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Abstract

We show that parametric multi-armed bandit
(MAB) problems with large state and action
spaces can be algorithmically reduced to the
supervised learning model known as “Knows
What It Knows” or KWIK learning. We
give matching impossibility results showing
that the KWIK-learnability requirement can-
not be replaced by weaker supervised learn-
ing assumptions. We provide such results in
both the standard parametric MAB setting,
as well as for a new model in which the action
space is finite but growing with time.

1. Introduction

We examine multi-armed bandit (MAB) problems in
which both the state (sometimes also called context)
and action spaces are very large, but learning is pos-
sible due to parametric or similarity structure in the
payoff function. Motivated by settings such as web
search, where the states might be all possible user
queries, and the actions are all possible documents or
advertisements to display in response, such large-scale
MAB problems have received a great deal of recent at-
tention (Li et al., 2010; Langford & Zhang, 2007; Lu
et al., 2010; Slivkins, 2011; Beygelzimer et al., 2011;
Wang et al., 2008; Auer et al., 2007; Bubeck et al.,
2008; Kleinberg et al., 2008; Amin et al., 2011a;b).

Our main contribution is a new algorithm and reduc-
tion showing a strong connection between large-scale
MAB problems and the Knows What It Knows or
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KWIK model of supervised learning (Li et al., 2011; Li
& Littman, 2010; Sayedi et al., 2010; Strehl & Littman,
2007; Walsh et al., 2009). KWIK learning is an online
model of learning a class of functions that is strictly
more demanding than standard no-regret online learn-
ing, in that the learning algorithm must either make
an accurate prediction on each trial or output “don’t
know”. The performance of a KWIK algorithm is mea-
sured by the number of such don’t-know trials.

Our first results show that the large-scale MAB prob-
lem given by a parametric class of payoff functions can
be efficiently reduced to the supervised KWIK learn-
ing of the same class. Armed with existing algorithms
for KWIK learning, e.g. for noisy linear regression
(Strehl & Littman, 2007; Walsh et al., 2009), we obtain
new algorithms for large-scale MAB problems. We also
give a matching intractability result showing that the
demand for KWIK learnability is necessary, in that
it cannot be replaced with standard online no-regret
supervised learning, or weaker models such as PAC
learning, while still implying a solution to the MAB
problem. Our reduction is thus tight with respect to
the necessity of the KWIK learning assumption.

We then consider an alternative model in which the ac-
tion space remains large, but in which only a subset is
available to the algorithm at any time, and this subset
is growing with time. This even better models settings
such as sponsored search, where the space of possible
ads is very large, but at any moment the search en-
gine can only display those ads that have actually been
placed by advertisers. We again show that such MAB
problems can be reduced to KWIK learning, provided
the arrival rate of new actions is sublinear in the num-
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ber of trials. We also give information-theoretic im-
possibility results showing that this reduction is tight,
in that weakening its assumptions no longer implies
solution to the MAB problem. We conclude with a
brief experimental illustration of this arriving-action
model.

While much of the prior work on KWIK learning has
studied the model for its own sake, our results demon-
strate that the strong demands of the KWIK model
provide benefits for large-scale MAB problems that
are provably not provided by weaker models of su-
pervised learning. We hope this might actually mo-
tivate the search for more powerful KWIK algorithms.
Our results also fall into the line of research show-
ing reductions and relationships between bandit-style
learning problems and traditional supervised learning
models (Langford & Zhang, 2007; Beygelzimer et al.,
2011; Beygelzimer & Langford, 2009).

2. Large-Scale Multi-Armed Bandits

The Setting. We consider a sequential decision
problem in which a learner, on each round ¢, is pre-
sented with a state x?, chosen by Nature from a large
state space X. The learner responds by choosing an
action at from a large action space A. We assume that
the learner’s (noisy) payoff is fo(x!,a’)+n?, where n’ is
an i.i.d. random variable with E[nf] = 0. The function
fo is unknown to the learner, but is chosen from a (pa-
rameterized) family of functions Fg = {fp: X x A —
RT | 6 € ©} that is known to the learner. We assume
that every fp € Fo returns values bounded in [0, 1].
In general we make no assumptions on the sequence of
states x!, stochastic or otherwise. An instance of such
a MAB problem is fully specified by (X, A, Fg).

We will informally use the term “large-scale MAB
problem” to indicate that both |X| and |A| are large
or infinite, and that we seek algorithms whose resource
requirements are greatly sublinear or independent of
both. This is in contrast to works in which either only
| X'| was assumed to be large (Langford & Zhang, 2007;
Beygelzimer et al., 2011) (which we shall term “large-
state”; it is also commonly called contextual bandits in
the literature), or only |A| is large (Kleinberg et al.,
2008) (which we shall term “large-action”). We now
define our notion of regret, which permits arbitrary se-
quences of states.

Definition 1. An algorithm for the large-scale MAB
problem (X, A, Fo) is said to have no regret if, for
any fo € Fo and any sequence x',x2,...xT € X, the
algorithm’s action sequence a',a?,...aT € A satisfies

RA(T)/T — 0 as T — oo, where we define R(T) =

E [ZtT:l maxar c 4 fo(x',al) — fo(x',a")|.

We shall be particularly interested in algorithms for
which we can provide fast rates of convergence to no
regret.

