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Abstract

The task of privately estimating a covariance matrix is a popular one due to its
applications to regression and PCA. While there are known methods for releasing
private covariance matrices, these algorithms either achive only (ε, δ)-differential
privacy or require very complicated sampling schemes, ultimately performing
poorly in real data. In this work we propose a new ε-differentially private al-
gorithm for computing the covariance matrix of a dataset that addresses both of
these limitations. We show that it has lower error than existing state-of-the-art
approaches, both analytically and empirically. In addition, the algorithm is signif-
icantly less complicated than other methods and can be efficiently implemented
with rejection sampling.

1 Introduction

Differential privacy has emerged as a standard framework for thinking about user privacy in the
context of large scale data analysis [Dwork et al., 2014a]. While differential privacy does not protect
against all attack vectors, it does provide formal guarantees about possible information leakage. A
key feature of differential privacy is its robustness to post-processing: once a mechanism is certified
as differentially private, arbitrary post-processing can be performed on its outputs without additional
privacy impact.

The past decade has seen the emergence of a wide range of techniques for modifying classical
learning algorithms to be differentially private [McSherry and Mironov, 2009, Chaudhuri et al.,
2011, Jain et al., 2012, Abadi et al., 2016]. These algorithms typically train directly on the raw data,
but inject carefully designed noise in order to produce differentially private outputs. A more general
(and challenging) alternative approach is to first preprocess the dataset using a differentially private
mechanism and then freely choose among standard off-the-shelf algorithms for learning. This not
only provides more flexibility in the design of the learning system, but also removes the need for
access to sensitive raw data (except for the initial preprocessing step). This approach thus falls
under the umbrella of data release: since the preprocessed dataset is differentially private, it can, in
principle, be released without leaking any individual’s data.

In this work we consider the problem of computing, in a differentially private manner, a specific
preprocessed representation of a dataset: its covariance matrix. Formally, given a data matrix X ∈
Rd×n, where each column corresponds to a data point, we aim to compute a private estimate of
C = XX> that can be used in place of the raw data, for example, as the basis for standard linear
regression algorithms. Our methods provide privacy guarantees for the columns of X.

There are many existing techniques that can be applied to this problem. We distinguish ε-
differentially private algorithms, which promise what is sometimes referred to as pure differential
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privacy, from (ε, δ)-differentially private algorithms, which may fail to preserve privacy with some
probability δ. While algorithms in the pure differential privacy setting give stronger privacy guaran-
tees, they tend to be significantly more difficult to implement, and often underperform empirically
when compared to the straightforward algorithms in the (ε, δ) setting.

In this work, we give a new practical ε-differentially private algorithm for covariance matrix esti-
mation. At a high level, the algorithm is natural. It approximates the eigendecomposition of the
covariance matrix C by estimating the collections of eigenvalues and eigenvectors separately. Since
the eigenvalues are insensitive to changes in a single column of X, we can accurately estimate them
using the Laplace mechanism. To estimate the eigenvectors, the algorithm uses the exponential
mechanism to sample a direction θ from the unit sphere that approximately maximizes θ>Cθ, sub-
ject to the constraint of being orthogonal to the approximate eigenvectors sampled so far. The overall
privacy guarantee for the combined method then follows from basic composition.

Our empirical results demonstrate lower reconstruction error for our algorithm when compared to
other methods on both simulated and real-world datasets. This is especially striking in the high-
privacy/low-ε regime, where we outperform all existing methods. We note that there is a different
regime where our bounds no longer compete with those of the Gaussian mechanism, namely when ε,
δ, and the number of data points are all sufficiently large (i.e., when privacy is “easy”). This suggests
a two-pronged approach for the practitioner: utilize simple perturbation techniques when the data
is insensitive to any one user and privacy parameters are lax, and more careful reconstruction when
the privacy parameters are tight or the data is scarce, as is often the case in the social sciences and
medical research.

