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Abstract

Inspired by real-time ad exchanges for online display advertising, we consider the
problem of inferring a buyer’s value distribution for a good when the buyer is
repeatedly interacting with a seller through a posted-price mechanism. We model
the buyer as a strategic agent, whose goal is to maximize her long-term surplus,
and we are interested in mechanisms that maximize the seller’s long-term revenue.
We define the natural notion of strategic regret — the lost revenue as measured
against a truthful (non-strategic) buyer. We present seller algorithms that are no-
(strategic)-regret when the buyer discounts her future surplus — i.e. the buyer
prefers showing advertisements to users sooner rather than later. We also give a
lower bound on strategic regret that increases as the buyer’s discounting weakens
and shows, in particular, that any seller algorithm will suffer linear strategic regret
if there is no discounting.

1 Introduction

Online display advertising inventory — e.g., space for banner ads on web pages — is often sold via
automated transactions on real-time ad exchanges. When a user visits a web page whose advertising
inventory is managed by an ad exchange, a description of the web page, the user, and other relevant
properties of the impression, along with a reserve price for the impression, is transmitted to bidding
servers operating on behalf of advertisers. These servers process the data about the impression and
respond to the exchange with a bid. The highest bidder wins the right to display an advertisement
on the web page to the user, provided that the bid is above the reserve price. The amount charged
the winner, if there is one, is settled according to a second-price auction. The winner is charged the
maximum of the second-highest bid and the reserve price.

Ad exchanges have been a boon for advertisers, since rich and real-time data about impressions
allow them to target their bids to only those impressions that they value. However, this precise
targeting has an unfortunate side effect for web page publishers. A nontrivial fraction of ad exchange
auctions involve only a single bidder. Without competitive pressure from other bidders, the task of
maximizing the publisher’s revenue falls entirely to the reserve price setting mechanism. Second-
price auctions with a single bidder are equivalent to posted-price auctions. The seller offers a price
for a good, and a buyer decides whether to accept or reject the price (i.e., whether to bid above or
below the reserve price).

In this paper, we consider online learning algorithms for setting prices in posted-price auctions where
the seller repeatedly interacts with the same buyer over a number of rounds, a common occurrence
in ad exchanges where the same buyer might be interested in buying thousands of user impressions
daily. In each round t, the seller offers a good to a buyer for price pt. The buyer’s value vt for the
good is drawn independently from a fixed value distribution. Both vt and the value distribution are
known to the buyer, but neither is observed by the seller. If the buyer accepts price pt, the seller
receives revenue pt, and the buyer receives surplus vt − pt. Since the same buyer participates in
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the auction in each round, the seller has the opportunity to learn about the buyer’s value distribution
and set prices accordingly. Notice that in worst-case repeated auctions there is no such opportunity
to learn, while standard Bayesian auctions assume knowledge of a value distribution, but avoid
addressing how or why the auctioneer was ever able to estimate this distribution.

Taken as an online learning problem, we can view this as a ‘bandit’ problem [18, 16], since the
revenue for any price not offered is not observed (e.g., even if a buyer rejects a price, she may
well have accepted a lower price). The seller’s goal is to maximize his expected revenue over all
T rounds. One straightforward way for the seller to set prices would therefore be to use a no-
regret bandit algorithm, which minimizes the difference between seller’s revenue and the revenue
that would have been earned by offering the best fixed price p∗ in hindsight for all T rounds; for
a no-regret algorithm (such as UCB [3] or EXP3 [4]), this difference is o(T ). However, we argue
that traditional no-regret algorithms are inadequate for this problem. Consider the motivations of a
buyer interacting with an ad exchange where the prices are set by a no-regret algorithm, and suppose
for simplicity that the buyer has a fixed value vt = v for all t. The goal of the buyer is to acquire
the most valuable advertising inventory for the least total cost, i.e., to maximize her total surplus∑
t v − pt, where the sum is over rounds where the buyer accepts the seller’s price. A naive buyer

might simply accept the seller’s price pt if and only if vt ≥ pt; a buyer who behaves this way
is called truthful. Against a truthful buyer any no-regret algorithm will eventually learn to offer
prices pt ≈ v on nearly all rounds. But a more savvy buyer will notice that if she rejects prices in
earlier rounds, then she will tend to see lower prices in later rounds. Indeed, suppose the buyer only
accepts prices below some small amount ε. Then any no-regret algorithm will learn that offering
prices above ε results in zero revenue, and will eventually offer prices below that threshold on nearly
all rounds. In fact, the smaller the learner’s regret, the faster this convergence occurs. If v � ε then
the deceptive buyer strategy results in a large gain in total surplus for the buyer, and a large loss
in total revenue for the seller, relative to the truthful buyer. While the no-regret guarantee certainly
holds — in hindsight, the best price is indeed ε — it seems fairly useless.

In this paper, we propose a definition of strategic regret that accounts for the buyer’s incentives, and
give algorithms that are no-regret with respect to this definition. In our setting, the seller chooses a
learning algorithm for selecting prices and announces this algorithm to the buyer. We assume that
the buyer will examine this algorithm and adopt whatever strategy maximizes her expected surplus
over all T rounds. We define the seller’s strategic regret to be the difference between his expected
revenue and the expected revenue he would have earned if, rather than using his chosen algorithm
to set prices, he had instead offered the best fixed price p∗ on all rounds and the buyer had been
truthful. As we have seen, this revenue can be much higher than the revenue of the best fixed price
in hindsight (in the example above, p∗ = v). Unless noted otherwise, throughout the remainder of
the paper the term “regret” will refer to strategic regret.

We make one further assumption about buyer behavior, which is based on the observation that in
many important real-world markets — and particularly in online advertising — sellers are far more
willing to wait for revenue than buyers are willing to wait for goods. For example, advertisers are
often interested in showing ads to users who have recently viewed their products online (this practice
is called ‘retargeting’), and the value of these user impressions decays rapidly over time. Or consider
an advertising campaign that is tied to a product launch. A user impression that is purchased long
after the launch (such as the release of a movie) is almost worthless. To model this phenomenon we
multiply the buyer’s surplus in each round by a discount factor: If the buyer accepts the seller’s price
pt in round t, she receives surplus γt(vt − pt), where {γt} is a nonincreasing sequence contained in
the interval (0, 1]. We call Tγ =

∑T
t=1 γt the buyer’s ‘horizon’, since it is analogous to the seller’s

horizon T . The buyer’s horizon plays a central role in our analysis.

Summary of results: In Sections 4 and 5 we assume that discount rates decrease geometrically:
γt = γt−1 for some γ ∈ (0, 1]. In Section 4 we consider the special case that the buyer has a fixed
value vt = v for all rounds t, and give an algorithm with regret at most O(Tγ

√
T ). In Section 5 we

allow the vt to be drawn from any distribution that satisfies a certain smoothness assumption, and
give an algorithm with regret at most Õ(Tα + T

1/α
γ ) where α ∈ (0, 1) is a user-selected parameter.