Example: Pairwise Interaction Models. We in-
troduce a running example we shall use to illustrate
our assumptions and results; other examples are dis-
cussed later. Let the state x and action a both be
(bounded norm) d-dimensional vectors of reals. Let
be a (bounded) d?-dimensional parameter vector, and
let fo(x,a) = > 1< i<q0i Tia;; we then define Fo
to be the class of all such models fy. In such models,
the payoffs are determined by pairwise interactions be-
tween the variables, and both the sign and magnitude
of the contribution of x;a; is determined by the param-
eter 0; ;. For example, imagine an application in which
each state x represents demographic and behavioral
features of an individual web user, and each action a
encodes properties of an advertisement that could be
presented to the user. A zipcode feature in x indi-
cating the user lives in an affluent neighborhood and
a language feature in a indicating that the ad is for a
premium housecleaning service might have a large pos-
itive coefficient, while the same zipcode feature might
have a large negative coefficient with a feature in a in-
dicating that the service is not yet offered in the user’s
city.

3. Assumptions: KWIK Learnability
and Fixed-State Optimization

We next articulate the two assumptions we require on
the class Fg in order to obtain resource-efficient no-
regret MAB algorithms. The first is KWIK learnabilty
of Fg, a strong notion of supervised learning, intro-
duced by Li et al. in 2008 (Li et al., 2008; 2011). The
second is the ability to find an approximately optimal
action for a fized state. Either one of these conditions
in isolation is clearly insufficient for solving the large-
scale MAB problem: KWIK learning of Fg has no
notion of choosing actions, but instead assumes input-
output pairs (x,a), fo(x,a) are simply given; whereas
the ability to optimize actions for fixed states is of no
obvious value in our changing-state MAB model. We
will show, however, that together these assumptions
can exactly compensate for each other’s deficiencies
and be combined to solve the large-scale MAB prob-
lem.

3.1. KWIK Learning

In the KWIK learning protocol (Li et al., 2008), we
assume we have an input space Z and an output space
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Y C R. The learning problem is specified by a function
f: Z — Y, drawn from a specified function class
F. The set Z can generally be arbitrary but, looking
ahead, our reduction from a large-scale MAB problem
(X, A, Fo) to a KWIK problem will set the function
class as F = Fg and the input space as Z = X x A,
the joint state and action spaces.

The learner is presented with a sequence of observa-

tions z',z2,... € Z and, immediately after observing

z', is asked to make a prediction of the value f(z'),
but is allowed to predict the value L meaning “don’t

know”.

Thus in KWIK model the learner may confess igno-
rance on any trial. Upon a report of “don’t know”,
where y* =1, the learner is given feedback, receiv-
ing a noisy estimate of f(z'). However, if the learner
chooses to make a prediction of f(z!), no feedback is
received !, and this prediction must be e-accurate, or
else the learner fails entirely. In the KWIK model the
aim is to make only a bounded number of L predic-
tions, and thus make e-accurate predictions on almost
every trial. Specifically:

1: Nature selects f € F

2: fort=1,2,3,... do

3: Nature selects z' € Z and presents to learner

4:  Learner predicts y* € YU { L}

5: if y* =1 then

6: Learner observes value f(z') + n',

T where 1’ is a bounded 0-mean noise term
8:  elseif y' #1 and |y* — f(z')| > € then

9: FAIL and exit

10: end if

11: // Continue if y' is e-accurate

12: end for

Definition 2. Let the error parameter be ¢ > 0 and
the failure parameter be § > 0. Then F is said to be
KWIK-learnable with don’t-know bound B = B, 0)
if there exists an algorithm such that for any se-
quence z',2%,23,... € Z, the sequence of predictions
yhy?, ... € YU{L} satisfies Yo, 1[y* = 1] < B,
and the probability of FAIL is at most 6. Any class F
is said to be efficiently K WIK-learnable if there exists
an algorithm that satisfies the above condition and on

every round runs in time poly(e~1,671).

Example Revisited: Pairwise Interactions. We
show that KWIK learnability holds here. Recalling
that fo(x,a) =32 <, j<q40i2ia;, we can linearize the
model by viewing the KWIK inputs as having d? com-
ponents z;; = xzja;, with coefficients 6, ;, and the

!This aspect of KWIK learning is crucial for our reduc-
tion.

KWIK learnability of Fg simply reduces to KWIK
noisy linear regression, which has an efficient algo-
rithm (Li et al., 2011; Strehl & Littman, 2007; Walsh
et al., 2009).

3.2. Fixed-State Optimization

We next describe the aforementioned fixed-state op-
timization problem for Fg. Assume we have a fixed
function fy € Fg, a fixed state x € X', and some € > 0.
Then an algorithm shall be referred to as a fized-state
optimization algorithm for Fg if the algorithm makes
a series of (action) queries a',a?,... € A, and in re-
sponse to a’ receives approximate feedback 3’ satisfy-
ing |y’ — fa(x,a’)| < € and then outputs a final action
a € A satisfying argmaxac4{fo(x,a)} — fo(x,a) <e.
In other words, for any fixed state x, given access only
to (approximate) input-output queries to fy(x, ), the
algorithm finds an (approximately) optimal action un-
der fp and x. It is not hard to show that if we define
Fo(X,) = {fo(x,-) : 0 € ©,x € X} — which de-
fines a class of large-action MAB problems induced by
the class Fgo of large-scale MAB problems, each one
corresponding to a fized state — then the assumption
of fixed-state optimization for Fg is in fact equiva-
lent to having a no-regret algorithm for Fg(X,-). In
this sense, the reduction we will provide shortly can
be viewed as showing that KWIK learnability bridges
the gap between the large-scale problem Fg and its
induced large-action problem Fg(X, ).

