MG Chemicals UK Limited Version No: A-1.00 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date: 11/01/2019 Revision Date: 11/01/2019 L.REACH.GBR.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### 1.1. Product Identifier | Product name | 837-P | |-------------------------------|---------------------------------------| | Synonyms | SDS Code: 837-Pen; Related Part 837-P | | Other means of identification | Water Soluble Flux Pen | #### 1.2. Relevant identified uses of the substance or mixture and uses advised against | | • | |--------------------------|------------------------| | Relevant identified uses | Water soluble flux pen | | Uses advised against | Not Applicable | # 1.3. Details of the supplier of the safety data sheet | Registered company name | MG Chemicals UK Limited | MG Chemicals (Head office) | |-------------------------|--|--| | Address | Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United
Kingdom | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada | | Telephone | +(44) 1663 362888 | +(1) 800-201-8822 | | Fax | Not Available | +(1) 800-708-9888 | | Website | Not Available | www.mgchemicals.com | | Email | sales@mgchemicals.com | Info@mgchemicals.com | | | | | # 1.4. Emergency telephone number | Association / Organisation | CHEMTREC | Not Available | |-----------------------------------|-------------------|---------------| | Emergency telephone numbers | +(44) 870-8200418 | Not Available | | Other emergency telephone numbers | +(1) 703-527-3887 | Not Available | #### **SECTION 2 HAZARDS IDENTIFICATION** ## 2.1. Classification of the substance or mixture | Classification according to regulation (EC) No 1272/2008 [CLP] [1] | H225 - Flammable Liquid Category 2, H319 - Eye Irritation Category 2, H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects) | |--|---| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER # Hazard statement(s) | H225 | Highly flammable liquid and vapour. | |------|-------------------------------------| | H319 | Causes serious eye irritation. | | H336 | May cause drowsiness or dizziness. | # Supplementary statement(s) Not Applicable # Precautionary statement(s) Prevention P210 | | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | |--|--|--| |--|--|--| | P271 | Use only outdoors or in a well-ventilated area. | |------|---| | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P261 | Avoid breathing mist/vapours/spray. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | #### Precautionary statement(s) Response | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | |----------------|--| | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | # Precautionary statement(s) Disposal | P501 Dispose of contents/container in accordance with local regulations. | |--| |--| #### 2.3. Other hazards | isopropanol | Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply) | |-------------|---| # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ## 3.1.Substances See 'Composition on ingredients' in Section 3.2 #### 3.2.Mixtures | 3.Not Available
4.01-2119471987-18-XXXX
Legend: | | glycerol
by Chemwatch; 2 | irritation), Eye Irritation Category 2; H315, H335, H319 ^[1] atch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs | | | |---|-----------|-----------------------------|--|--|--| | 1.56-81-5
2.200-289-5 | 2 | alveerel | Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract | | | | 1.67-63-0
2.200-661-7
3.603-117-00-0
4.01-2119457558-25-XXXX | 75 | isopropanol | Flammable Liquid Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Eye Irritation Category 2; H225, H336, H319 [2] | | | | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classification according to regulation (EC) No 1272/2008 [CLP] | | | # **SECTION 4 FIRST AID MEASURES** # 4.1. Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | # 4.2 Most important symptoms and effects, both acute and delayed See Section 11 #### 4.3. Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to isopropanol: - Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access - Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion. - ▶ There are no antidotes. - Management is supportive. Treat hypotension with fluids followed by vasopressors. - Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes. - ▶ Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding. #### **SECTION 5 FIREFIGHTING MEASURES** #### 5.1. Extinguishing media - Alcohol stable foam. - Dry chemical powder. - ▶ BCF (where regulations permit) - Carbon dioxide. - Water spray or fog Large fires only. #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### 5.3. Advice for firefighters | ► Alert Fire Brigade and tell them location and nature of hazard. | |---| | May be violently or explosively reactive. | | ▶ Wear breathing apparatus plus protective gloves in the event of a fire. | # Fire Fighting - Prevent, by any means available, spillage from entering drains or water course. - ► Consider evacuation (or protect in place). - Fight fire from a safe distance, with
adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools. - Do not approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # ▶ Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. # **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### 6.1. Personal precautions, protective equipment and emergency procedures See section 8 # 6.2. Environmental precautions See section 12 #### 6.3. Methods and material for containment and cleaning up | 5.5. Wethous and material for | contaminent and cica | iiiig up | | | | | | |-------------------------------|---|--|---|---|------------|-----------|---------------| | Minor Spills | Remove all ignition sou Clean up all spills imme Avoid breathing vapour Control personal contact Contain and absorb sm Wipe up. Collect residues in a fla | ediately. s and contact with some contact with the substanuall quantities with | ce, by using protective equivermiculite or other absort | | | | | | | Chemical Class: alcohols a
