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In this lecture, we prove the existence of a competitive equilibrium. We will first study

the existence in an Edgeworth economy with two goods and two agents, and then study the

existence for general models. As, in this course, we do not deal with multi-valued functions

(sometimes called correspondences), the proof we will give will be based on Brouwer’s fixed

point theorem for functions, rather than Kakutani’s fixed point theorem for correspondences.

For this reason, the existence proof we give here does not directly replicate the idea used

in 2 goods case. However, it saves us from the heavy lifting work of understanding (the

continuity) of correspondences.

1 Existence proof for the Edgeworth Economy

In an economy with two goods and two agents, from the last lecture, we have seen that the

equilibrium allocation is given by the intersection of two offer curves in an Edgeworth box,

and the equilibrium price can be determined by solving the nonlinear equation specified by

the market clearing condition. In general, a non-linear equation may not have a solution.

For instance,

x2 + 1 = 0

However, the economic property our demand functions have will rule out such cases.

There are numerous ways to prove the existence of a competitive equilibrium. One of

them uses the idea of tatonnement process: imagine that there is a Walrasian auctioneer

controlling the prices. When too many agents want to buy a commodity, he increases the
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price of this commodity, and when almost nobody wants to buy a commodity, he decreases

the property. His goal is to set the prices such that the total demand is equal to the total

supply, in this scenario, the total endowment.

To formalize this idea, recall that prices are normalized to (1, p), where p ∈ [0,∞].

Individual demand (function) of agent i is defined by

ξi(1, p) = argmax
x∈B(p,ωi)

ui(x) ∈ R2
+

Aggregate demand (function) is the sum of all individual demands:

ξ(1, p) =
∑
i∈I

argmax
x∈B(p,ωi)

ui(x) ∈ R2
+

Excess demand (function) is the difference between aggregate demand and aggregate supply:

z(1, p) = ξ(1, p)−
∑
i∈I

ωi =
∑
i∈I

(ξi(1, p)− ωi)

The latter summand is called the excess demand (function) of agent i. Note, z(1, p) is a

2-vector, we write it coordinatewisely by

z(1, p) = (z1(1, p), z2(1, p))

where zn(1, p) is the excess demand of commodity n.

We will focus on the property of the excess demand function z : [0,∞] → R2
+ hereafter.

We start with a few observations on z:

Remark.

• z is a function, as we assumed utility functions are strictly concave.

• z is continuous, as demand functions are continuous by Berge’s maximization theorem.

• z is homogeneous of degree 0:

z(λ, λp) = z(1, p),∀λ > 0
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• Walras’ law: as for all agent i, (1, p) · ξi(1, p) = (1, p) · ωi

(1, p) · z(1, p) = 0

Now, we are ready to go to the existence result in the Edgeworth economy:

Theorem. For an Edgeworth economy E, if utility functions are strictly concave, continuous

and strictly monotonic, there is a competitive equilibrium.

We will prove that there is a p ∈ [0,∞] such that z(1, p) = 0. The equilibrium allocation

is determined by the corresponding demand under prices (1, p).

Proof. By the Walras’ Law, we have

z1(1, p) + pz2(1, p) = 0,∀p ∈ [0,∞]

Therefore, for any positive p, we have

• When z1(1, p) > 0, z2(1, p) < 0.

• When z2(1, p) > 0, z1(1, p) < 0.

• When z2(1, p) = 0, z1(1, p) = 0.

Therefore, to find a p such that z(1, p) = 0, we just need to find a p such that z2(1, p) = 0.

Note, we will use the strictly monotonicity of utility functions to claim that

lim
p→0

z2(1, p) = +∞

lim
p→∞

z1(1, p) = lim
p→∞

z1(1/p, 1) = +∞

We note this claim is intuitively reasonable: when a commodity becomes arbitrarily cheap,

both agents would buy more and more of it.

To see its validity, formally, we will prove the first result. The proof of the second result

is identical. We prove by contradiction. Suppose that z2(1, p) is bounded as p→ 0, there is
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a subsequence pn such that pn → 0 and

z2(1, p)→ x

for some x ∈ R. By the continuity of excess demand z, z2(1, 0) = x, which means when

commodity 2 is costless, both agents will just consume a finite amount of it, which contradicts

strict monotonicity, as more consumption even on one good is always preferred.

Having this claim, by the Walras’ law, we have

lim
p→∞

z2(1, p) < 0

as limp→∞ z1(1, p) > 0. Together with claim that

lim
p→0

z2(1, p) > 0

By intermediate value theorem, there is a p∗ such that z2(1, p∗) = 0.

�
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2 Existence Proof for General Economies

Now, we will give an existence result of competitive equilibrium, and develop a proof for a

slightly weaker case. That we only give the proof for a slightly weaker case is to minimize

the level of technicalities and to highlight the key idea. However, we will give all essential

ideas.

Theorem 1. For an economy E = (I, (ui, ωi)i∈I), if

• (A1) for all i ∈ I, ui is locally non-satiated.

• (A2) for all i ∈ I, ui is continuous.