Example Revisited: Pairwise Interactions. We
show that fixed-state optimization holds here. For any
fixed state x we wish to approximately maximize the
output of fp(x,a) = Zi,j 0; jria; from approximate
queries. Since x is fixed, we can view the coefficient on
aj as 7; =y, 6; jo;. While there is no hope of distin-
guishing 6 and x, there is no need to: querying on the
jth standard basis vector returns (an approximation
to) the value of 7;. After doing so for each dimension
7, we can output whichever basis vector yielded the
highest payoff.

4. A Reduction of MAB to KWIK

We now give a reduction and algorithm showing that
the assumptions of both KWIK-learnability and fixed-
state optimization of Fg suffice to obtain an effi-
cient no-regret algorithm for the MAB problem for
Fo. The high-level idea of the algorithm is as fol-
lows. Upon receiving the state x;, we attempt to sim-
ulate the assumed fixed-state optimization algorithm
FixedStateOpt on fy(x!,-). Unfortunately, we do not
have the required oracle access to fo(x!,-), due to the
fact that the state changes with each action that we
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take. Therefore, we will instead make use of the as-
sumed KWIK learning algorithm as a surrogate. So
long as KWIK never outputs L, the optimization sub-
routine terminates with an approximate optimizer for
fo(x!,-). If KWIK returns | sometime during the sim-
ulation of FixedStateOpt, we halt that optimization
but increase the don’t-know count of KWIK, which can
only happen finitely often. The precise algorithm fol-
lows.

Algorithm 1 KWIKBandit: MAB Reduction to KWIK
+ FixedStateOpt

1: Initialize KWIK to learn unknown fy € Fg.

2: fort=1,2,...do

3. Xt receive MAB

i it

5. feedbackflag << FALSE

6: Init FixedStateOpt’ to optimize fp(x?,-)
7. whilei < i+ 1 do

8: t ey +— FixedStateOpt!

9: if leedStatertt terminates then
10: al &4 at

11: break while

12: end if .

13: 7zt = (xt,al) 22 KyIK

~4 output

14: f KWIK

15: if y; =1 then

16: at &L at

17: feedbackflag << TRUE

18: break while

19: else reedback
20: H oA, FixedStateOpt!
21: end if
22: end while
23:  at 2U%% MAB

2. fy(x',al) ' =y <0 MAB
25: if feedbackflag = TRUE then

2%: yt feedback KWIK
27: end if
28: end for

Theorem 1. Assume we have a family of functions
Fo, a KWIK-learning algorithm KWIK for Fo, and
a fized-state optimization algorithm FizedStateOpt.
Then the average regret of Algorithm 1, Ra(T)/T,
will be arbitrarily small for appropriately-chosen €
and 0, and large enough T. Moreover, the running
time is polynomial in the running time of KWIK and
FizedStateOpt.

Proof. We first bound the cost of Algorithm 1. Let us
consider the result of one round of the outermost loop,
i.e. for some fixed ¢t. First, consider the event that

KWIK does not FAIL on any trial, so we are guaranteed
that §! is an e-accurate estimate of fy(x!,al). In this
case the while loop can be broken in one of two ways:
(1) KWIK returns 1 on the pair (x!,al). In this case,
because we have assumed a bounded range for fy, we
can say that maxa fo(x',al) — fo(x',a’) < 1. (2)
FixedStateOpt terminates and returns at. But this
a’ is e-optimal per our definition, hence we have that

maxa: fo(x',al) — fo(x',a") <e

Therefore, on a trial ¢, we can bound max,: fo(x*,a%) —
fo(x",a") < 1[KWIK outputs L on round t] + e.

Taking the average over t =1,...,T we have

T

1 t .t t ot B(€75)
— X <

T ;:1 ma?xfg(x ,a,) — fo(x',a") < T

+e (1)

where B(e, d) is the don’t-know bound of KWIK. In-
equality (1) holds on the event that KWIK does not
FAIL. By definition, the probability that it does FAIL
is at most J, and in that case all we can say is that
(1/T) X1, maxa: fo(x!,al) — fo(x',a’) < 1 There-
fore:

R(T) < B(e, 9)

T — T

We must now show that the quantity on the right hand
side of the equation 2 vanishes with correctly chosen
€ and 9. But this is achieved trivially: for any small

~v > 0 if we select 6 = e < /3 and for T > SB(e 3)
have that @ + €4 d < 7 as desired. O

+e+0. (2)

Algorithm 1 is not exactly a no-regret MAB algorithm,
since it requires parameter choices to obtain small re-
gret. But this is easily remedied.

Corollary 1. Under the assumptions of Theorem 1,
there exists a no-regret algorithm for the MAB problem
on Fo.

Proof sketch. This follows as a direct consequence of
Theorem 1 and a standard use of the “doubling trick”
for selecting the input parameters in an online fashion.
The simple construction runs a sequence of versions of
Algorithm 1 with decaying choices of €,6. A detailed
proof is provided in the Appendix. O

The interesting case occurs when Fgo 1is effi-
ciently KWIK-learnable with a polynomial don’t-know
bound. In that case, we can obtain fast rates of conver-
gence to no-regret. For all known KWIK algorithms
B(e,d) is polynomial in ¢! and poly-logarithmic in
§~'. The following corollary is left as a straightfor-
ward exercise, following from equation (2).
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Corollary 2. If the don’t-know bound of KWIK is
B(e,0) = O(e %logh 6—1) for some d > 0,k > 0 then

we have R(T)/T = O ((%)ﬁ log® T) .

