Instructor: Xinyang Wang

Due: 4pm on November 5, 2025^1

1. (Preference)

- (a) Prove if a relation is complete, it must be reflexive. Show by example that a relation that is reflexive can be incomplete.
- (b) Say that a relation ≥ is acyclic if the associated strict relation > exhibits no cycles. Show that every transitive relation is acyclic, but show by example that a relation can be acyclic without being transitive.

Proof. For (a), take x = y, since xRy or yRx must hold by completeness, we have xRx. The relation = on \mathbb{R} is reflexive but incomplete.

For (b), we first prove that transitivity implies acyclicity. Let \succeq be a transitive relation. Suppose, towards a contradiction, that the associated relation \succ has a cycle: there exist $x_1, ..., x_n$ for some n > 1, such that

$$x_1 \succ x_2 \succ ... \succ x_n \succ x_1$$
.

Transitivity implies $x_1 \succeq x_n$ and $x_1 \npreceq x_n$. Contradiction.

We now construct an example of a relation \succeq that is acyclic but not transitive. Take $X = \{x, y, z\}$ and suppose that $\succeq = \{(x, y), (y, z)\}$, with an associated relation such that $x \succ y$ and $y \succ z$. The relation \succeq is acyclic. Now, \succeq is not transitive because $x \succeq y$, $y \succeq z$ but not $x \succeq z$.

One can also argue that the revealed preference relation \succ_R is an example.

2. (Revealed Preference)

In each of the first two questions, you are given a data set D of consumption bundles purchased at specific price vectors. In each case, first, check if D satisfies the weak axiom of revealed preference. Second, either show D can not be the purchase of a rational consumer or find a utility function for a rational consumer who makes the purchases.

(a)
$$D = \{(p^i, x^i) : i = 1, 2, 3\}$$

•
$$p^1 = (2, 1, 3), x^1 = (3, 1, 1)$$

•
$$p^2 = (3, 2, 1), x^2 = (1, 3, 1)$$

¹Please submit the physical copy of your work. Write all your statement and deriviations as clearly as you can.

•
$$p^3 = (1, 2, 2), x^3 = (1, 1, 3)$$

(b)
$$D = \{(p^i, x^i) : i = 1, 2, 3\}$$

•
$$p^1 = (1, 2, 3), x^1 = (3, 3, 1)$$

•
$$p^2 = (3, 2, 1), x^2 = (1, 3, 3)$$

•
$$p^3 = (3, 1, 2), x^3 = (2, 12, 3)$$

- (c) we know the observations in data set $D = \{(p^i, x^i), i = 1, 2, 3, 4, 5\}$ are from two consumers. Partition the observations into two groups such that the observation in each group are consistent with the maximization of a single continuous, quasi-concave utility function.
 - $x^1 = (4,8), p^1 = (1,2)$
 - $x^2 = (8,4), p^2 = (2,1)$
 - $x^3 = (4,6), p^3 = (1,3)$
 - $x^4 = (6,4), p^4 = (3,1)$
 - $x^5 = (4,7), p^5 = (2,5)$

Proof. For (a), similar to the example in Lecture 13, we have $p^1 \cdot x^2 = 8 < p^1 \cdot x^1 = 10$, which implies $x^1 \succ_R x^2$; $p^2 \cdot x^3 = 8 < p^2 \cdot x^2$, which implies $x^2 \succ_R x^3$, and $p^3 \cdot x^1 = 8 < p^3 \cdot x^3 = 10$, which implies $x^3 \succ_R x^1$. Thus, the transitivity is violated and D cannot be rationalized.

- (b) The expenditure on commodities 1,2,3 are proportional in the ratio 1 : 2 : 1. Therefore, the consumer has a Cobb-Douglas utility function, in the form $u(x_1, x_2, x_3) = x_1 x_2^2 x_3$.
- (c) We call these data $d^1, ..., d^5$ in order. By d^1, d^2 , we have $p^1 \cdot x^2 = 16 < p^1 \cdot x^1 = 20 \Rightarrow x^1 \succ_R x^2$, and $p^2 \cdot x^1 = 16 < p^2 \cdot x^2 = 20 \Rightarrow x^2 \succ_R x_1$, the WARP is violated. Therefore, d^1, d^2 are not from the same person. Similarly, d^3, d^4 are not from the same person.

For d^1, d^4 , we have $p^1 \cdot x^4 = 14 < p^1 \cdot x^1 \Rightarrow x^1 \succ_R x^4$, and $p^4 \cdot x^1 = 20 < p^4 \cdot x^4 \Rightarrow x^4 \Rightarrow x^1$. The WARP is violated, which implies d^1, d^4 are not from the same person. Similarly, d^2, d^3 are not from the same person.

Thus, d^1 , d^3 are from the same person, and d^2 , d^4 are from the other person. To determine d^5 , we note $p^2 \cdot x^5 = 18 < p^2 \cdot x^2 \Rightarrow x^2 \succ_R x^5$ and $p^5 \cdot x^2 = 36 < p^5 \cdot x^5 \Rightarrow x^5 \succ_R x^2$. The WARP is violated. Thus d^2 , d^5 are not from the same person.