Note that for either algorithm to be no-regret (i.e., for regret to be o(T )), we need that Tγ = o(T ). In
Section 6 we prove that this requirement is necessary for no-regret: any seller algorithm has regret at
least Ω(Tγ). The lower bound is proved via a reduction to a non-repeated, or ‘single-shot’, auction.
That our regret bounds should depend so crucially on Tγ is foreshadowed by the example above, in

2



which a deceptive buyer foregoes surplus in early rounds to obtain even more surplus is later rounds.
A buyer with a short horizon Tγ will be unable to execute this strategy, as she will not be capable of
bearing the short-term costs required to manipulate the seller.

2 Related work

Kleinberg and Leighton study a posted price repeated auction with goods sold sequentially to T bid-
ders who either all have the same fixed private value, private values drawn from a fixed distribution,
or private values that are chosen by an oblivious adversary (an adversary that acts independently of
observed seller behavior) [15] (see also [7, 8, 14]). Cesa-Bianchi et al. study a related problem of
setting the reserve price in a second price auction with multiple (but not repeated) bidders at each
round [9]. Note that none of these previous works allow for the possibility of a strategic buyer, i.e.
one that acts non-truthfully in order to maximize its surplus. This is because a new buyer is consid-
ered at each time step and if the seller behavior depends only on previous buyers, then the setting
immediately becomes strategyproof.

Contrary to what is studied in these previous theoretical settings, electronic exchanges in practice see
the same buyer appearing in multiple auctions and, thus, the buyer has incentive to act strategically.
In fact, [12] finds empirical evidence of buyers’ strategic behavior in sponsored search auctions,
which in turn negatively affects the seller’s revenue. In the economics literature, ‘intertemporal price
discrimination’ refers to the practice of using a buyer’s past purchasing behavior to set future prices.
Previous work [1, 13] has shown, as we do in Section 6, that a seller cannot benefit from conditioning
prices on past behavior if the buyer is not myopic and can respond strategically. However, in contrast
to our work, these results assume that the seller knows the buyer’s value distribution.

Our setting can be modeled as a nonzero sum repeated game of incomplete information, and there is
extensive literature on this topic. However, most previous work has focused only on characterizing
the equilibria of these games. Further, our game has a particular structure that allows us to design
seller algorithms that are much more efficient than generic algorithms for solving repeated games.

Two settings that are distinct from what we consider in this paper, but where mechanism design and
learning are combined, are the multi-armed bandit mechanism design problem [6, 5, 11] and the
incentive compatible regression/classification problem [10, 17]. The former problem is motivated
by sponsored search auctions, where the challenge is to elicit truthful values from multiple bidding
advertisers while also efficiently estimating the click-through rate of the set of ads that are to be
allocated. The latter problem involves learning a discriminative classifier or regression function
in the batch setting with training examples that are labeled by selfish agents. The goal is then to
minimize error with respect to the truthful labels.

Finally, Arora et al. proposed a notion of regret for online learning algorithms, called policy regret,
that accounts for the possibility that the adversary may adapt to the learning algorithm’s behavior
[2]. This resembles the ability, in our setting, of a strategic buyer to adapt to the seller algorithm’s
behavior. However, even this stronger definition of regret is inadequate for our setting. This is
because policy regret is equivalent to standard regret when the adversary is oblivious, and as we
explained in the previous section, there is an oblivious buyer strategy such that the seller’s standard
regret is small, but his regret with respect to the best fixed price against a truthful buyer is large.

3 Preliminaries and Model

We consider a posted-price model for a single buyer repeatedly purchasing items from a single seller.
Associated with the buyer is a fixed distribution D over the interval [0, 1], which is known only to
the buyer. On each round t, the buyer receives a value vt ∈ V ⊆ [0, 1] from the distribution D. The
seller, without observing this value, then posts a price pt ∈ P ⊆ [0, 1]. Finally, the buyer selects
an allocation decision at ∈ {0, 1}. On each round t, the buyer receives an instantaneous surplus of
at(vt − pt), and the seller receives an instantaneous revenue of atpt.

We will be primarily interested in designing the seller’s learning algorithm, which we will denoteA.
Let v1:t denote the sequence of values observed on the first t rounds, (v1, ..., vt), defining p1:t and
a1:t analogously. A is an algorithm that selects each price pt as a (possibly randomized) function
of (p1:t−1, a1:t−1). As is common in mechanism design, we assume that the seller announces his
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choice of algorithm A in advance. The buyer then selects her allocation strategy in response. The
buyer’s allocation strategy B generates allocation decisions at as a (possibly randomized) function
of (D, v1:t, p1:t, a1:t−1).

Notice that a choice of A, B and D fixes a distribution over the sequences a1:T and p1:T . This in
turn defines the seller’s total expected revenue:

SellerRevenue(A,B,D, T ) = E
[∑T

t=1 atpt
∣∣ A,B,D] .

In the most general setting, we will consider a buyer whose surplus may be discounted through time.
In fact, our lower bounds will demonstrate that a sufficiently decaying discount rate is necessary for
a no-regret learning algorithm. We will imagine therefore that there exists a nonincreasing sequence
{γt ∈ (0, 1]} for the buyer. For a choice of T , we will define the effective “time-horizon” for the
buyer as Tγ =

∑T
t=1 γt. The buyer’s expected total discounted surplus is given by:

BuyerSurplus(A,B,D, T ) = E
[∑T

t=1 γtat(vt − pt)
∣∣ A,B,D] .

We assume that the seller is faced with a strategic buyer who adapts to the choice of A. Thus, let
B∗(A,D) be a surplus-maximizing buyer for seller algorithmA and value distribution isD. In other
words, for all strategies B we have

BuyerSurplus(A,B∗(A,D),D, T ) ≥ BuyerSurplus(A,B,D, T ).

We are now prepared to define the seller’s regret. Let p∗ = arg maxp∈P pPrD[v ≥ p], the revenue-
maximizing choice of price for a seller that knows the distribution D, and simply posts a price of
p∗ on every round. Against such a pricing strategy, it is in the buyer’s best interest to be truthful,
accepting if and only if vt ≥ p∗, and the seller would receive a revenue of Tp∗ Prv∼D[v ≥ p∗].
Informally, a no-regret algorithm is able to learn D from previous interactions with the buyer, and
converge to selecting a price close to p∗. We therefore define regret as:

Regret(A,D, T ) = Tp∗ Prv∼D[v ≥ p∗]− SellerRevenue(A,B∗(A,D),D, T ).

Finally, we will be interested in algorithms that attain o(T ) regret (meaning the averaged re-
gret goes to zero as T → ∞) for the worst-case D. In other words, we say A is no-regret if
supD Regret(A,D, T ) = o(T ). Note that this definition of worst-case regret only assumes that Na-
ture’s behavior (i.e., the value distribution) is worst-case; the buyer’s behavior is always presumed
to be surplus maximizing.

4 Fixed Value Setting

In this section we consider the case of a single unknown fixed buyer value, that is V = {v} for
some v ∈ (0, 1]. We show that in this setting a very simple pricing algorithm with monotonically
decreasing price offerings is able to achieve O(Tγ

√
T ) when the buyer discount is γt = γt−1. Due

to space constraints many of the proofs for this section appear in Appendix A.

Monotone algorithm: Choose parameter β ∈ (0, 1), and initialize a0 = 1 and
p0 = 1. In each round t ≥ 1 let pt = β1−at−1pt−1.