Example Revisited: Pairwise Interactions. As
we have previously argued, the assumptions of KWIK
learning and fixed-state optimization are met for the
class of pairwise interaction models, so Theorem 1
can be applied directly, yielding a no-regret algorithm.
More generally, a no-regret result can be obtained for
any Fo that can be similarly “linearized”; this in-
cludes a rather rich class of graphical models for ban-
dit problems studied in (Amin et al., 2011a) (whose
main result can be viewed as a special case of Theo-
rem 1). Other applications of Theorem 1 include Fg
that obey a Lipschitz condition, where we can apply
covering techniques to obtain the KWIK subroutine
(details omitted), and various function classes in the
boolean setting (Li et al., 2011).

4.1. No Weaker General Reduction

While Theorem 1 provides general conditions under
which large-scale MAB problems can be solved effi-
ciently, the assumption of KWIK learnability of Fg is
still a strong one, with noisy linear regression being
the richest problem for which there is a known KWIK
algorithm. For this reason, it would be nice to replace
the KWIK learning assumption with a weaker learn-
ing assumption 2. However, in the following theorem,
we prove (under standard cryptographic assumptions)
that there is in fact no general reduction of the MAB
problem for Fg to a weaker model of supervised learn-
ing. More precisely, we show that the “next strongest”
standard model of supervised learning after KWIK,
which is no-regret on arbitrary sequences of trials, does
not imply no-regret MAB. This immediately implies
that even weaker learning models (such as PAC learn-
ability) also cannot suffice for no-regret MAB.

Theorem 2. There exists a class of models Fgo such
that

o Fo is fized-state optimizable.

e There is an efficient algorithm A such that on an
arbitrary sequence of T' trials z*, A makes a pre-
diction §° of y* = fo(z') and receives y' as feed-
back; and the total regret err(T) £ Zle lyt — 9
is sublinear in T. Thus we have only no-regret
supervised learning instead of the stronger KWIK

2Note that we should not expect to replace or weaken
the assumption of fixed-state optimization, since we have
already noted that this is already implied by a no-regret
algorithm for the MAB problem.

learning.

e Under standard cryptographic assumptions, there
is no polynomial-time algorithm for the no-regret
MAB problem for Fo, even if the state sequence is
generated randomly from the uniform distribution.

We leave this proof for the Appendix.

5. A Model for Arriving Actions

In the model examined so far, we have been assuming
that the action space A is large — exponentially large
or perhaps infinite — but also that the entire action
space is available on every trial. In many natural set-
tings, however, this property may be violated. For in-
stance, in sponsored search, while the space of all pos-
sible ads is indeed very large, at any given moment the
search engine can choose to display only those ads that
have actually been created by extant advertisers. Fur-
thermore these advertisers arrive gradually over time,
creating a growing action space. In this setting, the al-
gorithm of Theorem 1 cannot be applied, as it assumes
the ability to optimize over all of A at each step. In
this section we introduce a new model and algorithm
to capture such scenarios.

Setting. As before, the learner is presented with a
sequence of arriving states x!,x2,x3,... € X. The
set of available actions, however, shall not be fixed in
advance but instead will grow with time. Let F be
the set of all possible actions where, formally, we shall
imagine that each f € F is a function f : X — [0, 1];
f(x) represents the payoff of action f on x € X 3.
Initially the action pool is Y C F, and on each round
t a (possibly empty) set of new actions S* C F arrives
and is added to the pool, hence the available action
pool on round t is F! := F'=1 U S, We emphasize
that when we say a new set of actions “arrives”, we do
not mean that the learner is given the actual identity
of the corresponding functions, which it must learn
to approximate, but rather that the learner is given
(noisy) black-box input-output access to them. Let
N(t) = |F*| denote the size of the action pool at time
t. Our results will depend crucially on this growth
rate N(t), in particular on it being sublinear . One

3Note that now each action is represented by its own
payoff function, in contrast to the earlier model in which
actions were inputs a into the fo(x,a). The models coin-
cide if we choose F = {fy(-,a) :a € A,0 € O}.

“Sublinearity of N(t) seems a mild and natural assump-
tion in many settings; certainly in sponsored search we
expect user queries to vastly outnumber new advertisers.
Another example is crowdsourcing systems, where the ar-
riving actions are workers that can be assigned tasks, and
f(x) is the quality of work that worker f does on task x. If
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interpretation of this requirement, and our theorem
that exploits it, is as a form of Occam’s Razor: since
new functions arriving means more parameters for the
MAB algorithm to learn, it turns out to be necessary
and sufficient that they arrive at a strictly slower rate
than the data (trials).

We now precisely state the arriving action learning
protocol:
1: Learner given an initial action pool F° C F
2: fort=1,2,3,... do
3: Learner receives new actions S* C F and up-
dates pool Ft « Ft=tu St
Nature selects xt € Z, presents to learner
5: Learner selects some f* € F*, and receives pay-
off fi(x%) +n'; nt is i.i.d. with E[n!] =0
6: end for

>

We now define our notion of regret for the arriving
action protocol.

Definition 3. Let A be an algorithm for making a se-
quence of decisions f1, f2, ... according to the arriving
action protocol. Then we say that A has no regret if on
any sequence of pairs (S',x'),(S%,x2),...,(St,x7T),
RA(T))T — 0 as T — oo, where we re-define

Ra(T) 2 B L] maxgeer f1(x') = £, f1x1)].