• (A3) for all i ∈ I, ui is (quasi-)concave.

• (A4)
∑

i∈I ωi >> 0 and ωi > 0 for all i ∈ I.

Then, a competitive equilibrium of E exists.

The first three assumptions (A1) − (A3) need no explanations. Assumption (A4) states

that no good is trivial (have a zero amount in the market) and no agent is trivial (have a zero

resource to trade with the others). We remark again that Assumption (A3) is a technical

assumption that is only needed for the existence of a finite economy (when I is finite). This

assumption rules out the possibility of externality and indivisible goods.

The proof we will develop hereafter requires a set of slightly stronger assumptions:

• (A1’) for all i ∈ I, ui is strictly monotone: x > y implies ui(x) > ui(y).

• (A2) for all i ∈ I, ui is continuous.

• (A3’) for all i ∈ I, ui is strictly concave.

• (A4’) ωi >> 0 for all i ∈ I.

Before we start to develop the proof, we recall some useful observations.

1. prices are normalized such that

p1 + ...+ pN = 1
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The set of prices is denoted by P . That is, P is the n-dimensional simplex

P = {p ∈ Rn
+ : p1 + ...+ pN = 1}

2. demand functions ξi(p) : P → RN
+ are continuous.

3. excess demand function z : P → RN
+ defined by

z(p) =
∑
i∈I

(ξi(p)− ωi)

is continuous.

4. the excess demand function z satisfies the Walras’ law

p · z(p) = 0,∀p ∈ P

2.1 Brouwer’s fixed point theorem

We need some heavy lifting tool to understand the classical proof. In previous lectures, we

noticed that the optimization techniques are crucial to understand the behavior of a rational

agent, no matter he is a consumer, a producer or a decision maker facing uncertainty. For

models with multiple agents, economists usually focus on the concept equilibrium, and the

crucial related technique is the fixed point theorem. Now, we present Brouwer’s fixed point

theorem.

For a function f : X → X, a fixed point of f is a point x̄ ∈ X such that x̄ = f(x̄).
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Theorem (Brouwer’s fixed point theorem). For a function f : X → X, if f is continuous

and X is non-empty, convex and compact1 in RN , then f has a fixed point.

Example.

• X must be closed: take X = (0, 1] and f(x) = x/2, f has no fixed point.

• X must be bounded: take X = [0,∞) and f(x) = x+ 1, f has no fixed point.

• X must be convex: take X = {x ∈ R2| ‖x‖ = 1} and f(x) = −x, f has no fixed point.

• f must be continuous: take X = [0, 1] and

f(x) =

1 0 < x ≤ 0.5

0 0.5 < x ≤ 1

,

f has no fixed point.

2.2 Gale-Debreu-Nikaido Lemma

The key step in proving the existence of a competitive equilibrium is the Gale-Debreu-Nikaido

Lemma, which states an equilibrium exists with free disposal.

1Recall that the compactness in Euclidean spaces is equivalent to closedness and boundedness.
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We will present Debreu’s proof in 1959 using Brouwer’s fixed point theorem. Clearly,

we restrict ourselves to demand functions, rather than demand correspondences. (Thus we

have to impose the strict concavity of utility functions.) If we are comfortable to deal with

correspondence, a more intuitive proof using Kakutani’s fixed point theorem for correspon-

dences can be composed, and this intuitive proof will, on the high level, using the idea of the

tatonnement process we mentioned in our two goods case.

Stunningly, Uzawa (1962) observed that the Gale-Debreu-Nikaido lemma is equivalent to

Brouwer’s fixed point theorem. In the following, we will use Brouwer’s fixed point theorem to

prove the Gale-Debreu-Nikaido lemma. For the proof of the converse direction, please check

Uzawa’s paper.

Theorem (Gale-Debreu-Nikaido lemma). Let z : P → RN be a function such that

• p · z(p) = 0 for all p ∈ P

• z is a continuous function.

Then, there is a p̄ ∈ P such that z(p̄) ≤ 0.

As the following figure suggests, this lemma states that, if we pick z(p) continuously in p

on the hyperplane passing through the origin and perpendicular to p, the curve of z(p) must

pass the shaded area.
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Remark.

• When p >> 0, the excess demand map satisfies these two conditions. When pn = 0,

the excess demand map is undefined. Thus, in the complete proof in the following

subsection, one of our obstacle is to give a definition of excess demand when some price

is zero.

• zn(p̄) < 0 only if pn = 0. i.e. some market is not clear only if the corresponding

price is zero. To see it, we use the first condition and obtain p̄ · z(p̄) = 0. That is,∑
n p̄nzn(p̄) = 0. As z(p̄) ≤ 0, we have p̄nzn(p̄) = 0 for all commodity n.

Proof. We start by defining a vector g(p) ∈ RN
+ for each prices p ∈ P :

gn(p) = max(0, pn + zn(p))

Clearly, gn(p) ≥ 0 and now we see g(p) 6= 0. i.e. not all of them are zero:

p · g(p) ≥ p · (p+ z(p)) = p · p+ p · z(p) = p · p > 0

Now, we define a map ϕ : P → P by

ϕ(p) =
g(p)∑N

n=1 gn(p)

Note this function is well-defined as
∑N

n=1 gn(p) > 0 for all p ∈ P .