Our main results can be summarized as follows:

• We prove our algorithm improves the privacy/utility trade-off by achieving lower error at
a given privacy parameter compared with previous pure differentially private approaches
(Theorem 2).

• We derive a non-uniform allocation of the privacy budget for estimating the eigenvectors of
the covariance matrix giving the strongest utility guarantee from our analysis (Corollary 1).

• We show that our algorithm is practical: a simple rejection sampling scheme can be used
for the core of the implementation (Algorithm 2).

• Finally, we perform an empirical evaluation of our algorithm, comparing it to existing meth-
ods on both synthetic and real-world datasets (Section 4). To the best of our knowledge,
this is the first comparative empirical evaluation of different private covariance estimation
methods, and we show that our algorithm outperforms all of the baselines, especially in the
high privacy regime.

1.1 Database Sanitization for Ridge Regression

Our motivation for private covariance estimation is training regression models. In practice, regres-
sion models are trained using different subsets of features, multiple regularization parameters, and
even varying target variables. If we were to directly apply differentially private learning algorithms
for each of these learning tasks, our privacy costs would accumulate with every model we trained.
Our goal is to instead pay the privacy cost only once, computing a single data structure that can be
used multiple times to tune regression models. In this section, we show that a private estimate of
the covariance matrix C = XX> summarizes the data sufficiently well for all of these ridge regres-
sion learning tasks with only a one-time privacy cost. Therefore, we can view differentially private
covariance estimation as a database sanitization scheme for ridge regression.

Formally, given a data matrix X ∈ Rd×n with columns x1, . . . , xn, we denote the ith entry of xj
by xj(i). Consider using ridge regression to learn a linear model for estimating some target feature
x(t) as a function of x(−t), where x(−t) denotes the vector obtained by removing the tth feature
of x ∈ Rd. That is, we want solve the following regularized optimization problem:

wα = argmin
w∈Rd−1

1

n

n∑
j=1

1

2

(
w>xj(−t)− xj(t)

)2
+ α‖w‖22.

We can write the solution to the ridge regression problem in closed form as follows. Let A ∈
R(d−1)×n be the matrix consisting all but the tth row of X and y =

(
x1(t), . . . , xn(t)

)
∈ Rn
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be the tth row of X (as a column vector). Then the solution to the ridge regression problem with
regularization parameter α is given by wα = (AA> + 2αnI)−1Ay.

Given access to just the covariance matrix C = XX>, we can compute the above closed form ridge
regression model. Suppose first that the target feature is t = d. Then, writing X in block-form, we
have

C = XX> =

[
A
y>

] [
A> y

]
=

[
AA> Ay
y>A> y>y

]
.

Now it is not hard to see we can recover wα by using the block entries of the full covariance matrix.
The following lemma quantifies how much the error of estimating C privately affects the regression
solution wα. The proof can be found in Appendix A.

Lemma 1. Let X ∈ Rd×n be a data matrix, C = XX> ∈ Rd×d, and Ĉ ∈ Rd×d be a symmetric
approximation to C. Fix any target feature t and regularization parameter α. Let wα and ŵα be the
ridge regression models learned for predicting feature t from C and Ĉ, respectively. Then

‖wα − ŵα‖2 ≤
‖C− Ĉ‖2,∞ + ‖C− Ĉ‖2 · ‖ŵα‖2

λmin(C) + 2αn
,

where ‖M‖2,∞ denotes the L2,∞-norm of M (the maximum 2-norm of its columns).

Both ‖C−Ĉ‖2,∞ and ‖C−Ĉ‖2 are upper bounded by the Frobenius error ‖C−Ĉ‖F . Therefore, in
our analysis of our differentially private covariance estimation mechanism, we will focus on bound-
ing the Frobenius error. The bound in Lemma 1 also holds with ‖ŵα‖2 replaced by ‖wα‖2 in the
right hand side, however we prefer the stated version since it can be computed by the practitioner.

