Instructor: Xinyang Wang

1. (Preference)

- (a) Prove if a relation is complete, it must be reflexive. Show by example that a relation that is reflexive can be incomplete.
- (b) Say that a relation ≥ is acyclic if the associated strict relation > exhibits no cycles. Show that every transitive relation is acyclic, but show by example that a relation can be acyclic without being transitive.
- 2. (Revealed Preference) In each of the first two questions, you are given a data set D of consumption bundles purchased at specific price vectors. In each case, first, check if D satisfies the weak axiom of revealed preference. Second, either show D can not be the purchase of a rational consumer or find a utility function for a rational consumer who makes the purchases.
 - (a) $D = \{(p^i, x^i) : i = 1, 2, 3\}$
 - $p^1 = (2, 1, 3), x^1 = (3, 1, 1)$
 - $p^2 = (3, 2, 1), x^2 = (1, 3, 1)$
 - $p^3 = (1, 2, 2), x^3 = (1, 1, 3)$
 - (b) $D = \{(p^i, x^i) : i = 1, 2, 3\}$
 - $p^1 = (1, 2, 3), x^1 = (3, 3, 1)$
 - $p^2 = (3, 2, 1), x^2 = (1, 3, 3)$
 - $p^3 = (3, 1, 2), x^3 = (2, 12, 3)$
 - (c) we know the observations in data set $D = \{(p^i, x^i), i = 1, 2, 3, 4, 5\}$ are from two consumers. Partition the observations into two groups such that the observation in each group are consistent with the maximization of a single continuous, quasi-concave utility function.
 - $x^1 = (4,8), p^1 = (1,2)$
 - $x^2 = (8,4), p^2 = (2,1)$

 $^{^{1}}$ Please submit the physical copy of your work. Write all your statement and deriviations as clearly as you can.

- $x^3 = (4,6), p^3 = (1,3)$
- $x^4 = (6,4), p^4 = (3,1)$
- $x^5 = (4,7), p^5 = (2,5)$
- 3. (Utility Representation) Write whether the following statements are true or false, and justify your answers:
 - a. All continuous preferences do not have discontinuous utility representations.
 - b. Some continuous preference does not have a discontinuous utility representation.
 - c. All continuous preferences can be represented by a utility function, which has a range given by $[a^*, b^*]$ for $a^* < b^*$.
 - d. A utility function $u: \mathbb{R}^L_+ \to \mathbb{R}$ satisfies the law of decreasing marginal utility on good i if $\frac{du(x)}{dx_i}$ is decreasing in x_i . Show that increasing transformation of utility functions need not preserve decreasing marginal utility.
- 4. (**Debreu's Theorem**) There are two equivalent definitions for the continuity of preference \succeq on a set X:

Def 1 for any sequence x_n, y_n in set $X, x_n \succeq y_n$ for all $n \in \mathbb{N}$ implies $x \succeq y$.

Def 2 All the better than sets and worse than sets are closed. Formally, for all $x \in X$, $B(x) = \{y \in X : y \succeq x\}$ and $W(x) = \{y \in X : x \succeq y\}$ are closed.

A binary relation \succeq on \mathbb{R}^2_+ defines a preference as follows: for any pairs of vectors $(x, y), (x', y') \in \mathbb{R}^2_+$,

- if $x \neq y$ and $x' \neq y'$, $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y'$;
- if x = y but $x' \neq y'$, $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y' 1$;
- if $x \neq y$ but x' = y', $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y' + 1$;
- if x = y and x' = y', $(x, y) \succeq (x', y')$ if and only if $x \geq x'$.

Answer the following questions:

- (a) Is \succeq defined above rational?
- (b) Use Def 1 to check if \succeq is continuous.
- (c) Use Def 2 to check if \succeq is continuous.

- (d) Find a utility representation of $\succeq.^2$
- (e) Is \succeq convex?

²If your answer in either b or c is \succeq is discontinuous, it means a discontinuous preference could have a utility representation (though maybe discontinuous).