Note g as a function from P to RN
+ is continuous, as z is continuous. So, ϕ is continuous.

It is instant that the price simplex P is non-empty, compact and convex. Therefore, by

Brouwer’s fixed point theorem, there is a p̄ such that

p̄ =
1∑N

n=1 gn(p̄)
g(p̄)

We write it as

p̄ = λg(p̄)
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where λ = 1∑N
n=1 gn(p̄)

> 0. i.e.

p̄n = λmax(0, p̄n + zn(p̄)), ∀n

Now, we claim λ = 1: observe that p̄n(max(0, p̄n + zn(p̄))) = p̄n(p̄n + zn(p̄)), as no matter

p̄n + zn(p̄) is larger or smaller than zero, the equality always holds. Therefore,

p̄ · g(p̄) =
N∑

n=1

p̄n(max(0, p̄n + zn(p̄)))

=
N∑

n=1

p̄n(p̄n + zn(p̄))

= p̄ · (p̄+ z(p̄))

= p̄ · p̄+ p̄ · z(p̄)

= p̄ · p̄

= p̄ · λg(p̄)

The last inequality is by the fixed point theorem. Therefore, we have λ = 1, or

p̄n = max(0, p̄n + zn(p̄)),∀n

This equality is impossible if zn(p̄) > 0. So, we have z(p̄) ≤ 0. �

2.3 Complete Proof

There are two difficulties in using the Gale-Debreu-Nikaido lemma to argue the existence

of a competitive equilibrium. First, the excess demand may not be well-defined when some

price is zero, so the Gale-Debreu-Nikaido lemma can not be applied directly to the excess

demand map. Second, we may not have market clearing condition for some markets in which

the price is zero. Thus, in the following proof, we deal with these two difficulties.

We note that due to the fact Brouwer’s fixed point theorem requires a compact domain

of function, we have to deal with the case that some price is zero. That is, the Gale-Debreu-

Nikaido lemma is insufficient even if we impose the expost assumption that equilibrium prices
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are interior.

The key idea in dealing with zero price problem is Debreu’s box trick: We define the

demand when some price is zero by bounding the consumption set by a large box. The box

is so large that the bound on each direction is larger than the maximum resources in the

society. Therefore, this additional constraint will never be binding at an equilibrium, due to

the market clearing condition.

Proof.

Step 1: Debreu’s Box trick:

Take a large number B > 0 such that B > maxn

∑
i∈I(ωi)n. The restricted budget sets are

in the form

BB(p, ωi) = {x ∈ RN
+ : p · x ≤ p · ωi, xn ≤ B, ∀n}

and restricted demand functions ξBi : P → RN
+ are defined by

ξBi (p) = argmax
x∈BB(p,ωi)

ui(x)

Note, as for all prices p ∈ P , the restricted budget sets BB(p, ωi) are compact. So, the

restricted demand function is well-defined everywhere.

Step 2: Property of restricted excess demand:

11



Define restricted excess demand by

zB(p) =
∑
i∈I

(ξBi (p)− ωi)

By Berge’s theorem, ξBi (p) is continuous on P , so zB(p) is continuous on P . Moreover, by

the local non-satiation, p · ξBi (p) = p · ωi for all p ∈ P .. Therefore, p · z(p) = 0 for all p ∈ P .

i.e. zB satisfies the assumption of Gale-Debreu-Nikaido lemma.

Step 3: Apply Gale-Debreu-Nikaido lemma:

there is a p̄ ∈ P such that zB(p̄) ≤ 0.

Step 4: Non-Binding of Debreu’s box:

at prices p̄, agents’ consumption are given by

xi = ξBi (p̄) = zBi (p̄) + ωi

Note as xi ≥ 0, xi ≤
∑

i∈I xi ≤ zB(p̄) +
∑

i∈I ωi ≤
∑

i∈I ωi ≤ (B,B, ..., B). i.e.

xi = ξBi (p̄) = ξi(p̄)

Step 5: Market clearing:

If zB(p̄) < 0, we note that there are some excess endowment of some commodities. We give

all these excess endowments to agent 1:

x̃1 = x1 − zB(p̄) ≥ x1

By Walras’ law, p̄ · zB(p̄) = 0. We have, p̄ · x1 = p̄ · x̃1. i.e. agent 1 can afford x̃1. Moreover,

by monotonicity, u1(x̃1) ≥ u1(x1). As x1 is an optimal consumption, u1(x̃1) = u1(x1). By

the strict concavity of u1, there can be at most one maximizer. Therefore, x̃1 = x1. i.e.

zB(p̄) = 0. By Step 4, we note 0 = zB(p̄) =
∑

i∈I(ξ
B
i (p̄)−ωi) =

∑
i∈I(ξi(p̄)−ωi) = z(p̄). We

finish the proof. �
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