1.2 Related Work

A variety of techniques exist for computing differentially private estimates of covariance matrices,
including both general mechanisms that can be applied in this setting as well as specialized methods
that take advantage of problem-specific structure.

A naı̈ve approach using a standard differential privacy mechanism would be to simply add an ap-
propriate amount of Laplace noise independently to every element in the true covariance matrix C.
However, the amount of noise required makes such a mechanism impractical, as the sensitivity, and
hence the amount of noise added, grows linearly in the dimension. A better approach is to add
Gaussian noise [Dwork et al., 2014b]; however, this results in (ε, δ)-differential privacy, where, with
some probability δ, the outcome is not private. Similarly, Upadhyay [2018] proposes a private way
of generating low dimensional representations of X. This is a slightly different task than covariance
estimation. Moreover, their algorithm is only (ε, δ)-differentially private for δ > n− logn which
makes the privacy regime incomparable to the one proposed in this paper. Another approach, pro-
posed in Chaudhuri et al. [2012], is to compute a private version of PCA. This approach has two
limitations. First, it only works for computing the top eigenvectors, and can fail to give non-trivial
results for computing the full covariance matrix. Second, the sampling itself is quite involved and
requires the use of a Gibbs sampler. Since it is generally impossible to know when the sampler
converges, adding noise in this manner can violate privacy guarantees.

The algorithm we propose bears the most resemblance to the differentially private low-rank matrix
approximation proposed by Kapralov and Talwar [2013], which approximates the SVD. Their al-
gorithm computes a differentially private rank-1 approximation of a matrix C, subtracts this matrix
from C and then iterates the process on the residual. Similarly, our approach iteratively generates
estimates of the eigenvectors of the matrix, but repeatedly projects the matrix onto the subspace
orthogonal to the previously estimated eigenvectors. We demonstrate the benefit of this projective
update both in our analytical bounds and empirical results. This ultimately allows us to rely on a
simple rejection sampling technique proposed by Kent et al. [2018] to select our eigenvectors.

Other perturbation approaches include recent work on estimating sparse covariance matrices by
Wang and Xu [2019]. Their setup differs from ours in that they assume all columns in the covariance
matrix have s-sparsity. There was also an attempt by Jiang et al. [2016] to use Wishart-distributed
noise to privately estimate a covariance matrix. However, Imtiaz and Sarwate [2016] proposed the
same algorithm and later discovered that the algorithm was in fact not differentially private.
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Wang [2018] also study the effectiveness of differentially private covariance estimation for private
linear regression (and compare against several other private regression approaches). However, they
only consider the Laplace and Gaussian mechanisms for private covariance estimation and do not
study the quality of the estimated covariance matrices, only their performance for regression tasks.

2 Preliminaries

Let X ∈ Rd×n be a data matrix where each column corresponds to a d-dimensional data point.
Throughout the paper, we assume that the columns of the data matrix have `2-norm at most one1.
Our goal is to privately release an estimate of the unnormalized and uncentered covariance matrix
C = XX> ∈ Rd×d.

We say that two data matrices X and X̃ are neighbors if they differ on at most one column, denoted
by X ∼ X̃. We want algorithms that are ε-differentially private with respect to neighboring data
matrices. Formally, an algorithm A is ε-differentially private if for every pair of neighboring data
matrices X and X̃ and every set O of possible outcomes, we have:

Pr(A(X) ∈ O) ≤ eε Pr(A(X̃) ∈ O) . (1)

A useful consequence of this definition is composability.
Lemma 2. Suppose an algorithm A1 : Rd×n → Y1 is ε1-differentially private and a second
algorithm A2 : Rd×n × Y1 → Y2 is ε2-differentially private. Then the composition A(X) =
A2(X,A1(X)) is (ε1 + ε2)-differentially private.

Our main algorithm uses this property and multiple applications of the following mechanisms.