In the Monotone algorithm, the seller starts at the maximum price of 1, and decreases the price
by a factor of β whenever the buyer rejects the price, and otherwise leaves it unchanged. Since
Monotone is deterministic and the buyer’s value v is fixed, the surplus-maximizing buyer algorithm
B∗(Monotone, v) is characterized by a deterministic allocation sequence a∗1:T ∈ {0, 1}T .1

The following lemma partially characterizes the optimal buyer allocation sequence.
Lemma 1. The sequence a∗1, . . . , a

∗
T is monotonically nondecreasing.

1If there are multiple optimal sequences, the buyer can then choose to randomize over the set of sequences.
In such a case, the worst case distribution (for the seller) is the one that always selects the revenue minimizing
optimal sequence. In that case, let a∗

1:T denote the revenue-minimizing buyer-optimal sequence.
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In other words, once a buyer decides to start accepting the offered price at a certain time step, she
will keep accepting from that point on. The main idea behind the proof is to show that if there does
exist some time step t′ where a∗t′ = 1 and a∗t′+1 = 0, then swapping the values so that a∗t′ = 0 and
a∗t′+1 = 1 (as well potentially swapping another pair of values) will result in a sequence with strictly
better surplus, thereby contradicting the optimality of a∗1:T . The full proof is shown in Section A.1.

Now, to finish characterizing the optimal allocation sequence, we provide the following lemma,
which describes time steps where the buyer has with certainty begun to accept the offered price.

Lemma 2. Let cβ,γ = 1 + (1 − β)Tγ and dβ,γ =
log(

cβ,γ
v )

log(1/β) , then for any t > dβ,γ we have
a∗t+1 = 1.

A detailed proof is presented in Section A.2. These lemmas imply the following regret bound.

Theorem 1. Regret(Monotone, v, T ) ≤ vT
(

1− β
cβ,γ

)
+ vβ

(
dβ,γ
cβ,γ

+ 1
cβ,γ

)
.

Proof. By Lemmas 1 and 2 we receive no revenue until at most round ddβ,γe + 1, and from that
round onwards we receive at least revenue βddβ,γe per round. Thus

Regret(Monotone, v, T ) = vT −
T∑

t=ddβ,γe+1

βddβ,γe ≤ vT − (T − dβ,γ − 1)βdβ,γ+1

Noting that βdβ,γ = v
cβ,γ

and rearranging proves the theorem.

Tuning the learning parameter simplifies the bound further and provides a O(Tγ
√
T ) regret bound.

Note that this tuning parameter does not assume knowledge of the buyer’s discount parameter γ.

Corollary 1. If β =
√
T

1+
√
T

then Regret(Monotone, v, T ) ≤
√
T
(
4vTγ + 2v log

(
1
v

))
+ v .

The computation used to derive this corollary are found in Section A.3. This corollary shows that it
is indeed possible to achieve no-regret against a strategic buyer with a unknown fixed value as long
as Tγ = o(

√
T ). That is, the effective buyer horizon must be more than a constant factor smaller

than the square-root of the game’s finite horizon.

5 Stochastic Value Setting

We next give a seller algorithm that attains no-regret when the set of prices P is finite, the buyer’s
discount is γt = γt−1, and the buyer’s value vt for each round is drawn from a fixed distribution D
that satistfies a certain continuity assumption, detailed below.

Phased algorithm: Choose parameter α ∈ (0, 1). Define Ti ≡ 2i and Si ≡
min

(
Ti
|P| , T

α
i

)
. For each phase i = 1, 2, 3, . . . of length Ti rounds:

Offer each price p ∈ P for Si rounds, in some fixed order; these are the explore
rounds. LetAp,i = Number of explore rounds in phase iwhere price pwas offered
and the buyer accepted. For the remaining Ti−|P|Si rounds of phase i, offer price
p̃i = arg maxp∈P p

Ap,i
Si

in each round; these are the exploit rounds.

The Phased algorithm proceeds across a number of phases. Each phase consists of explore rounds
followed by exploit rounds. During explore rounds, the algorithm selects each price in some fixed
order. During exploit rounds, the algorithm repeatedly selects the price that realized the greatest
revenue during the immediately preceding explore rounds.

First notice that a strategic buyer has no incentive to lie during exploit rounds (i.e. it will accept any
price pt < vt and reject any price pt > vt), since its decisions there do not affect any of its future
prices. Thus, the exploit rounds are the time at which the seller can exploit what it has learned from
the buyer during exploration. Alternatively, if the buyer has successfully manipulated the seller into
offering a low price, we can view the buyer as “exploiting” the seller.
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During explore rounds, on the other hand, the strategic buyer can benefit by telling lies which will
cause it to witness better prices during the corresponding exploit rounds. However, the value of
these lies to the buyer will depend on the fraction of the phase consisting of explore rounds. Taken
to the extreme, if the entire phase consists of explore rounds, the buyer is not interested in lying.
In general, the more explore rounds, the more revenue has to be sacrificed by a buyer that is lying
during the explore rounds. For the myopic buyer, the loss of enough immediate revenue at some
point ceases to justify her potential gains in the future exploit rounds.

Thus, while traditional algorithms like UCB balance exploration and exploitation to ensure confi-
dence in the observed payoffs of sampled arms, our Phased algorithm explores for two purposes:
to ensure accurate estimates, and to dampen the buyer’s incentive to mislead the seller. The seller’s
balancing act is to explore for long enough to learn the buyer’s value distribution, but leave enough
exploit rounds to benefit from the knowledge.

Continuity of the value distribution The preceding argument required that the distribution D
does not exhibit a certain pathology. There cannot be two prices p, p′ that are very close but
pPrv∼D[v ≥ p] and p′ Prv∼D[v ≥ p′] are very different. Otherwise, the buyer is largely indif-
ferent to being offered prices p or p′, but distinguishing between the two prices is essential for the
seller during exploit rounds. Thus, we assume that the value distribution D is K-Lipschitz, which
eliminates this problem: Defining F (p) ≡ Prv∼D[v ≥ p], we assume there exists K > 0 such that
|F (p) − F (p′)| ≤ K|p − p′| for all p, p′ ∈ [0, 1]. This assumption is quite mild, as our Phased
algorithm does not need to know K, and the dependence of the regret rate on K will be logarithmic.
Theorem 2. Assume F (p) ≡ Prv∼D[v ≥ p] is K-Lipschitz. Let ∆ = minp∈P\{p∗} p

∗F (p∗) −
pF (p), where p∗ = arg maxp∈P pF (p). For any parameter α ∈ (0, 1) of the Phased algorithm
there exist constants c1, c2, c3, c4 such that

Regret(Phased,D, T ) ≤ c1|P|Tα + c2
|P|2

∆2/α
(log T )1/α

+ c3
|P|2

∆1/α
T 1/α
γ (log T + log(K/∆))1/α + c4|P|

= Õ(Tα + T 1/α
γ ).

The complete proof of Theorem 2 is rather technical, and is provided in Appendix B.

To gain further intuition about the upper bounds proved in this section and the previous section, it
helps to parametrize the buyer’s horizon Tγ as a function of T , e.g. Tγ = T c for 0 ≤ c ≤ 1. Writing
it in this fashion, we see that the Monotone algorithm has regret at most O(T c+

1
2 ), and the Phased

algorithm has regret at most Õ(T
√
c) if we choose α =

√
c. The lower bound proved in the next

section states that, in the worst case, any seller algorithm will incur a regret of at least Ω(T c).