Reduction to KWIK Learning. Similar to Sec-
tion 4, we now show how to use the KWIK learnabil-
ity assumption on F to construct a no-regret algorithm
in the arriving action model. The key idea, described
in the reduction below, is to endow each action f in
the current action pool with its own KWIK; subroutine.
On every round, after observing the task x!, we shall
query KWIK; for a prediction of f(x') for each f € W*.
If any subroutine KWIK; returns 1, we immediately
stop and play action f! <— f. This can be thought of
as an exploration step of the algorithm. If every KWIKjy
returns a value, we simply choose the arg max as our
selected action.

Theorem 3. Let A denote Algorithm 2. For anye > 0
and any choice of {x*,S'},
RA(T) < N(T)B(e,0) +2Te + oN(T)T.

where B(e, 0) is a bound on the number of L returned
by the KWIK-Subroutine used in A.

Proof. The probability that at least one of the N(T')
KWIK algorithms will FAIL is at most 6N (7). In that

the workers also contribute tasks (as in services like stack-
overflow.com), and do so at some constant rate, it is easily

verified that N(t) = /.

Algorithm 2 No-Regret Learning in the Arriving Ac-
tion Model
1: fort=1,2,3,... do

2: Learner receives new actions S

3: Learner observes task x*

4: for f € St do

5: Initialize a subroutine KWIK; for learning f
6: end for

7: for f € Ft do

8: Query KWIK; for prediction g%

9: if §; =L then
10: Take action f! = f
11: Observe y! + fi(x')
12: Input y* into KWIK, and break
13: end if

14: end for
15: // If no KWIK subroutine

16: // returns |, simply choose best!
17: Take action f' = argmax ezt §}
18: end for

case, we suffer the maximum possible T' regret, ac-
counting for the IN(T)T term. Otherwise, on each
round t we query every f € F! for a prediction, and
either one of two things can occur: (a) KWIK; reports
L in which case we can suffer regret at most 1; or (b)
each KWIK; returns a real prediction §% #L that is
e-accurate, in which case we are guaranteed that the
regret of f* is no more than 2¢. More precisely, we can
bound the regret on round ¢ as

Fix 3)

< 1[KWIKy outputs §} =L for some f] + 2e.

t t
Jnax fo(x") =

Of course, the total number of times that any KWIKy
subroutine returns | is no more than B(e, d), hence
the total number of L’s after T" rounds is no more than
N(T)B(e, §). Summing (3) over t = 1,...,T gives the
desired bound and we are done. O

As a consequence of the previous theorem, we achieve
a simple corollary:

Corollary 3. Assume that B(e,8) = O(e~%log* §—1)
for some d > 0, and k > 0. Then R“T(T) =

1/(d+1)
0] ((N(T)) 1og’C T) This tends to 0 as long

T
as N(T) is “slightly” sublinear in T; T =
o(T/ Tog"™+)(T)).

Proof. Without loss of generality we can assume
B(e, ) < %7‘1 logd~1 for all €,§ and some constant
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RA(T) _ N(T)
T < =7

¢ > 0. Applying Theorem 3 gives +

2¢+6N(T)

mg_“ o

1/(d+1)

Choosing 6 = 1/T and € = <%) allows us to

1/(d+1)
conclude that Ra(T)/T < (c+2) (%) logh" T

and hence we are done. O

Impossibility Results. The following two theorems
show that our assumptions of the KWIK learnability
of F and sublinearity of N(t) are both necessary, in
the sense that relaxing either is not sufficient to im-
ply a no-regret algorithm for the arriving action MAB
problem. Unlike the corresponding result of Theo-
rem 2, those below do not rely on complexity-theoretic
assumptions, but are information-theoretic. The full
proof of Theorem 5 is provided in the Appendix.

Theorem 4. (Relazing sublinearity of N(t) insuffi-
cient to imply no-regret on MAB) There exists a class
F that is KWIK-learnable with a don’t-know bound of
1 such that if N(t) = t, for any learning algorithm
A and any T, there is a sequence of trials in the ar-
riving action model such that Ra(T)/T > ¢ for some
constant ¢ > 0.

Proof. Let A=Nande: N — R* be a fixed encoding
function satisfying e(n) < v for any n, and let d be a
corresponding decoding function satisfying (doe)(n) =
n.

Consider F = {f, | n € N}, where f,(n) = 1 and
fn(n') = e(n) for all other n’. The class N is KWIK-
learnable with at most a single L in the noise-free case.
Observing f,(n') for an unknown f, and arbitrary
n' € N immediately reveals the identity of f,. Either
fn(n') =1, in which case n = n/, or else n = d(f,,(n')).

Let A and F be as just described. There exists an
absolute constant ¢ > 0 such that for any T > 4, there
exists a sequence {n;, S'} satisfying N(T') = T, and
RA(T)/T > c for any A.

Let o be a random permutation of {1, ..., T}, and S* be
the ordered set { fo(1), fo(2)s s fo(r)}- In other words,
the actions f1, ..., fr are shuffled, and immediately pre-
sented to the algorithm on the first round. St = ) for
t > 1. Let ny be drawn uniformly at random from
{1,...,T} on each round ¢.

Immediately, we have that £ Zle max e r f(nt)} =
T since F' = {1,...,T} for all ¢.
Now consider the actions {f;} selected by an arbitrary

algorithm A. Define Fi(t) = {f, € F | t < 7}, the
actions that have been selected by A before time 7.

Let U(1) = {n € N| f,, € F(r)} be the states n, such
the corresponding best action f,, has been used in the
past, before round 7. Also let F(7) = {1,..., T}\ F(7).