For release onto land: reco | • • | ts listed in order of priority. | | | | | | | SORBENT
TYPE | RANK | APPLICATION | | COLLECTION | | LIMITATIONS | | | LAND SPILL - SMALL | | | | | | | | Major Spills | cross-linked polymer - particulate | | | 1 | shovel | shovel | R, W, SS | | | cross-linked polymer - pillow | | | 1 | throw | pitchfork | R, DGC, RT | | | sorbent clay - particulate | | | 2 | shovel | shovel | R,I, P | | | wood fiber - pillow | | | 3 | throw | pitchfork | R, P, DGC, RT | | | treated wood fiber - pillow | | | 3 | throw | pitchfork | DGC, RT | | | foamed glass - pillow | | | 4 | throw | pichfork | R, P, DGC, RT | #### LAND SPILL - MEDIUM | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | polypropylene - particulate | 2 | blower | skiploader | W, SS, DGC | | sorbent clay - particulate | 2 | blower | skiploader | R, I, W, P, DGC | | polypropylene - mat | 3 | throw | skiploader | DGC, RT | | expanded mineral - particulate | 3 | blower | skiploader | R, I, W, P, DGC | | polyurethane - mat | 4 | throw | skiploader | DGC, RT | #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - ▶ Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - ► Consider evacuation (or protect in place). - ▶ No smoking, naked lights or ignition sources. - ▶ Increase ventilation. - ▶ Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - ▶ Use only spark-free shovels and explosion proof equipment. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite - ▶ Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - ▶ If contamination of drains or waterways occurs, advise emergency services. #### 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** #### 7.1. Precautions for safe handling - ► Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights, heat or ignition sources. - When handling, DO NOT eat, drink or smoke - Vapour may ignite on pumping or pouring due to static electricity. - DO NOT use plastic but Safe handling - Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ► Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin ## Fire and explosion protection ## See section 5 - ► Store in original containers in approved flame-proof area. - ▶ No smoking, naked lights, heat or ignition sources. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - Other information - ► Keep containers securely sealed. ▶ Store away from incompatible materials in a cool, dry well ventilated area. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # 7.2. Conditions for safe storage, including any incompatibilities - ▶ DO NOT use aluminium or galvanised containers - Packing as supplied by manufacturer. Suitable container - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Isopropanol (syn: isopropyl alcohol, IPA): - forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation - reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium - reacts with phosphorus trichloride forming hydrogen chloride gas # reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane - attacks some plastics, rubber and coatings - reacts with metallic aluminium at high temperature - may generate electrostatic charges #### Alcohols - are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. - reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen - react with strong acids, strong caustics,
aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oii, triethylaluminium, triisobutylaluminium - ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat. #### 7.3. Specific end use(s) See section 1.2 #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### 8.1. Control parameters #### DERIVED NO EFFECT LEVEL (DNEL) Storage incompatibility Not Available #### PREDICTED NO EFFECT LEVEL (PNEC) Not Available #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |-------------------------------------|-------------|----------------|---------------------|----------------------|---------------|---------------| | UK Workplace Exposure Limits (WELs) | isopropanol | Propan-2-ol | 400 ppm / 999 mg/m3 | 1250 mg/m3 / 500 ppm | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | glycerol | Glycerol, mist | 10 mg/m3 | Not Available | Not Available | Not Available | ### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-------------|--|----------|-----------|-------------| | isopropanol | Isopropyl alcohol | 400 ppm | 2000 ppm | 12000 ppm | | glycerol | Glycerine (mist); (Glycerol; Glycerin) | 45 mg/m3 | 860 mg/m3 | 2,500 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |-------------|---------------|---------------| | isopropanol | 2,000 ppm | Not Available | | glycerol | Not Available | Not Available | #### MATERIAL DATA Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition) Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol # 8.2. Exposure controls # 8.2.1. Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### 8.2.2. Personal protection #### 0.2.2. Fersonal protection - ► Safety glasses with side shields. - ▶ Chemical goggles. #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NIZS 1336 or national equivalent] #### Skin protection Hands/feet protection #### See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ► Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Continued... | | Thinner gloves (down to 0.1 mm or less) may be required where
a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. | |------------------|---| | Body protection | See Other protection below | | Other protection | Overalls. PVC Apron. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. | #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the $\ computergenerated$ selection: 837-P Water Soluble Flux Pen | Material | СРІ | |------------------|-----| | NEOPREN | Α | | NITRIL | A | | PE/EVAL/P | A | | PV | В | | NAT+NEOPR+NITRIL | С | | NATURAL+NEOPREN | С | | NATURALRUBBE | С | | NATURALRUBBER | С | | NITRILE+PVC | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS | - | A-PAPR-AUS / Class