6 Lower Bound

In this section we state the main lower bound, which establishes a connection between the regret of
any seller algorithm and the buyer’s discounting. Specifically, we prove that the regret of any seller
algorithm is Ω(Tγ). Note that when T = Tγ — i.e., the buyer does not discount her future surplus
— our lower bound proves that no-regret seller algorithms do not exist, and thus it is impossible for
the seller to take advantage of learned information. For example, consider the seller algorithm that
uniformly selects prices pt from [0, 1]. The optimal buyer algorithm is truthful, accepting if pt < vt,
as the seller algorithm is non-adaptive, and the buyer does not gain any advantage by being more
strategic. In such a scenario the seller would quickly learn a good estimate of the value distribution
D. What is surprising is that a seller cannot use this information if the buyer does not discount her
future surplus. If the seller attempts to leverage information learned through interactions with the
buyer, the buyer can react accordingly to negate this advantage.

The lower bound further relates regret in the repeated setting to regret in a particular single-shot
game between the buyer and the seller. This demonstrates that, against a non-discounted buyer, the
seller is no better off in the repeated setting than he would be by repeatedly implementing such a
single-shot mechanism (ignoring previous interactions with the buyer). In the following section we
describe the simple single-shot game.
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6.1 Single-Shot Auction

We call the following game the single-shot auction. A seller selects a family of distributions S
indexed by b ∈ [0, 1], where each Sb is a distribution on [0, 1]× {0, 1}. The family S is revealed to
a buyer with unknown value v ∈ [0, 1], who then must select a bid b ∈ [0, 1], and then (p, a) ∼ Sb
is drawn from the corresponding distribution.

As usual, the buyer gets a surplus of a(v − p), while the seller enjoys a revenue of ap. We restrict
the set of seller strategies to distributions that are incentive compatible and rational. S is incentive
compatible if for all b, v ∈ [0, 1],E(p,a)∼Sb [a(v−p)] ≤ E(p,a)∼Sv [a(v−p)]. It is rational if for all v,
E(p,a)∼Sv [a(v−p)] ≥ 0 (i.e. any buyer maximizing expected surplus is actually incentivised to play
the game). Incentive compatible and rational strategies exist: drawing p from a fixed distribution
(i.e. all Sb are the same), and letting a = 1{b ≥ p} suffices.2

We define the regret in the single-shot setting of any incentive-compatible and rational strategy S
with respect to value v as

SSRegret(S, v) = v − E(p,a)∼Sv [ap].

The following loose lower bound on SSRegret(S, v) is straightforward, and establishes that a
seller’s revenue cannot be a constant fraction of the buyer’s value for all v. The full proof is provided
in the appendix (Section C.1).
Lemma 3. For any incentive compatible and rational strategy S there exists v ∈ [0, 1] such that
SSRegret(S, v) ≥ 1

12 .

6.2 Repeated Auction

Returning to the repeated setting, our main lower bound will make use of the following technical
lemma, the full proof of which is provided in the appendix (Section C.1). Informally, the Lemma
states that the surplus enjoyed by an optimal buyer algorithm would only increase if this surplus
were viewed without discounting.
Lemma 4. Let the buyer’s discount sequence {γt} be positive and nonincreasing. For any
seller algorithm A, value distribution D, and surplus-maximizing buyer algorithm B∗(A,D),

E
[∑T

t=1 γtat(vt − pt)
]
≤ E

[∑T
t=1 at(vt − pt)

]
Notice if at(vt − pt) ≥ 0 for all t, then the Lemma 4 is trivial. This would occur if the buyer only
ever accepts prices less than its value (at = 1 only if pt ≤ vt). However, Lemma 4 is interesting
in that it holds for any seller algorithm A. It’s easy to imagine a seller algorithm that incentivizes
the buyer to sometimes accept a price pt > vt with the promise that this will generate better prices
in the future (e.g. setting pt′ = 1 and offering pt = 0 for all t > t′ only if at′ = 1 and otherwise
setting pt = 1 for all t > t′).

Lemmas 3 and 4 let us prove our main lower bound.
Theorem 3. Fix a positive, nonincreasing, discount sequence {γt}. Let A be any seller algorithm
for the repeated setting. There exists a buyer value distribution D such that Regret(A,D, T ) ≥
1
12Tγ . In particular, if Tγ = Ω(T ), no-regret is impossible.

Proof. Let {ab,t, pb,t} be the sequence of prices and allocations generated by playing B∗(A, b)
against A. For each b ∈ [0, 1] and (p, a) ∈ [0, 1) × {0, 1}, let µb(p, a) = 1

Tγ

∑T
t=1 γt1{ab,t =

a}1{pb,t = p}. Notice that µb(p, a) > 0 for countably many (p, a) and let Ωb = {(p, a) ∈
[0, 1]× {0, 1} : µb(p, a) > 0}. We think of µb as being a distribution. It’s in fact a random measure
since the {ab,t, pb,t} are themselves random. One could imagine generating µb by playing B∗(A, b)
against A and observing the sequence {ab,t, pb,t}. Every time we observe a price pb,t = p and
allocation ab,t = a, we assign 1

Tγ
γt additional mass to (p, a) in µb. This is impossible in practice,

but the random measure µb has a well-defined distribution.

Now consider the following strategy S for the single-shot setting. Sb is induced by drawing a µb,
then drawing (p, a) ∼ µb. Note that for any b ∈ [0, 1] and any measurable function f

2This subclass of auctions is even ex post rational.
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E(p,a)∼Sb [f(a, p)] = Eµb∼Sb
[
E(p,a)∼µb [f(a, b) | µb]

]
= 1

Tγ
E
[∑T

t=1 γtf(ab,t, pb,t)
]
.

Thus the strategy S is incentive compatible, since for any b, v ∈ [0, 1]

E(p,a)∼Sb [a(v − p)] =
1

Tγ
E

[
T∑
t=1

γtab,t(v − pb,t)

]
=

1

Tγ
BuyerSurplus(A,B∗(A, b), v, T )

≤ 1

Tγ
BuyerSurplus(A,B∗(A, v), v, T ) =

1

Tγ
E

[
T∑
t=1

γtav,t(v − pv,t)

]
= E(p,a)∼Sv [a(v − p)]

where the inequality follows from the fact that B∗(A, v) is a surplus-maximizing algorithm for a
buyer whose value is v. The strategy S is also rational, since for any v ∈ [0, 1]

E(p,a)∼Sv [a(v − p)] =
1

Tγ
E

[
T∑
t=1

γtav,t(v − pv,t)

]
=

1

Tγ
BuyerSurplus(A,B∗(A, v), v, T ) ≥ 0

where the inequality follows from the fact that a surplus-maximizing buyer algorithm cannot earn
negative surplus, as a buyer can always reject every price and earn zero surplus.