Let R, be the reward earned by the algorithm at time
7. If n, € U(7), then the algorithm has played action
fn. in the past, and knows its identity. Therefore, it
may achieve R, = 1. Since n, is drawn uniformly at
random from {1,...,T}, P(n, € U(7) | U(7)) = w
Otherwise, in order to achieve R, = 1, any algo-
rithm must select f, from amongst F(r). But since
the actions are presented as a random permutation,
and no action in F(7) has been selected on a previ-
ous round, any such assignment satisfies P(f, = f,,_ |

ne £ U(T)) = 7=y -

Therefore for any algorithm we have:
P(R, = 1| U(7))

< P(n. €U(r) | U(7)) + P(nr ¢ U(7), fr = fa, | U(7))

<O (- B (=)

Note that the right hand side of the last expression is

a convex combination of 1 and (%) <1, and is

. . U . .
therefore increasing as ! j(f)l increases. Since |U(1)| <

7 with probability 1, we have:

rns e (o))

Let Z(T) = Zle I(R; = 1), count the number of

rounds on which R, = 1. This gives us:

T
B[Z(T)] = Y P(R.=1)

T T/2
< = P(R. =1
< 2+TZ:1 (R-=1)

< §+§{;+(1—2§> <T—1T/2>}

Where the last inequality follows from the fact that
equation 4 is increasing in 7.

Thus E[Z(T)] < 2L + 1. On rounds where R, # 1,
R, is at most 7, giving:

3 1 0%
>1- |24 = 47
RA(T)/T >1 [4+2T+4]

Taking T > 4, gives us:

RA(T)/T > § — %. Since v is arbitrary we have the
desired result. O
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Figure 1. Simulations of Algorithm 2 at three timescales; see text for details.

Theorem 5. (Relazing KWIK to supervised no-regret
insufficient to imply no-regret on MAB) There exists a
class F that is supervised no-regret learnable such that
if N(t) = V/t, for any learning algorithm A and any
T, there is a sequence of trials in the arriving action
model such that Ra(T)/T > c for some constant ¢ > 0.

6. Experiments

We now give a brief experimental illustration of our
models and results. For the sake of brevity we exam-
ine only our algorithm in the arriving action model
just discussed. We consider a setting in which both
states x and the actions or functions f are described by
unit-norm, 10-dimensional real vectors, and the value
taking f in state x is simply the inner product f-x. For
this class of functions we thus implemented the KWIK
linear regression algorithm (Walsh et al., 2009), which
is given a fixed accuracy target or threshold of e = 0.1,
and which is simulated with Gaussian noise added to
payoffs with o = 0.1. New actions/functions arrived
stochastically, with the probability of a new f being
added on trial ¢ being 0.1/+/%; thus in expectation we
have sublinear N(t) = O(v/t). Both the x and the
f are selected uniformly at random. On top of the
KWIK subroutine, we implemented Algorithm 2.

In Figure 1 we show snapshots of simulations of
this algorithm at three different timescales — af-
ter 1000, 5000, and 25,000 trials respectively. The
snapshots are indeed from three independent simula-
tions in order to illustrate the variety of behaviors in-
duced by the exogenous stochastic arrivals of new ac-
tions/functions, but also to show typical performance
for each timescale.

In each subplot, we plot three quantities. The blue
curve show the average reward per step so far for the
omniscient offline optimal that is given each weight
f as it arrives, and thus always chooses the optimal
available action on every trial. This curve is the best

possible performance, and is the target of the learning
algorithm. The red curve shows the average reward
per step so far for Algorithm 2. The black curve shows
the fraction of exploitation steps for the algorithm so
far (the last line of Algorithm 2, where we are guar-
anteed to choose an approximately optimal action).
The vertical lines indicate trials in which a new ac-
tion/function was added.

First considering 7" = 1000 (left panel, in which a to-
tal of 6 actions are added), we see that very early (as
soon as the second action arrives, and thus there is a
choice over which the offline omniscient can optimize)
the algorithm badly underperforms, and is never ex-
ploiting — new actions are arriving at rate at which
the learning algorithm cannot keep up. At around
200 trials, the algorithm has learned all available ac-
tions well enough to start to exploit, and there is an
attendant rise in performance; however, each time a
new action arrives, both exploitation and performance
drop temporarily as new learning must ensue.

At the T = 5000 timescale (middle panel, 14 actions
added), exploitation rates are consistently higher (ap-
proaching 0.6 or 60% of the trials), and performance
is beginning to converge to the optimal. New action
arrivals still cause temporary dips, but overall upward
progress is setting in.

At T = 25,000 (right panel, 27 actions added), the
algorithm is exploiting over 80% of the time, and per-
formance has converged to optimal up to the e = 0.1
accuracy set for the KWIK subroutine. If € tends to 0
as T increases, as in the formal analysis, we eventually
converge to 0 regret.
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A. Appendix
A.1. Proof of Corollary 1

Restatement of Corollary 1:

Assume we have a family of functions Fo, a KWIK-
learning algorithm KWIK for Fo, and a fized-state opti-
mization algorithm FizedStateOpt. Then there exists
a no-regret algorithm for the MAB problem on Fo.

Proof. Let A(e, d) denote Algorithm 1 when parame-
terized by € and §. We construct a no-regret algorithm
A* for the MAB problem on Fg that operates over a
series of epochs. On the start of epoch i, A* simply
runs a fresh instance of A(e;,d;), and does so for 7
rounds. We will describe how ¢;, d;, 7; are chosen.

First let e(T) denote the number of epochs that A*
starts after T rounds. Let ; be the average regret
suffered on the ith epoch. In other words, if x"! (a’!)
is the ¢th state (action) in the ith epoch, then ~; =
E |:‘r% lel Max it 4 f@(xi,t’ aiﬂf) _ fe(x’i,t7 a%t)] .

