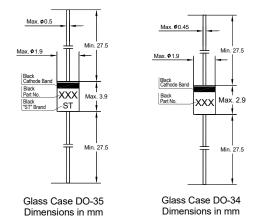
1N4148PF

Silicon Epitaxial Planar Switching Diode


Features

Lead Free

Applications

• High-speed switching

This diode is also available in MiniMELF case with the type designation LL4148

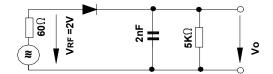
Absolute Maximum Ratings ($T_a = 25$ °C)

Parameter		Symbol	Value	Unit
Peak Reverse Voltage		V_{RM}	100	V
Reverse Voltage		V_{R}	75	V
Average Rectified Forward Current		I _{F(AV)}	200	mA
Non-repetitive Peak Forward Surge Current	at t = 1 s at t = 1 ms at t = 1 µs	I _{FSM}	0.5 1 4	А
Power Dissipation		P_D	500	mW
Operating Junction Temperature Range		Tj	- 65 to + 200	°C
Storage Temperature Range		T_{stg}	- 65 to + 200	°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance - Junction to Lead 1)	$R_{ heta JL}$	350	°C/W

¹⁾ Valid provided that leads at a distance of 8 mm from case are kept at ambient temperature.



1N4148PF

Characteristics at $T_a = 25$ °C

Parameter	Symbol	Min.	Max.	Unit
Reverse Breakdown Voltage at I_R = 100 μ A at I_R = 5 μ A	V _{(BR)R} V _{(BR)R}	100 75	- -	V
Forward Voltage at I _F = 10 mA	VF	-	1	V
Leakage Current at V_R = 20 V at V_R = 75 V at V_R = 20 V, T_j = 150°C Capacitance	IR IR IR	- - -	25 5 50	nA μA μA
at V _R = 0, f = 1 MHz Voltage Rise when Switching ON tested with 50 mA Forward Pulses tp = 0.1 s, Rise Time < 30 ns, fp = 5 to 100 KHz	V _{fr}	-	2.5	pF V
Reverse Recovery Time at $I_F = 10 \text{ mA}$, $I_{rr} = 1 \text{ mA}$, $V_R = 6 \text{ V}$, $R_L = 100 \Omega$	t _{rr}	-	4	ns
Rectification Efficiency 1) at f = 100 MHz, V _{RF} = 2 V	ην	0.45	-	-

1)

Rectification Efficiency Measurement Circuit

Electrical Characteristics Curve

Fig 1. Power Derating Curve

Fig 2. Forward Characteristic Curve

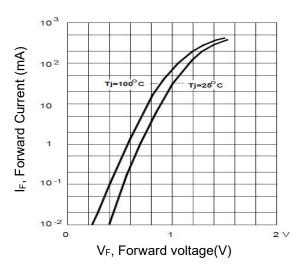
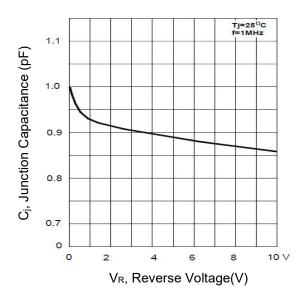



Fig 3. Reverse Characteristic Curve

Fig 4. Junction Capacitance

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