Let rt = 1− γt and Tr =
∑T
t=1 rt. Note that rt ≥ 0. We have the following for any v ∈ [0, 1]:

TγSSRegret(S, v) = Tγ
(
v − E(p,a)∼Sv [ap]

)
= Tγ

(
v − 1

Tγ
E

[
T∑
t=1

γtav,tpv,t

])

= Tγv − E

[
T∑
t=1

γtav,tpv,t

]
= (T − Tr)v − E

[
T∑
t=1

(1− rt)av,tpv,t

]

= Tv − E

[
T∑
t=1

av,tpv,t

]
+ E

[
T∑
t=1

rtav,tpv,t

]
− Trv

= Regret(A, v, T )+E

[
T∑
t=1

rtav,tpv,t

]
−Trv = Regret(A, v, T )+E

[
T∑
t=1

rt(av,tpv,t − v)

]

A closer look at the quantityE
[∑T

t=1 rt(av,tpv,t − v)
]
, tells us that: E

[∑T
t=1 rt(av,tpv,t − v)

]
≤

E
[∑T

t=1 rtav,t(pv,t − v)
]

= −E
[∑T

t=1(1− γt)av,t(v − pv,t)
]
≤ 0, where the last inequality

follows from Lemma 4. Therefore TγSSRegret(S, v) ≤ Regret(A, v, T ) and taking D to be the
point-mass on the value v ∈ [0, 1] which realizes Lemma 3 proves the statement of the theorem.

7 Conclusion

In this work, we have analyzed the performance of revenue maximizing algorithms in the setting of
a repeated posted-price auction with a strategic buyer. We show that if the buyer values inventory in
the present more than in the far future, no-regret (with respect to revenue gained against a truthful
buyer) learning is possible. Furthermore, we provide lower bounds that show such an assumption
is in fact necessary. These are the first bounds of this type for the presented setting. Future direc-
tions of study include studying buyer behavior under weaker polynomial discounting rates as well
understanding when existing “off-the-shelf” bandit-algorithm (UCB, or EXP3), perhaps with slight
modifications, are able to perform well against strategic buyers.
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A Upper Bound on the Regret of Monotone

A.1 Proof of Lemma 1

Proof. For any sequence a ∈ {0, 1}T let last(a) be the last round t where at = 1 and at+1 = 0,
or last(a) = 0 if there is no such round. Let a∗ = a∗1, . . . , a

∗
T , and assume for contradiction that

last(a∗) > 0. Further, assume without loss of generality that last(a∗) ≥ last(ã∗) for every optimal
sequence ã∗. Let ` = last(a∗).

Suppose that a∗t = 0 for all t ≥ ` + 1. If v − p` ≥ 0 then, since p`+1 = p`, letting a∗`+1 = 1
does not decrease the buyer’s total surplus and increases last(a∗), violating the assumption that
last(a∗) ≥ last(ã∗) for every optimal sequence ã∗. On the other hand, if v − p` < 0 then letting
a∗` = 0 increases the buyer’s total surplus, contradicting the optimality of a∗.

Otherwise choose the smallest k ≥ 1 such that a∗`+k = 0, and a∗`+k+1 = 1. Note that p`+k+1 =

βkp` and p`+k = β`−1p`. Swapping the values of a∗` and a∗`+1 does not affect the buyer’s surplus
in rounds other than ` and ` + 1, and must not increase the buyer’s total surplus, which implies
γ`−1(v−p`) ≥ γ`(v−βp`). Likewise, swapping the values of a∗`+k and a∗`+k+1 does not affect the
buyer’s surplus in rounds other than `+ k and `+ k+ 1, and increases last(a∗), so it must decrease
the buyer’s total surplus, which implies γ`+k(v − p`+k+1) > γ`+k−1(v − p`+k).

Cancelling γ’s in each inequality, and substituting for p`+k and p`+k+1 gives the following inequal-
ities:

v − p` ≥ γv − γβp` and γv − γβkp` > v − βk−1p`

Adding the two inequalities and rearranging gives us:

βk−1p` + γp`(β − βk) > p`

Dividing through by p` gives us:
βk−1 + γ(β − βk) > 1 (1)

Let g(β) = βk−1 + β − βk. Since β − βk is non-negative and γ ≤ 1, g(β) is an upper bound on
the left hand side of equation 1. Giving:

βk−1 + γ(β − βk) ≤ g(β) (2)

However, dgdβ = (k− 1)βk−2 + 1−kβk−1 = (1−βk−2) +k(βk−2−βk−1), which is non-negative
for any β < 1. To see why, note that both terms in the last expression are non-negative when k > 1
and the entire expression is 0 when k = 1.

Therefore, g(·) is a non-decreasing function and for any β < 1, g(β) ≤ g(1) = 1. This fact
combined with Eq. (1) and Eq. (2) imply a contradiction.

A.2 Proof of Lemma 2

Proof. Rearranging the inequality t > dβ,γ yields βt (1 + (1− β)Tγ) < v. Subtracting βt+1 from
both sides, multiplying both sides by γt, and applying the inequality

∑T−t
t′=1 γ

t′−1 ≤
∑T
t′=1 γ

t′−1 =
Tγ gives us

γt

(
βt

(
1 + (1− β)

T−t−1∑
t′=1

γt
′−1

)
− βt+1

)
< γt(v − βt+1)

⇔ βt(1− β)

T∑
t′=t+1

γt
′−1 < γt(v − βt+1)

Now substitute βt(1− β) = (v − βt+1)− (v − βt) and gather terms. We have

T∑
t′=t+2

γt
′−1(v − βt+1) <

T∑
t′=t+1

γt
′−1(v − βt) . (3)
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Note that
∑T
t′=t+1 γ

t′−1(v− βt) is the surplus of a monotonic buyer that starts accepting (and thus
continues to accept) the price offered at time t+ 1. The inequality above, which holds for arbitrary
t > dβ,γ , states that the surplus that is gained from starting to accept at round t + 1 is greater than
the surplus gained from starting to accept at round t+ 2. Thus, it must be the case a∗t+1 = 1.

A.3 Proof of Corollary 1

Before showing the proof to Corollary 1, we prove the following technical lemma.
Lemma 5. x ≥ log(1 + x) if x ≥ 0 and x ≤ 2 log(1 + x) if 0 ≤ x ≤ 1.

Proof. By Taylor’s theorem ex =
∑∞
i=0

xi

i! . Therefore ex ≥ 1 + x if x ≥ 0, and so x ≥ log(1 + x)

if x ≥ 0. Now let an =
∑n
i=1(−1)i+1 xi

i and observe that for any positive even integer n

2an = 2x− x2 + 2

n∑
i=3

(−1)i+1x
i

i

= x+
(
x− x2

)
+ 2

n∑
i=3,5,7,...

xi
(

1

i
− x

i+ 1

)
≥ x

where the inequality follows because x − x2 ≥ 0 if 0 ≤ x ≤ 1 and 1
i −

x
i+1 ≥ 0 if x ≤ 1 and

i ≥ 1. Since limn→∞ an = log(1 + x) (by Taylor’s theorem) and limn→∞ an = limn→∞,n even an
(because all subsequences of a convergent sequence have the same limit), we have shown 2 log(1 +
x) ≥ x for 0 ≤ x ≤ 1.

Now, the proof of Corollary 1.