In sum, the necessary condition of WARP suggest d^1, d^3, d^5 are from one person, and d^2, d^4 are from the other person.

To verify that $D^1 = \{d^1, d^3, d^5\}$ and $D^2 = \{d^2, d^4\}$ can be rationalized by a continuous, quasi-concave utility function, we must check D^1, D^2 satisfies the GARP. That is, the revealed preference relation has no cycle.

Instructor: Xinyang Wang

For D^1 , we note $p^1 \cdot x^3 = 16 < p^1 \cdot x^1 \Rightarrow x^1 \succ_R x^3, p^1 \cdot x^5 = 18 < p^1 \cdot x^1 \Rightarrow x^1 \succ_R x^5, p^3 \cdot x^2 = 28 > p^3 \cdot x^3 \Rightarrow x^3 \not\succ_R x^2, p^3 \cdot x^5 = 25 > p^3 \cdot x^3 \Rightarrow x^3 \not\succ_R x^5, p^5 \cdot x^1 = 48 > p^5 \cdot x^5 \Rightarrow x^5 \not\succ_R x^1,$ and $p^5 \cdot x^3 = 38 < p^5 \cdot x^5 \Rightarrow x^5 \succ_R x^3$. Therefore, there is no cycle.

For D^2 , $p^2 \cdot x^4 = 16 < p^2 \cdot x^2 \Rightarrow x^2 \succ_R x^4$ and $p^4 \cdot x^2 = 28 > p^4 \cdot x^4 \Rightarrow x^4 \not\succ_R x^2$. Therefore, there is no cycle.

- 3. (Utility Representation) Write whether the following statements are true or false, and justify your answers:
 - a. All continuous preferences do not have discontinuous utility representations.
 - b. Some continuous preference does not have a discontinuous utility representation.
 - c. All continuous preferences can be represented by a utility function, which has a range given by $[a^*, b^*]$ for $a^* < b^*$.
 - d. A utility function $u: \mathbb{R}^L_+ \to \mathbb{R}$ satisfies the law of decreasing marginal utility on good i if $\frac{du(x)}{dx_i}$ is decreasing in x_i . Show that increasing transformation of utility functions need not preserve decreasing marginal utility.

Solution. For a, it is false. Consider a preference \succeq on \mathbb{R} with $x \succeq y$ whenever $x \geq y$. It is continuous, but admits a discontinuous utility representation $u : \mathbb{R} \to \mathbb{R}$ with u(x) = x for $x \geq 0$ and u(x) = x - 1 for x < 0.

For b, it is true. Suppose the preference is a constant preference: for all $x, y \in X$, $x \sim y$. Then, the only utility representation must be a constant utility representation. It admits no discontinuous utility (which necessarily implies some alternative is better than some other).

For c, by Debreu's theorem, there exists a continuous utility representation $u: X \to \mathbb{R}$. The range of u must be an nontrivial interval [a, b] given the preference is nontrivial. In particular, we allow a, b to be $-\infty$ or ∞ . Next, we can simply argue that there exists an increasing transformation that transform this interval [a, b] to the target $[a^*, b^*]$. There are four cases.

Case 1 When all a, b, a^*, b^* are finite, this can be done by a positive affine transformation whenever $a \neq b$: take $\Phi : \mathbb{R} \to \mathbb{R}$ be $\Phi(x) = a^* - \frac{a(b^* - a^*)}{b - a} + \frac{b^* - a^*}{b - a}x$, we have $\Phi([a, b]) = [a^*, b^*]$. When a = b, the preference is trivial, simply represents it to any number in $[a^*, b^*]$ will do the work.

Case 2 When $a = -\infty$ and $b < \infty$, take $\Phi : \mathbb{R} \to \mathbb{R}$ be $\Phi(x) = a^* + \frac{b^* - a^*}{e^b} e^x$, we have $\Phi([a,b]) = [a^*,b^*]$. So $\Phi(u)$ is a utility representation satisfies the requirement.

Instructor: Xinyang Wang

- Case 3 When $a > -\infty$ and $b = \infty$, take $\Phi : \mathbb{R} \to \mathbb{R}$ be $\Phi(x) = b^* + \frac{a^* b^*}{e^{-a}} e^{-x}$, we have $\Phi([a,b]) = [a^*,b^*]$, and Φ is increasing. So $\Phi(u)$ is a utility representation satisfies the requirement.
- Case 4 When $a = -\infty$ and $b = \infty$, take $\Phi : \mathbb{R} \to \mathbb{R}$ be $\Phi(x) = \frac{a^* + b^*}{2} + \frac{b^* a^*}{\pi} \arctan(x)$, we have $\Phi([a,b]) = [a^*,b^*]$, and Φ is increasing. So $\Phi(u)$ is a utility representation satisfies the requirement.

Note, here I showed only the range of the utility presentation can be designed. One can show that the image of utility presentation can be designed in the same manner.