We therefore can express the average regret of A* as:

o(T)
1
Ry (T)/T = ; i (5)

From Theorem 1, we know there exists a T; and choices
for €; and 6; so that v; < 27 so long as 7; > T;. Let
71 = T1, and 7; = max{27;,_1,T;}. These choices for
7, €; and 0; guarantee that 7,_1 < 7;/2, and also ; <
27%. Applying these facts respectively to Equation 5
allows us to conclude that:

e(T)
1 - —i
RA*(T)/TST E 2~ (e() )Te(T)%
i=1

e(T)

1
— —e(T) —e(T)
< T tE:1 27y <e(T)27°

Theorem 1 also implies that e(T) — oo as T — o0,
and so A* is indeed a no regret algorithm.

O

A.2. Proof of Corollary 2

Restatement of Corollary 2:

If the don’t-know bound of KWIK is B(e,d) =
O(e=%logh 6=1) for some d > 0,k > 0 then there are
choices of €,6 so that the average regret of Algorithm 1

18

_1
Proof. Taking € = (%) 1 and § = % in Equation 2 in
the proof of Theorem 1 suffices to prove the corollary.
O

A.3. Proof of Theorem 2

We proceed to give a the proof of Theorem 2 in com-
plete rigor. We will first give a more precise construc-
tion of the class of models Fy satisfying the conditions
of the theorem.

Restatement of Theorem 2:
There exists a class of models Fy such that

o Fo is fized-state optimizable;

e There is an efficient algorithm A such that on an
arbitrary sequence of T trials z*, A makes a pre-
diction §° of y* = fo(z') and then receives y' as
feedback, and the total regret Zthl lyt —4t| is sub-
linear in T (thus we have only no-regret supervised
learning instead of the stronger KWIK);

e Under standard cryptographic assumptions, there
is mo polynomial-time algorithm for the no-regret

MAB problem for Fo.

Let Z, = {0,...,n — 1}. Suppose that © parameter-
izes a family of cryptographic trapdoor functions Hg
(which we will use to construct Fy). Specifically, each
0 consists of a “public” and “private” part so that
0 = (Bpub, Opri), and He = {hg : Z,, — Z,}. The cryp-
tographic guarantee ensured by Hg is summarized in
the following definition.

Definition 4. Let d = [log|Z,|]. Any family of cryp-
tographic trapdoor functions He must satisfy the fol-
lowing conditions:

o (Efficiently Computable) For any 0, knowing just
Opup gives an efficient (polynomial in d) algorithm
for computing hg(a) for any a € Z,.

e (Not Invertible) Let k be chosen uniformly at ran-
dom from Z,. Let A be an efficient (random-
ized) algorithm that takes O, and ho(k) as input
(but not b,), and outputs an a € Z,,. There is
no polynomial q such that P(hg(k) = he(a)) >
1/q(d).
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Depending on the family of trapdoor functions, the sec-
ond condition usually holds under an assumption that
some problem is intractable (e.g. prime factorization).

We are now ready to describe (Fo, A, X). Fix n, and
let X =Z, and A =7, U {a*}. For any hy € Hp, let
h;l denote the inverse function to hg. Since hy may be
many-to-one, for any y in the image of hy, arbitrarily
define h, ' (y) to be any x such that hy(z) = y.

We will define the behavior of each fy € Fg in what
follows. First we will define a family of functions Gg.
The behavior of each gy will be essentially identical
to that of fy, and for the purposes of understanding
the construction, it is useful to think of them as being
exactly identical.

The behavior of gy on states x € Z, is defined as
follows. Given x, to get the maximum payoff of 1, an
algorithm must invert hy. In other words, go(x,a) =1
only if hy(a) = x (for a € Z,, and not equal to the
“special” action a*). For any other a € Z,, go(x,a) =
0.

On action a*, gg(x,a*) reveals the location of A ' (x).

Specifically gg(x,a*) = H_}?%i(x) if x has an inverse
0

and gp(x,a*) = 0 if x is not in the image of hy.

It’s useful to pause here, and consider the purpose of
the construction. Assume that 0, is known. Then if
x and a (a € Z,,) are presented simultaneously in the
supervised learning setting, it’s easy to simply check if
hg(x) = a, making accurate predictions. In the fixed-
state optimization setting, querying a* presents the
algorithm with all the information it needs to find a
maximizing action. However, in the bandit setting,
if a new x is being drawn uniformly at random and
presented to the algorithm, the algorithm is doomed
to try to invert hy.

Now we want the identity of 65,1, to be revealed on
any input to the function fy, but want the behavior of
fo to be essentially that of gg. In order to achieve this,
let ||« be the function which truncates a number to
p = 2d + 2 bits of precision. This is sufficient preci-
sion to distinguish between the two smallest non-zero
numbers used in the construction of gy, %% and %nil.
Also fix an encoding scheme that maps each Gy, to
a unique number [f,,5]. We do this in a manner such
that 2727 < [fpup] < 27P7L

We will define fy by letting fo(x,a) = |go(x,a)]« +
[@pub)- Intuitively, fs mimics the behavior of gg in its
first p bits, then encodes the identity of O,y in its
subsequent p bits. [fpub] is the smallest output of fo,
and “acts as” zero.

The subsequent lemma establishes that the first two
conditions of Theorem 2 are satisfies by Fg.