Proof of Corollary 1. From the expression for β we have

cβ,γ = 1 +

(
1−

√
T

1 +
√
T

)
Tγ = 1 +

1(
1 +
√
T
)Tγ =

1 +
√
T + Tγ(

1 +
√
T
) (4)

which implies

1− β

cβ,γ
= 1−

√
T

1 +
√
T + Tγ

=
1 + Tγ

1 +
√
T + Tγ

.

We also have

dβ,γ =

log

((
1 +

Tγ

(1+
√
T)

)
1
v

)
log
(

1+
√
T√
T

) =

log

(
1 +

Tγ

(1+
√
T)

)
+ log

(
1
v

)
log
(

1 + 1√
T

) .

By Lemma 5 we know that x ≥ log(1 + x) if x ≥ 0 and x ≤ 2 log(1 + x) if 0 ≤ x ≤ 1. Since
T ≥ 1 we have Tγ

(1+
√
T)
≥ 0 and 0 ≤ 1√

T
≤ 1 and therefore

dβ,γ ≤
2Tγ
√
T(

1 +
√
T
) + 2

√
T log

(
1

v

)
≤ 2Tγ + 2

√
T log

(
1

v

)
. (5)

From the expression for cβ,γ in Eq. (4) we have 1
cβ,γ
≤ 1. Therefore

dβ,γ
cβ,γ

≤ 2Tγ + 2
√
T log

(
1

v

)
.

Now plug the bounds on 1− β
cβ,γ

, dβ,γcβ,γ
and 1

cβ,γ
from above into the upper bound from Theorem 1.

Noting that β ≤ 1 gives us

Regret(Monotone, v, T ) ≤ vT

(
1 + Tγ

1 +
√
T + Tγ

)
+ vβ

(
2Tγ + 2

√
T log

(
1

v

)
+ 1

)
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≤
√
T

(
4vTγ + 2v log

(
1

v

))
+ v .

B Upper Bound on Regret of Phased

Let λ be a fixed positive constant, whose exact value will be specified later. Define V +
p,i to be the

number of explore rounds in phase i where price p was offered and the buyer’s value in the round

was at least p + λ. Let r̂+
p,i = p

V +
p,i

Si
, and note that E[r̂+

p,i] = pF (p + λ). Similarly, define V −p,i to
be the number of explore rounds in phase i where price p was offered and the buyer’s value in the

round was at least p − λ. Let r̂−p,i = p
V −p,i
Si

, and note that E[r̂−p,i] = pF (p − λ). Also, let Ap,i be
the number of explore rounds in phase i where price p was offered and was accepted by the buyer.
Then, we let r̃p,i = p

Ap,i
Si

denote the observed revenue of price p in explore rounds in phase i.

In the Phased algorithm, the price p̃i that maximizes r̃p,i is offered in every exploit round of phase i.
So our strategy for proving Theorem 2 will be to show that p∗ = arg maxp r̃p,i with high probability
for all sufficiently large i. There are essentially only two ways this can fail to happen: Either the
realized buyer values differ greatly from their expectations, or the buyer is untruthful about her
realized values. The first case is unlikely, and the latter case is costly to the buyer, provided the
number of explore rounds in the phase is sufficiently large. We now quantify “sufficiently large”.
Let i∗ be the smallest nonnegative integer such that Si ≥ DT for all i ≥ i∗, where

DT = max

(
16

∆2
log T,

8

∆
C 1
T

)
andCδ = log(1+(1−γ)Tγ/(δλ)) log(1/γ)−1. Note that i∗ is well-defined because Si is increasing
in i. The next lemma uses a standard concentration inequality to bound the probability that certain
random variables are close to their expectations.

Lemma 6. Fix price p ∈ P and phase i ≥ i∗. With probability 1− 2T−1

r̂−p,i ≤ pF (p− λ) +
∆

4
and r̂+

p∗,i ≥ p
∗F (p∗ + λ)− ∆

4
.

Proof. Note that r̂−p,i is an average of Si independent random variables, since the variables pt are
chosen deterministically during the explore phase and each vt is always drawn independently. Also
note that E[r̂−p,i] = pF (p− λ). Since i ≥ i∗ we have

Si ≥
16

∆2
log T =

1

(∆/4)2
log T.

Thus by Hoeffding’s inequality Pr
[
r̂−p,i ≤ pF (p− λ) + ∆

4

]
≥ 1 − T−1. Similarly r̂+

p∗,i

is an average of Si independent random variables and E[r̂+
p∗,i] = p∗F (p∗ + λ), and thus

Pr
[
r̂+
p∗,i ≥ p∗F (p∗ + λ)− ∆

4

]
≥ 1− T−1. The lemma follows from the union bound.

Let Lp,i be the set of explore rounds in phase i where the seller offered price p and the buyer λ-lied,
i.e., a round t where either the buyer accepted price p and her value vt ≤ p− λ, or rejected price p
and her value vt > p+ λ. Let Lp,i = |Lp,i|. The next lemma shows that, for any phase i where the
event from the previous lemma occurs, if the observed revenue of the optimal price p∗ is less than
the observed revenue of another price then the buyer must have told many λ-lies during phase i.

Lemma 7. Fix price p ∈ P and phase i. If r̃p∗,i < r̃p,i and the event from Lemma 6 occurs then

Lp,i ≥
(

∆−4Kλ
4p

)
Si or Lp∗,i ≥

(
∆−4Kλ

4p∗

)
Si.

Proof. Assume for contradiction that Lp,i <
(

∆−4Kλ
4p

)
Si and Lp∗,i <

(
∆−4Kλ

4p∗

)
Si. For any

price p′ note that Ap′,i − V −p′,i ≤ Lp′,i and V +
p′,i − Ap′,i ≤ Lp′,i, since Ap′,i counts the number of

12



times the buyer accepted price p′ in phase i. Combining these bounds and applying the definitions
of r̃p,i, r̃p∗,i, r̂−p,i and r̂+

p∗,i proves

r̃p,i − r̂−p,i =
p

Si

(
Ap,i − V −p,i

)
<

p

Si

(∆− 4Kλ

4p

)
Si =

∆

4
−Kλ, (6)

r̂+
p∗,i − r̃p∗,i =

p∗

Si

(
V +
p∗,i −Ap∗,i

)
<
p∗

Si

(∆− 4Kλ

4p∗

)
Si =

∆

4
−Kλ. (7)

Now observe

r̃p,i < r̂−p,i +
∆

4
−Kλ Eq. (6)

≤ pF (p− λ) +
∆

2
−Kλ Lemma 6

≤ p(F (p) +Kλ) +
∆

2
−Kλ K-Lipschitz continuity

≤ pF (p) +
∆

2

≤ p∗F (p∗)− ∆

2
Definition of ∆

≤ p∗(F (p∗ + λ) +Kλ)− ∆

2
K-Lipschitz continuity

≤ p∗F (p∗ + λ)− ∆

2
+Kλ

≤ r̂+
p∗,i −

∆

4
+Kλ Lemma 6

< r̃p∗,i Eq. (7)

which contradicts r̃p∗,i < r̃p,i.

Next we show that the number of λ-lies told by a surplus-maximizing buyer in any phase is bounded
with high probability. This is the main technical lemma.
Lemma 8. Fix price p ∈ P , phase i, and suppose the buyer uses a surplus-maximizing algorithm
B∗(Phased,D). For all δ > 0 we have Pr [Lp,i ≥ Cδ] ≤ δ.

