually restart the device after downloading to load the settings.

7. HTTP POST/GET+JSON

In addition to MQTT, the host computer protocol can also choose HTTP protocol, and

upload data through POST and GET instructions. Let's take the POST command as an

example to introduce.

If you need to support the POST/GET+JSON function, choose the ZLVircom

configuration tool to select version 5.17 and above; if you need to support POST command,

the 2003 firmware needs to be version 5.81 and above (only

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

35 / 36 www.waveshare.com

If you support GET, you can use the ordinary version 2003 firmware that supports

JSON).

Figure 39 POST+JSON

ZLVircom version 5.17 adds two options in the JOSN to Modbus RTU settings, as shown

in the figure:

1. JSON upper layer protocol: If it is no protocol or MQTT protocol, please select the first

item: "NONE/MQTT". If it is HTTP POST, please select the second item "HTTP POST", if it is

HTTP GET, please select the third item "HTTP GET".

2. POST/GET URL: When choosing POST or GET, you must fill in the URL. For example, if the

URL is http://sacom/wri/v2, remove the http:// in front and enter sacom/wri/v2 directly .

Other JSON structure design methods are the same as the methods introduced before.

After clicking the "Save JSON Settings" button, if POST/GET is selected, HTTP header format

information will be added in front of the JSON data to support the HTTP transmission

protocol.

http://www.waveshare.com/wiki

485 TO ETH (B) User Manual

36 / 36 www.waveshare.com

This POST/GET design method is simple and practical, and it can simply and quickly

realize the transmission of Modbus RTU and other instrument data to the server by means

of HTTP POST/GET+JSON.

http://www.waveshare.com/wiki

	1.OVERVIEW
	2. JSON SIMPLE EXAMPLE
	2.1. MODBUS RTU TO JSON
	2.2. MODBUS TABLE
	2.3. DEVICE CONFIGURATION
	2.4. CREATE A NEW MODBUS ANALOG METER

	3. JSON complex example
	3.1. ENABLE NTP
	3.2. NESTED JSON DESIGN
	3.3. READ THE BITS OF THE BYTE REGISTER
	3.4. 01 AND 02 FUNCTION CODES
	3.5. SHOW DESIGN RESULTS
	3.6. EXCEL EDITING
	3.7. BRACKETS AND ARRAYS
	3.8. CANNOT READ AND CLEAR
	3.9. DEVICE OFFLINE
	3.10. PAN AND ZOOM
	3.11. DATA CHANGE REPORTING
	3.12. JSON ISSUANCE
	3.13. 645 TIMING OF THE AGREEMENT

	4. JSON TO MODBUS RTU
	5. MQTT
	5.1. DEVICE CONFIGURATION
	5.2. DATA TEST

	6. MQTT+JSON TO MODBUS RTU
	7. HTTP POST/GET+JSON