1 | | up to 50 x ES | - | A-AUS / Class 1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### 8.2.3. Environmental exposure controls See section 12 ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### 9.1. Information on basic physical and chemical properties | Appearance | Amber | | | |--|-------------------|---|---------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | 0.85 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 425 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | >81.8 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 12 | Taste | Not Available | | Evaporation rate | <1.5 BuAC = 1 | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 12 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 2 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 4.2 | Gas group | Not Available | |--------------------------|-----------------|-----------------------|---------------| | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 2.1 | VOC g/L | Not Available | #### 9.2. Other information Not Available #### **SECTION 10 STABILITY AND REACTIVITY** | 40.4 Parastivitus | Co | |--|--| | 10.1.Reactivity | See section 7.2 | | 10.2. Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | | SECTION 11 TOXICOLOGIC | AL INFORMATION | |--------------------------------
--| | 11.1. Information on toxicolog | gical effects | | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well. The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. | | Ingestion | Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. Within the homologous series of aliphatic alcohols, ancrotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohols writh 8 carbons are less toxic in those immediately preceding them in the series. 10-Carbon n-deoyl alcohol has low toxicity as do the solid fatty alcohols (e.g. laury), myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (laury) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 mil) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema. Primary alcohols are metabolised t | | | Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry | through wounds, lesions or abrasions. Skin Contact Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material | | Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511ipa | | | | |------------------------------|---|------------------------------|--|--| | Еуе | Evidence exists, or practical experience predicts, that the material may
cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye | | | | | Chronic | Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals. There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol. Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures. | | | | | 837-P Water Soluble Flux Pen | TOXICITY | IRRITATION | | | | | Not Available | Not Available | | | | | | 1 | | | | | TOXICITY | IRRITATION | | | | | demal (rat) LD50: =12800 mg/kg ^[2] | Eye (rabbit): 10 mg - model | | | | isopropanol | Inhalation (rat) LC50: 72.6 mg/l/4h ^[2] | Eye (rabbit): 100 mg - SEV | | | | | Oral (rat) LD50: =4396 mg/kg ^[2] | Eye (rabbit): 100mg/24hr-m | | | | | | Skin (rabbit): 500 mg - mild | | | | | TOWERTY | | IDDITATION | | | glycerol | TOXICITY | | IRRITATION Not Available | | | | Oral (rat) LD50: >10000 mg/kg ^[2] | | Not Available | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity adata extracted from RTECS - Register of Toxic Effect of chemical Substances | | facturer's SDS. Unless otherwise specified | | | | | | | | | ISOPROPANOL | The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | | | | | | Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. For glycerol: Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser. Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day | | | | #### For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. # 837-P Water Soluble Flux Pen & ISOPROPANOL Reproductive toxicity. A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. **Developmental toxicity:** The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, no has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: ★ - Data either not available or does not fill the criteria for classification — Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** # 12.1. Toxicity | | | | | | | | | 1 | |-------------------------------|-----------------------------|-----|--------------------|-------------------------------|-------------------------------|-------------
---------------|--------| | 837-P Water Soluble Flux Pen | ENDPOINT | | TEST DURATION (HR) | | SPECIES | VALUE | | SOURCE | | OJ7-1 Water Colubie Flux Feli | Not Available Not Available | | | Not Available | Not Avai | ilable | Not Available | | | | | | | | | | | | | | ENDPOINT | TES | ST DURATION (HR) | SPECIE | S | | VALUE | SOURCE | | | LC50 | 96 | | Fish | | | 9-640mg/L | 2 | | inangananal | EC50 | 48 | | Crustace | ea | | 12500mg/L | 5 | | isopropanol EC50 | 96 | | Algae or | Algae or other aquatic plants | | 993.232mg/L | 3 | | | | EC0 | 24 | | Crustacea | | 5-102mg/L | 2 | | | | NOEC | 576 | 0 | Fish | | | 0.02mg/L | 4 | | | | | | | | | | | | | ENDPOINT | TES | T DURATION (HR) | SPECIES | | | VALUE | SOURCE | | glycerol | LC50 | 96 | | Fish | | | >0.011-mg/L | 2 | | | EC50 | 96 | | Algae or o | Algae or other aquatic plants | | 77712.039mg/L | 3 | | | - | | | | | | | · | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data For isopropanol (IPA): log Kow:-0.16-0.28 Half-life (hr) air:33-84 Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97% ThOD: 2.4 BOD: >70% * [Akzo Nobel] #### Environmental Fate Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota. IPA is expected to volatilise slowly from water based on a calculated Henry's Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days) IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03. IPA has the potential to leach through the soil due to its low soil adsorption In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5×106 molecule/cm3 , which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 \times 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA # Ecotoxicity: IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1.400 to more than 10.000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms. Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures. #### **Toxicity to Plants** Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test. DO NOT discharge into sewer or waterway #### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------|---------------------------|--------------------------| | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | | glycerol | LOW | LOW | #### 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |-------------|----------------------| | isopropanol | LOW (LogKOW = 0.05) | | glycerol | LOW (LogKOW = -1.76) | ## 12.4. Mobility in soil | Ingredient | Mobility | |-------------|-------------------| | isopropanol | HIGH (KOC = 1.06) | | glycerol | HIGH (KOC = 1) | #### 12.5.Results of PBT and vPvB assessment | | P | В | Т | |-------------------------|----------------|----------------|----------------| | Relevant available data | Not Applicable | Not Applicable | Not Applicable | | PBT Criteria fulfilled? | Not Applicable | Not Applicable | Not Applicable | #### 12.6. Other adverse effects No data available #### **SECTION 13 DISPOSAL CONSIDERATIONS** # 13.1. Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - Product / Packaging disposal DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed # Waste treatment options Sewage disposal options Not Available Not Available # **SECTION 14 TRANSPORT INFORMATION** #### Labels Required Excepted Quantity Code E2 for all modes of transport. On air waybill, write "Dangerous Goods in Excepted Quantity" # Land transport (ADR) | 14.1. UN number | 1987 | | | |------------------------------------|--------------------------------|----------------------------|--| | 14.2. UN proper shipping name | Not Applicable | | | | 14.3. Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | 14.4. Packing group | II | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Hazard identification (Kemler) | 33 | | | | Classification code | F1 | | | | Hazard Label | 3 | | | | Special provisions | 274 601 640C; 274 601 640D | | | | Limited quantity | 1L | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1987 | | | |------------------------------------|--|---------|--| | 14.2. UN proper shipping name | Alcohols, n.o.s. * (contains isopropanol) | | | | 14.3. Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L | | | | 14.4. Packing group | П | | | | 14.5. Environmental hazard | Not Applicable | | | | | Special provisions | A3 A180 | | | | Cargo Only Packing Instructions | 364 | | | | Cargo Only Maximum Qty / Pack | 60 L | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | 353 | | | usei | Passenger and Cargo Maximum Qty / Pack | 5L | | | | Passenger and Cargo Limited Quantity Packing Instructions | Y341 | | | | Passenger and Cargo Limited Maximum Qty / Pack | 1L | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1987 | | |------------------------------------|--|--| | 14.2. UN proper shipping name | ALCOHOLS, N.O.S. (contains isopropanol) | | | 14.3. Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | 14.4. Packing group | | | | 14.5. Environmental hazard | Not Applicable | | | 14.6. Special precautions for user | EMS Number F-E , S-D Special provisions 274 Limited Quantities 1 L | | # Inland waterways transport (ADN) | 14.1. UN number | 1987 | |------------------------------------
--| | 14.2. UN proper shipping name | ALCOHOLS, N.O.S. (vapour pressure at 50 °C more than 110 kPa) (contains isopropanol); ALCOHOLS, N.O.S. (vapour pressure at 50 °C not more than 110 kPa) (contains isopropanol) | | 14.3. Transport hazard class(es) | 3 Not Applicable | | 14.4. Packing group | | | 14.5. Environmental hazard | Not Applicable | | 14.6. Special precautions for user | Classification code F1 | #### 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture #### ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles European Customs Inventory of Chemical Substances ECICS (English) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs UK Workplace Exposure Limits (WELs) #### GLYCEROL(56-81-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS European Customs Inventory of Chemical Substances ECICS (English) European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) UK Workplace Exposure Limits (WELs) This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs. #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. #### **National Inventory Status** | National Inventory | Status | |-------------------------------|--| | Australia - AICS | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (glycerol; isopropanol) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Legend: | Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** | Revision Date | 11/01/2019 | |---------------|------------| | Initial Date | 29/07/2015 | ## Full text Risk and Hazard codes | H315 | Causes skin irritation. | |------|-----------------------------------| | H335 | May cause respiratory irritation. | #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |----------|---| | glycerol | 56-81-5, 29796-42-7, 30049-52-6, 37228-54-9, 75398-78-6, 78630-16-7, 8013-25-0, 8043-29-6, 1400594-62-8 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices # **Definitions and abbreviations** $\begin{array}{ll} {\sf PC-TWA: Permissible Concentration-Time Weighted \ Average} \\ {\sf PC-STEL: Permissible Concentration-Short Term \ Exposure \ Limit} \end{array}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index #### Reason for Change A-1.00 - Format changes to section 1, 2, 14, 15, and 16 as well as starting a new versioning system.