Proof. Let Bi be a buyer algorithm that acts according to B∗(Phased,D) during the first i − 1
phases, and from phase i onwards acts truthfully in every round, i.e., at = 1{vt ≥ pt} for all rounds
t in phases i, i+ 1, . . . , dlog2 T e. Assume Pr [Lp,i ≥ Cδ] > δ. We will show that this implies

BuyerSurplus(Phased,B∗(Phased,D),D, T ) < BuyerSurplus(Phased,Bi,D, T ),

a contradiction.

Let p∗1, . . . , p
∗
T and a∗1, . . . , a

∗
T be the prices and accept decisions from all rounds when the buyer

algorithm is B∗(Phased,D), and let pi1, . . . , p
i
T and ai1, . . . , a

i
T be the price and accept decisions

from all rounds when the buyer algorithm is Bi. Recall that the values v1, . . . , vT are drawn inde-
pendently of seller or buyer behavior. Let t−i and t+i be the first and last explore rounds in phase i,
respectively. We have

BuyerSurplus(Phased,B∗(Phased,D),D, T )− BuyerSurplus(Phased,Bi,D, T )

= E

t−i −1∑
t=1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))

+ E

 t+i∑
t=t−i

γt−1(a∗t (vt − p∗t )− ait(vt − pit))


+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))

 (8)
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= E

 t+i∑
t=t−i

γt−1(a∗t (vt − p∗t )− ait(vt − pit))

+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))


(9)

= E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)

+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))

 (10)

≤ E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)

+ γt
+
i Tγ (11)

= Pr[Lp,i ≥ Cδ]E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i ≥ Cδ


+ Pr[Lp,i < Cδ]E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i < Cδ

+ γt
+
i Tγ

≤ Pr[Lp,i ≥ Cδ]E

 ∑
t∈Lp,i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i ≥ Cδ

+ γt
+
i Tγ (12)

≤ Pr[Lp,i ≥ Cδ]E

 ∑
t∈Lp,i

γt−1(−λ)
∣∣ Lp,i ≥ Cδ

+ γt
+
i Tγ (13)

≤ Pr[Lp,i ≥ Cδ]
t+i∑

t=t+i −Cδ+1

γt−1(−λ) + γt
+
i Tγ (14)

< δ

t+i∑
t=t+i −Cδ+1

γt−1(−λ) + γt
+
i Tγ (15)

= −δλγt
+
i −Cδ

(
1− γCδ
1− γ

)
+ γt

+
i Tγ =

γt
+
i

1− γ

(
−δλ(1− γCδ)

γCδ
+ (1− γ)Tγ

)
= 0 (16)

Eq. (8) follows from the definition of surplus and the linearity of expectation. Eq. (9) holds be-
cause B∗(Phased,D) and Bi behave identically before phase i. Eq. (10) holds because the prices
offered during explore rounds are independent of the buyer’s algorithm, and thus pit = p∗t for
t ∈ {t−i , . . . , t

+
i }. The fact that ait = 1{vt ≥ pit} for t ≥ t−i implies a∗t (vt − p∗t )− ait(vt − pit) ≤ 1

for t ≥ t−i , which yields Eq. (11), and also implies (a∗t − ait)(vt − pit) ≤ 0 for t ≥ t−i , which yields
Eq. (12) (recall that Lp,i ⊆ {t−i , . . . , t

+
i }). The definition of λ-lies and the fact that pit = p∗t for

t ∈ Lp,i implies Eq. (13). Eq. (14) holds because γt−1 is decreasing in t. Eq. (15) follows from our
assumption that Pr[Lp,i ≥ Cδ] > δ. Eq. (16) follows from the definition of Cδ .

We are ready to prove an upper bound on the regret of the Phased algorithm.

Proof of Theorem 2. Define n = dlog2 T e and let T explore
i and T exploit

i be the set of explore and
exploit rounds of phase i ∈ {1, . . . , n}. Since the phase n may only be partially completed at
the termination of the algorithm we allow T explore

n and T exploit
n to be partially or completely empty.

Note that for the Phased algorithm the behavior of a buyer during exploit rounds does not affect
the prices offered in future rounds. Since p̃i is the price offered in each exploit round of phase i, a
surplus-maximizing buyer will choose at = 1{vt ≥ p̃i} in any exploit round t of phase i. So we
can upper bound the regret of the Phased algorithm in terms of the number of explore rounds and
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the probability that p̃i 6= p∗ during exploit rounds. We have

Regret(Phased,D, T ) = E

[
T∑
t=1

p∗F (p∗)− atpt

]

=

n∑
i=1

∑
t∈T explore

i

E [p∗F (p∗)− atpt] +

n∑
i=1

∑
t∈T exploit

i

E [p∗F (p∗)− atpt]

≤
n∑
i=1

|P|Si +

n∑
i=1

∑
p∈P\{p∗}

Pr [p̃i = p] (Ti − |P|Si)

≤
n∑
i=1

|P|Si +
∑

p∈P\{p∗}

i∗∑
i=1

Ti +
∑

p∈P\{p∗}

n∑
i=i∗+1

Pr [p̃i = p]Ti (17)

where expectations and probabilities are with respect to value distribution D, seller algorithm
Phased, and buyer algorithm B∗(Phased,D). We will now bound each term in Eq. (17). Let
λ = ∆

8K .

Recall that Ti = 2i and Si ≤ Tαi , which implies
∑n
i=1 Si ≤

∑n
i=1 2αi. Since n ≤ log2 T + 1 we

have 2n ≤ 2T . Thus
n∑
i=1

Si ≤
n∑
i=1

2αi ≤ (2α)n+1 − 1

2α − 1
=

(2n+1)α − 1

2α − 1
≤ 4αTα − 1

2α − 1
≤ 4α

2α − 1
Tα. (18)

where the first inequality follows from the formula for a geometric series (this is just the standard
“doubling trick”).

By the definition of Si and i∗ we have Ti∗−1 < max(D
1/α
T , |P|DT ) ≤ D

1/α
T + |P|DT , which

implies Ti∗+1 ≤ 4D
1/α
T + 4|P|DT . Also note that

∑
j≤i Tj ≤ Ti+1 for all i, again because

Ti = 2i. Thus∑
p∈P\{p∗}

∑
i≤i∗

Ti ≤
∑

p∈P\{p∗}

4D
1/α
T + 4|P|DT ≤ 4|P|D1/α

T + 4|P|2DT ≤ 8|P|2D1/α
T (19)

Finally, for any p 6= p∗ and i > i∗ if p̃i = p then r̃p∗,i < r̃p,i, which by Lemma 7 implies that either
the event from Lemma 6 does not occur,

Lp,i ≥
∆− 4Kλ

4p
Si, or (20)

Lp∗,i ≥
∆− 4Kλ

4p∗
Si. (21)

Since λ = ∆
8K and p, p∗ ≤ 1, Eq. (20) and Eq. (21) respectively imply

Lp,i ≥
∆

8
Si, or (22)

Lp∗,i ≥
∆

8
Si. (23)

The event from Lemma 6 (call it event ¬A) occurs with probability at least 1 − 2T−1. And since
Si ≥ DT ≥ (8/∆)C 1