Lemma 1. For any fy € Fo and any fivzed x € X,
f(x,-) can be optimized from a constant number of
queries, and poly(d) computation. Furthermore, there
exists an efficient algorithm for the supervised no-
regret problem on Fo with err(T) = O(logT), requir-
ing poly(d) computation per step.

Proof. For any 0, the fixed-state optimization problem
on fp(x,-) is solved by simply querying the special ac-
tion a*. If fa(x,a*) < 27P~1 then gy(x,a*) = 0, and
x is not in the image of hy. Therefore, a* is a maxi-
mizing action, and we are done. Otherwise, fp(x,a*)
uniquely identifies the optimal action h~!(x), which
we can subsequently query.

The supervised no-regret problem is similarly trivial.
Consider the following algorithm. On the first state, it
queries an arbitrary action, extracts its p lowest order
bits, learning 6,u,. The algorithm can now compute
the value of fp(x,a) on any (x,a) pair where a € Z,,.
If a € Z,, the algorithm simply checks if hg(a) = x. If
80, it outputs 1 + [fpub]. Otherwise, it outputs [fpub).

The only inputs on which it might make a mistake take
the form (x,a*). If the algorithm has seen the spe-
cific pair (x,a*), it can simply repeat the previously
seen value of fy(x,a*), resulting in zero error. Other-
wise, if (x,a*) is a new input, the algorithm outputs
[@pub), suffering LHISfﬁ(x)J* error. Hence, after the
first round, the algorithm cannot suffer error greater
than >/, %% = O(log T). O
Finally, we argue that that an efficient no-regret al-
gorithm for the large-scale bandit problem defined by

(Fo,A, X) can be used as a black box to invert any
hg € Hg.

Lemma 2. Under standard cryptographic assump-
tions, there is no polynomial q and efficient algorithm
BANDIT for the large-scale bandit problem on Fg that
guarantees Zthl maxa: fo(x¢,al) — fo(xe,a’) < 5T
with probability greater than 1/2 when T < q(d).

Proof. Suppose that there were such a ¢, and algo-
rithm BANDIT.

We can design an algorithm that takes 0,1, and hg(k*)
as input, for some unknown k* chosen uniformly at
random, and outputs an a € Z, such that P(hy(k) =

ho(2) > 3o

Consider simulating BANDIT for 7" rounds. On each
round ¢, the state provided to BANDIT will be generated
by selecting an action k; from Z,, uniformly at random,
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and then providing BANDIT with the state hg(k;). At
which point, BANDIT will output an action and demand
areward. If the action selected by bandit is the special
action a*, then its reward is simply |0.5/(1 + k)]. +
[Opub]. If the action selected by bandit is a’ satisfying
ho(a') = hg(k), its reward is 1+ [@pup]. Otherwise, it’s
reward is [fpub).

By hypothesis, with probability 1/2, the actions a’

generated by BANDIT must satisfy h(a') = hg(k;) for
at least one round ¢ < T'. Thus, if we choose a round 7
uniformly at random from {1, ..., ¢(7T)}, and give state
hg(k*) to BANDIT on that round, the action a™ returned
by bandit will satisfy P(hg(a™) = he(k)) > #@. This
inverts hy(k*), and contradicts the assumption that hg
belongs to a family of cryptographic trapdoor func-
tions. O

A.4. Proof of Theorem 5

We now show that relaxing KWIK to supervised no-
regret insufficient to imply no-regret on MAB.

Restatement of Theorem 5:

(Relazing KWIK to supervised no-regret insufficient to
imply no-regret on MAB) There exists a class F that is
supervised no-regret learnable such that if N(t) = v/t,
for any learning algorithm A and any T, there is a
sequence of trials in the arriving action model such
that Ro(T)/T > ¢ for some constant ¢ > 0.

Proof. First we describe the class F. For any n-bit
string z, let f, be a function such that f,(x) is some
large value, and for any ' # z, fz(2') = 0. It’s easy
to see that F is not KWIK learnable with a polyno-
mial number of don’t-knows — we can keep feeding
an algorithm different inputs 2’ # x, and as soon as
the algorithm makes a prediction, we can re-select the
target function to force a mistake. F is no-regret learn-
able, however: we just keep predicting 0. As soon as
we make a mistake, we learn x, and we’ll never err
again, so our regret is at most O(1/T).

Now in the arriving action model, suppose we initially
start with r distinct functions/actions f; = f,, € F,
i =1,...,7. We will choose N(T) = /T, which is
sublinear, and r = /T, and we can make T as large
as we want. So we have a no-regret-learnable F and a
sublinear arrival rate; now we argue that the arriving
action MAB problem is hard.

Pick a random permutation of the f;, and let 7 be the
indices in that order for convenience. We start the
task sequence with all z1’s. The MAB learner faces
the problem of figuring out which of the unknown f;s
has x1 as its high-payoff input. Since the permutation

was random, the expected number of assignments of
x1 to different f; before this is learned is r/2. At that
point, all the learner has learned is the identify of f;
— the fact that it learned that other f;(z1) = 0 is
subsumed by learning fi(x) is large, since the f; are
all distinct.

We then continue the sequence with x5’s until the
MAB learner identifies fo, which now takes (r — 1)/2
assignments in expectation. Continuing in this vein,
the expected number of assignments made before
learning (say) half of the f; is Z;fl(r - 5/2 =
Q(r?) = Q(T). On this sequence of Q(T) tasks, the
MAB learner will have gotten non-zero payoff on only
r = /T rounds. The offline optimal, on the other
hand, always knows the identity of the f; and gets
large payoff on every single task. So any learner’s cu-
mulative regret to offline grows linearly with 7' O



