01E 18018

3875081 G E SOLID STATE

Unijunction Transistors and Switches __

T 25-09

2N6027, 2N6028, GES6027, GES6028

Programmable Unijunction Transistor

TO-92

- Planar Passivated Structure
- Low Leakage Current
- Low Peak Point Current Low Forward Voltage
- Fast, High Energy Trigger Pulse
- Programmable n
- Programmable R_{BB}
- Programmable I_P
- Programmable I_V
 Low Cost

Applications:

- SCR Trigger
- Pulse and Timing Circuits
- Oscillators
- Sensing CircuitsSweep Circuits

The GE/RCA 2N6027, 2N6028 and GES6027, GES6028 PUTS are PNP three-terminal planar passivated devices available in the standard plastic TO-98 and TO-92 packages. The terminals are designated as anode, anode gate and

TO-98

The devices have been characterized as Programmable Uni-Junction Translators (PUT), offering many advantages over conventional unijunction translators. The designer can select R₁ and R₂ to program unijunction characteristics such as η, RBB, Ip and Iv to meet his particular needs.

PUTs are specifically characterized for long interval timers and other applications requiring low leakage and low peak point current. PUTs similar types have been characterized for general use wheren the low peak point current of the 2N6028 and others is not essential. Applications of the PUT include timers, high gain phase control circuits and relaxation oscillators

Operation of the PUT as a unijunction is easily understood. Figure 1(a) shows a basic unijunction circuit. Figure 2(a) shows identically the same circuit except that the unijunction transistor is replaced by the PUT plus resistors R₁ and R₂. Comparing the equivalent circuits of Figure 1(b) and 2(b), it is seen that both circuits have a diode connected to a voltage divider. When this diode becomes forward biased in the unijunction transistor, R_1 becomes strongly modulated to a lower resistance value. This generates a negative resistance characteristic between the emitter E and base one (B_1 . For the PUT, the resistors R_1 and R_2 control the voltage at which the diode (anode to gate) becomes forward biased. After the diode conducts, the regeneration inherent in a PNPN device causes the PUT to switch on. This generates a negative resistance characteristic from anode to cathode (Figure 2(b) simulating the modulation of R₁ for a conventional unijunction

Resistors R_{B2} and R_{B1} (Figure 1(a)) are generally unnecesresistors n_{B1} (righter n_{B1}) are generally unnecessary when the PUT replaces a conventional UJT. This is illustrated in Figure 2(c). Resistor R_{B1} is often used to bypass the interbase current of the unijunction which would otherwise trigger the SCR. Since R_{1} in the case of the PUT, can be returned directly to ground there is not current to bypass at the SCR gate. Resistor $\rm R_{\rm B2}$ is used for temperature compensation and for limiting the dissipation in the UJT during capacitor discharge. Since R_2 (Figure 2) is *not* modulated, R_{B2} can be absorbed into it.

These types are supplied in JEDEC TO-92 package (GES6027, GES6028) and in JEDEC TO-98 package (2N6027, 2N6028).

Devices in TO-98 package are supplied with and without seating flange (see Dimensional Outline).

3875081 G E SOLID STATE

01E 18019

_ Unijunction Transistors and Switches

2N6027, 2N6028, GES6027, GES6028

01

T.25.09

MAXIMUM RATINGS, Absolute-Maximum Values:

GATE-CATHODE FORWARD VOLTAGE*	+ 100V
GATE-CATHODE REVERSE VOLTAGE*	~ 100V
GATE-ANODE REVERSE VOLTAGE*	
ANODE-CATHODE VOLTAGE*	± 100V
DC ANODE CURRENT* (Note 1)	150 mA
PEAK ANODE, RECURRENT FORWARD	
(100µs pulse width, 1% duty cycle)	1 A
(20µs pulse width, 1% duty cycle)*	2 A
PEAK ANODE, NON-RECURRENT FORWARD (10µsec)	
GATE CURRENT*	± 20 mA
CAPACITIVE DISCHARGE ENERGY (Note 2)	250µJ
DISSIPATION (Total Average Power)(Note 1)	
OPERATING AMBIENT TEMPERATURE RANGE (Note 1)	

^{*} In accordance with JEDEC registration data format. NOTES:

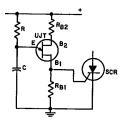
1. Derate currents and powers 1%/°C above 25°C.

2. E = 1/2 CV2 capacitor discharge energy with no current limiting

ELECTRICAL CHARACTERISTICS, At Ambient Temperature (T_A) = 25°C Unless Otherwise Specified

CHARACTERISTICS	SYMBOL	LIMITS				
		2N6027 GES6027		2N6028 GES6028		UNITS
		MIN.	MAX.	MIN.	MAX	1
Forward Voltage* (I _F = 50mA)	V _F	-	1.5	_	1.5	
Pulse Output Voltage*	Vo	6	_	. 6	-	v
Offset Voltage* (V _S = 10 V) R _G = MQ	V _T	0.2	1.6	0.2	1.6	
R _G = 10 kΩ		0.2	0.6	0.2	0.6	
Peak Current* (V _S = 10 V) R _G = 1 MΩ	l _P	_	2	_	0.15	μΑ
R _G = 10kQ			5	—	1	
Valley Current* (V _S = 10V) R _G = 1 MΩ	lv	-	50	_	25	
R _G = 10 kΩ		70	_	25	_	
R _G = 200 Ω		1.5	_	1	_	mA
Anode Gate-Anode Leakage Current (V _S = 40 V)* T = 25°C	IGAO	1 _	10	_	10	nA
T = 75°C		! -	100		100	
Gate to Cathode Leakage Current V _S = 40 V, Anode-cathode short	l _{GKS}	_	100	_	100	
Pulse Voltage Rate of Rise	t,		80	-	80	ns

^{*}In accordance with JEDEC registration data format.

