Instructor: Xinyang Wang

Due: 4pm on October 8, 2025¹

1. (Parametrized optimization) Consider an age-parametrized consumer's problem: there is only one commodity, and the consumption of it is denoted by a number $x \geq 0$. The age parameter a ranges from (0,2]. At age a, the income is a^2 , and the happiness is determined by a utility function $u(x,a) = 1 - (x-a)^2$ (that is, this agent is satisfied by consuming a units of the commodity). We denote this agent's optimal happiness level at age a by V(a) and his optimal consumption level by $\mu(a)$. Formally,

$$V(a) = \max_{x \in [0, a^2]} u(x, a)$$

$$\mu(a) = \operatorname*{argmax}_{x \in [0, a^2]} u(x, a)$$

- a. In a coordinate system, draw the graph of functions u(x,0.5), u(x,1), u(x,1.5), u(x,2).
- b. Highlight points $(\mu(a), V(\mu(a)))$ for a = 0.5, 1, 1.5, 2 in your graph in a.
- c. Using a and b, draw the "upper envelope" of this class of optimization problems. That is, draw the curve $(\mu(a), V(\mu(a)))$ for $a \in (0, 2]$.
- d. Compute V'(1) and give an interpretation of this number.²
- e. Applying the maximum theorem to prove that μ is a continuous function. Please verify carefully that the assumptions of the maximum theorem holds.
- 2. (Maximum Theorem) In class, we studied the maximum theorem. In particular, we note this theorem assumes: the objective function f is continuous and the choice correspondence φ is continuous. The conclusion is: the value function V is continuous and the maximizer correspondence μ is upper hemi-continuous.
 - a. Given an example where f is discontinuous and φ is continuous such that the conclusion of the theorem does not hold.
 - b. Given an example where f is continuous, φ is upper hemi-continuous but not continuous such that the conclusion of the theorem does not hold.
 - c. Given an example where f is continuous, φ is lower hemi-continuous but not continuous such that the conclusion of the theorem does not hold.

¹Please submit the physical copy of your work. Write all your statement and deriviations as clearly as you can.

²compare to the interpretation of λ as the shadow value of money

3. (Impossibility of Linear Demand) Many economists like to work with linear/affine demand. In this exercise, I guide you to prove it is not possible to have a linear/affine demand when there are at least two commodities. By linear/affine demand, I mean the demand function $\xi(p, w) = (\xi_1(p, w), \xi_2(p, w)) \in \mathbb{R}^2_+$ has the form

Instructor: Xinyang Wang

$$\xi_1(p, w) = a_1 p_1 + a_2 p_2 + g_1(w)$$

$$\xi_2(p, w) = b_1 p_1 + b_2 p_2 + g_2(w)$$

for $a_1, a_2, b_1, b_2 > 0$ and some differentiable functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$.

The proof goes as follows: we start by assuming there are affine demand. Then,

- a. Write out the Walras' law.
- b. Differentiate both side of the equation with respect to w. Note the equality you obtained hold for any choice of p and w.
- c. Check what happens by fixing w > 0 and taking both p_1 and p_2 goes to zero. Find a contradiction by checking the limit on both sides of the equation.
- 4. (Lagrange Multiplier) Given a concave utility function u, for the cost minimization problem

$$e(p, v) = \min_{x \ge 0: u(x) \ge v} p \cdot x$$

Write out the Lagrangian as a function of the choice variable and the Lagrange multiplier λ on the constraint $u(x) \geq v$.

- a. What is the dimension of λ ?
- b. Argue the cost minimization problem is a convex optimization problem and state when the Slater's condition hold.

Therefore, there is a number λ^* such that the pair $(h(p, v), \lambda^*)$ satisfies the KKT condition.

c. Give an economic interpretation to the Lagrange multiplier at the optimum λ^* .