For d., consider $u(x) = \sqrt{x}$ in a 1-commodity space. Let $f = x^4$. Then, $f(u(x)) = x^2$ has increasing marginal utility.

4. (**Debreu's Theorem**) There are two equivalent definitions for the continuity of preference \succeq on a set X:

Def 1 for any sequence x_n, y_n in set $X, x_n \succeq y_n$ for all $n \in \mathbb{N}$ implies $x \succeq y$.

Def 2 All the better than sets and worse than sets are closed. Formally, for all $x \in X$, $B(x) = \{y \in X : y \succeq x\}$ and $W(x) = \{y \in X : x \succeq y\}$ are closed.

A binary relation \succeq on \mathbb{R}^2_+ defines a preference as follows: for any pairs of vectors $(x, y), (x', y') \in \mathbb{R}^2_+$,

- if $x \neq y$ and $x' \neq y'$, $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y'$;
- if x = y but $x' \neq y'$, $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y' 1$;
- if $x \neq y$ but x' = y', $(x, y) \succeq (x', y')$ if and only if $xy \geq x'y' + 1$;
- if x = y and x' = y', $(x, y) \succeq (x', y')$ if and only if $x \ge x'$.

Answer the following questions:

- (a) Is \succeq defined above rational?
- (b) Use Def 1 to check if \succeq is continuous.
- (c) Use Def 2 to check if \succeq is continuous.

Instructor: Xinyang Wang

- (d) Find a utility representation of \succeq .
- (e) Is \succeq convex?

Proof. For (a), for every $(x,y), (x',y') \in \mathbb{R}^2_+$, if $x \neq y$ and $x' \neq y'$, then either $xy \geq x'y'$ or $x'y' \geq xy$. Therefore, the two vectors are comparable under \succeq . When x = y but $x' \neq y'$, then either $xy \geq x'y' - 1$ or $x'y' > xy + 1 \geq xy - 1$. Therefore, two vectors are comparable. When x = y and x' = y', then either $x \geq x'$ or $x' \geq x$. The two vectors are comparable. Therefore, \succeq is complete.

For transitivity, suppose $(x,y) \succeq (x',y')$ and $(x',y') \succeq (x'',y'')$. We discuss by cases:

- If x = y,
 - if x' = y', then $x \ge x'$. If x'' = y'', then $x' \ge x''$, which implies $x \ge x'$, which implies $(x,y) \succeq (x'',y'')$. If $x'' \ne y''$, then $x'y' \ge x''y'' 1$. But $x \ge x'$ so $xy = x^2 \ge (x')^2 = x'y'$. Therefore, $xy \ge x''y'' 1$. Therefore, $(x,y) \succeq (x'',y'')$.
 - If $x' \neq y'$. Then, $xy \geq x'y' 1$. If x'' = y'', then $x'y' \geq x''y'' + 1$, which implies $xy \geq x''y''$, and $(x,y) \succeq (x'',y'')$. If $x'' \neq y''$, we have $x'y' \geq x''y''$. Therefore, $xy \geq x''y'' 1$, which implies $(x,y) \geq (x'',y'')$.
- If $x \neq y$,
 - if x' = y', then $x \ge x'$. If x'' = y'', then $xy \ge x'y' + 1$. If $x'' \ne y''$, then $x'y' \ge x''y'' 1$. Then, $xy \ge x''y''$, which implies $(x, y) \succeq (x'', y'')$. If x'' = y'', we have $x' \ge x''$. Therefore, $xy \ge x''y'' + 1$, which implies $(x, y) \succeq (x'', y'')$.
 - If $x' \neq y'$. Then, $xy \geq x'y'$. If x'' = y'', then $x'y' \geq x''y'' + 1$, which implies $xy \geq x''y'' + 1$, and $(x,y) \succeq (x'',y'')$. If $x'' \neq y''$, we have $x'y' \geq x''y''$. Therefore, $xy \geq x''y''$, which implies $(x,y) \geq (x'',y'')$.

Hence, \succeq is transitive. Thus it is rational.

For (b), take $v^n = (1.5, 1)$ and $w^n = (1 + 1/n, 1 - 1/n)$. Each $v^n \succeq y^n$ because $1.5 \cdot 1 > 1 - 1/n^2$. However, in the limit $(1.5, 1) \not\succeq (1, 1)$. Thus, \succeq is not continuous.

For (c), consider the lower contour set W(x) of v = (1.5, 1). Each $w^n = (1 + 1/n, 1 - 1/n)$ is the set, but not its limit. Thus, W(x) is not closed. Thus, \succeq is not continuous.

For (d), the utility function is given by

$$u(x,y) = \begin{cases} xy & x \neq y \\ xy + 1 & x = y \end{cases}.$$

²If your answer in either b or c is \succeq is discontinuous, it means a discontinuous preference could have a utility representation (though maybe discontinuous).

For (e), take v=(1.5,1) and w=(1,1) with $w\succeq v$ by definition. But $\frac{v+w}{2}=(1.25,1)\not\succeq v$. That is, \succeq is not convex.