T
for all i ≥ i∗, we have that Eq. (22) and Eq. (23) imply either Lp,i ≥ C 1

T

(call it event B1) or Lp∗,i ≥ C 1
T

(call it event B2), which by Lemma 8 each occur with probability
at most T−1 assuming the event ¬A has occurred. Combining these results, we have

Pr[p̃i = p] ≤ Pr[A ∨B1 ∨B2]

≤ Pr[A] +
∑
i=1,2

Pr[Bi|A] Pr[A] + Pr[Bi|¬A] Pr[¬A]

≤ 2T−1 + 2(2T−1 + T−1) = 8T−1 ,
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and therefore ∑
p∈P\{p∗}

∑
i>i∗

Pr [p̃i = p]Ti ≤ 8|P| (24)

Combining Eqs. (18), (19) and (24) with Eq. (17) yields

Regret(Phased,D, T ) ≤ 4α

2α − 1
|P|Tα + 8|P|2D1/α

T + 8|P|

Plugging in the definitions DT = max
(

16
∆2 log T, 8

∆C 1
T

)
and λ = ∆

8K , we have

Regret(Phased,D, T ) ≤ 4α

2α − 1
|P|Tα + 8|P|2

(
16

∆2
log T

)1/α

+ 8|P|2
(

8

∆
log
(

1 +
8K(1− γ)TγT

∆

)
log
( 1

γ

)−1
)1/α

+ 8|P|. (25)

Suppose γ and T satisfy γT ≥ 1/2. Then γt ≥ 1/2 for all t ≤ T , and furthermore Tγ =∑T
t=1 γ

t−1 ≥ T/2. Since Regret(Phased,D, T ) ≤ T holds trivially, we have

Regret(Phased,D, T ) ≤ T ≤ 2Tγ ≤ Tα + 2T 1/α
γ ,

satisfying the theorem. Therefore, we assume that γT ≤ 1/2. Since Tγ =
∑T
t=1 γ

t−1 = 1−γT
1−γ we

have

2Tγ = 2

(
1− γT

1− γ

)
≥ 1

1− γ
≥ 1

log(1/γ)

where the first inequality follows from 2(1 − γT ) ≥ 1 and the second inequality follows from
x ≥ log(1 + x) for all x (just substitute x = γ − 1 and rearrange). Thus we can upper bound

log
(

1
γ

)−1

in Eq. (25) by 2Tγ , and simplifying yields the statement of the theorem.

C Lower Bound Proofs

C.1 Proof of Lemma 3

Proof. Fix a incentive compatible and rational strategy S. Let SellerRevenue(b) = E(p,a)∼Sb [ap]
be the seller’s expected revenue if the buyer bids b, and let BuyerSurplus(b, v) = E(p,a)∼Sb [a(v −
p)] be the buyer’s expected surplus if she bids b and her value is v. It suffices to show that there
exists v ∈ [0, 1] such that v − SellerRevenue(v) ≥ 1

12 .

Before proceeding, we establish some properties of S. Incentive compatibility of S ensures that

BuyerSurplus(v, v) ≥ BuyerSurplus(b, v) (26)

for all b, v ∈ [0, 1], and rationality of S ensures that

BuyerSurplus(v, v) ≥ 0 (27)

for all v ∈ [0, 1]. Also

SellerRevenue(b) + BuyerSurplus(b, v) = E(p,a)∼Sb [a]v (28)

for all b, v ∈ [0, 1], which follows directly from definitions, and

SellerRevenue(v) ≤ E(p,a)∼Sv [a]v (29)

for all v ∈ [0, 1], which follows from rationality: By (28) we have BuyerSurplus(v, v) =
E(p,a)∼Sv [a]v − SellerRevenue(v), and thus if (29) were false we would have
BuyerSurplus(v, v) < 0, which contradicts (27).
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Now observe that for any b, v ∈ [0, 1]

v − SellerRevenue(v) ≥ E(p,a)∼Sv [a]v − SellerRevenue(v)

= BuyerSurplus(v, v) (30)
≥ BuyerSurplus(b, v) (31)
= E(p,a)∼Sb [a(v − p)]
= E(p,a)∼Sb [a]v − E(p,a)∼Sb [ap]

= E(p,a)∼Sb [a]v − SellerRevenue(b)

≥
(

SellerRevenue(b)

b

)
v − SellerRevenue(b) (32)

= (v − b)
(

SellerRevenue(b)

b

)
where (30) follows from (28), (31) follows from (26), and (32) follows from (29). Now let b = 1

4

and v = 1
2 . If v − SellerRevenue(v) ≥ 1

6 we are done. Otherwise the first and last lines from the
above chain of inequalities and v − SellerRevenue(v) < 1

6 imply

SellerRevenue(b)

b
≤ v − SellerRevenue(v)

v − b
<

1

6

1

v − b
=

2

3

which can be rearranged into b− SellerRevenue(b) ≥ 1
3b ≥

1
12 .

C.2 Proof of Lemma 4

Proof. It will be convenient to define the following (all expectations in these definitions are with
respect to A,D and B∗(A,D)):

rev(t1, t2) = E

[
t2∑
t=t1

atpt

]

sur(t1, t2) = E

[
t2∑
t=t1

γtat(vt − pt)

]

udsur(t1, t2) = E

[
t2∑
t=t1

at(vt − pt)

]

totval(t1, t2) = E

[
t2∑
t=t1

atvt

]
where “udsur” stands for “undiscounted surplus” and “totval” stands for “total value”. Note that
by definition

rev(t1, t2) + udsur(t1, t2) = totval(t1, t2). (33)
Also, since B∗(A,D) is a surplus-maximizing buyer strategy, sur(t, T ) ≥ 0 for all rounds t, because
otherwise the buyer could increase her surplus by following B∗(A,D) until round t − 1 and then
selecting at′ = 0 for all rounds t′ ≥ t.
We will first prove that sur(t, T ) ≤ γtudsur(t, T ) for all rounds t. The proof will proceed by
induction. For the base case, we have sur(T, T ) = γTudsur(T, T ) by definition. Now assume for
the inductive hypothesis that sur(t + 1, T ) ≤ γt+1udsur(t + 1, T ). Since sur(t + 1, T ) ≥ 0 and
γt+1 > 0, by the inductive hypothesis we have udsur(t+ 1, T ) ≥ 0. Therefore

sur(t, T ) = sur(t, t) + sur(t+ 1, T )

= γtudsur(t, t) + sur(t+ 1, T )

≤ γtudsur(t, t) + γt+1udsur(t+ 1, T ) (34)
≤ γtudsur(t, t) + γtudsur(t+ 1, T ) (35)
= γtudsur(t, T )
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where Eq. (34) follows from the inductive hypothesis and Eq. (35) follows because udsur(t+1, T ) ≥
0 and γt ≥ γt+1. Thus sur(t, T ) ≤ γtudsur(t, T ).

Since sur(1, T ) ≤ γ1udsur(1, T ) and γ1 ≤ 1, by Eq. (33) we have rev(1, T ) + sur(1, T ) ≤
totval(1, T ), which proves the lemma.
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