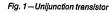

3875081 G E SOLID STATE

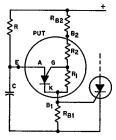
01E 18020

Unijunction Transistors and Switches

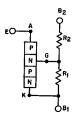
T.25.09

2N6027, 2N6028, GES6027, GES6028

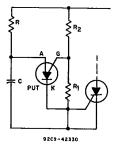

Typical circuit


(B)

Unijunction transistor equivalent circuit (b)


9205-42329

Negative resistance characteristic (c)



Programmable unijunction transistor replacing unijunction transistor in typical circuit, Fig. 1, a.

Programmable unijunction transistor equivalent circuit

Simplified, typical circuit, Fig. 1, a utilizing programmable unijunction transistor. (c)

Fig. 2—Programmable unijunction transistor equivalent of unijunction

3875081 G E SOLID STATE

01E 18021 D

Unijunction Transistors and Switches

2N6027, 2N6028, GES6027, GES6028

T.25.09

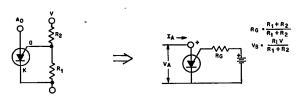


Fig. 3—Offset voltage, peak current, and voltage current measurement circuits and waveform.

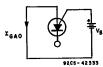


Fig. 4—Anode gate-anode leakage current measurement circuit.

 $\textit{Fig.} \ 5-\textit{Gate to cathode leakage current measurement circuit.}$

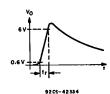


Fig. 6 — Pulse output voltage and pulse voltage rate-of-rise measurement circuit and waveform.

Unijunction Transistors and Switches _

T'25-09

2N6027, 2N6028, GES6027, GES6028

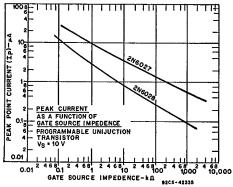


Fig. 7-Typical peak point current characteristics.

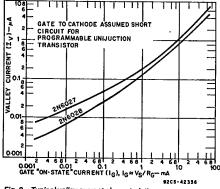


Fig. 8 -- Typical valley current characteristics.

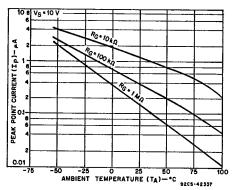


Fig. 9 -- Typical peak point current characteristics.

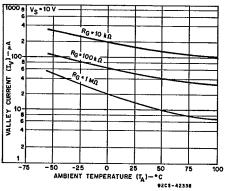


Fig. 10 - Typical valley current characteristics.

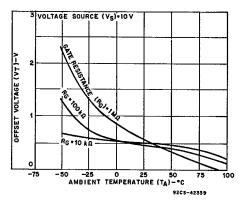


Fig. 11-Typical offset voltage characteristics.

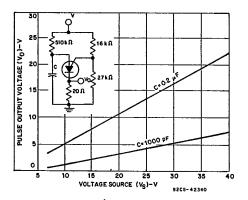
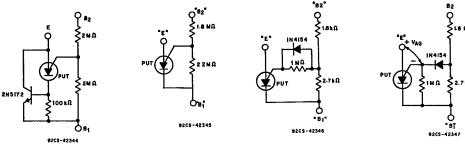


Fig. 12-Typical pulse voltage characteristics.


01E 18023 [

Unijunction Transistors and Switches

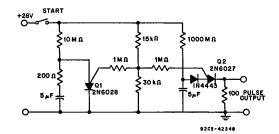
2N6027, 2N6028, GES6027, GES6028

T'25.09

Here are four ways to use the PUT as a unijunction. Note the flexibility due to "programmability" Applications from long time interval latching timers to wide range relaxation oscillators are possible.

Low Ip; very high Iv, temperature and V_{BB} compensation

Low Ip and Iv


Low lp; medium lv, temperature, V_G compensation Low Ip, medium Iv

. Fig. 13-Typical programmable unijunction transistor circuits.

This sampling circuit lowers the effective peak current of the output PUT, Q2. By allowing the capacitor to charge with high gate voltage and periodically lowering gate voltage, when Q1 fires, the timing reistor can be a value which supplies a much lower current than Ip. The triggering requirement here is that minimum charge to trigger flow through the timing resistor during the period of the Q1 oscillator. This is not capacitor size dependent, only capacitor leakage and stability dependent.

Fig. 14 - Hour time-delay sampling circuit.

Here is a handy circuit which operates as an oscillator and a timer. The 2N6028 is normally on due to excess holding current through the 100 kohm resistor. When the switch is momentarily closed, the 10 μ F capacitor is charged to a full 15 volts and 2N6028 starts oscillating (1.8 Meg and 820 pF). The circuit latches when 2N2926 zener breaks down again.

(GE76F02FC100) 2N2926 220kn

Fig. 15-1-second, 1kHz oscillator circuit.

TERMINAL CONNECTIONS

TO-92 and TO-98 Packages Lead 1 - Anode Lead 2 - Gate Lead 3 - Cathode