Laplace Mechanism. Let Lap(α) denote the Laplace distribution with parameter α. Given a
query f : Rd×n → Rk mapping data matrices to vectors, the `1-sensitivity of the query is given by
∆f = maxX∼X̃ ‖f(X)−f(X̃)‖1. For a given privacy parameter ε, the Laplace mechanism approx-
imately answers queries by outputting f(X)+(Y1, . . . , Yk), where each Yi is independently sampled
from the Lap(∆f/ε) distribution. The privacy and utility guarantees of the Laplace mechanism are
summarized in the following lemma.
Lemma 3. The Laplace mechanism preserves ε-differential privacy and, for any β > 0, we have
Pr(maxi |Yi| ≥ ∆f

ε log k
β ) ≤ β.

Exponential Mechanism. The exponential mechanism can be used to privately select an approx-
imately optimal outcome from an arbitrary domain. Formally, let (Y, µ) be a measure space and
g : (X, y) 7→ g(X, y) be the utility of outcome y for data matrix X. The sensitivity of g is given
by ∆g = maxX∼X̃,y |g(X, y) − g(X̃, y)|. For ε > 0, the exponential mechanism samples y from
density proportional to fexp(y) = exp( ε

2∆g
g(X, y)), defined with respect to the base measure µ.

Lemma 4 (McSherry and Talwar [2007]). The exponential mechanism preserves ε-differential pri-
vacy. Let OPT = maxy g(X, y) and Gτ = {y ∈ Y : g(X, y) ≥ OPT − τ}. If ŷ is the output of
the exponential mechanism, we have Pr(ŷ 6∈ G2τ ) ≤ exp

(
−ετ/(2∆g)

)
· µ(Gτ ).

In our algorithm, we will apply the exponential mechanism in order to choose unit-length approxi-
mate eigenvectors. Therefore, the space of outcomes Y will be the unit sphere Sd−1 = {θ ∈ Rd :
‖θ‖2 = 1}. For convenience, we will use the uniform distribution on the sphere, denoted by µ◦, as
our base measure (this is proportional to the surface area). For example, the density p(θ) = 1 is the
uniform distribution on Sd−1 and µ◦(Sd−1) = 1.

3 Iterative Eigenvalue Sampling for Covariance Estimation

In this section we describe our ε-differentially private covariance estimation mechanism. In fact, our
method produces a differentially private approximation to the eigendecomposition of C = XX>.

1If the columns of X have `2-norm bounded by a known value B, we can rescale the columns by 1/B to
obtain a matrix X′ with column norm at most 1. Since XX> = B2X′X

′>, estimating the covariance matrix
of X′ gives an estimate of the covariance matrix of X with Frobenius error inflated by a factor B2.
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We first estimate the vector of eigenvalues, a query that has `1-sensitivity at most 2. Next, we show
how to use the exponential mechanism to approximate the top eigenvector of the covariance matrix
C. Inductively, after estimating the top k eigenvectors θ̂1, . . . , θ̂k of C, we project the data onto the
(d− k)-dimensional orthogonal subspace and apply the exponential mechanism to approximate the
top eigenvector of the remaining projected covariance matrix. Once all eigenvalues and eigenvectors
have been estimated, the algorithm returns the reconstructed covariance matrix. Pseudocode for our
method is given in Algorithm 1. In Section 3.2 we discuss a rejection-sampling algorithm of Kent
et al. [2018] that can be used for sampling the distribution defined in step (a) of Algorithm 1. It
is worth mentioning that if we only sample k eigenvectors, Algorithm 1 would return a rank k-
approximation of matrix C.

Algorithm 1 Iterative Eigenvector Sampling
Input: C = XX> ∈ Rd×d, privacy parameters ε0, . . . , εd.

1. Initialize C1 = C, P1 = I ∈ Rd×d, λ̂i = λi(C) + Lap(2/ε0) for i = 1, . . . , d.
2. For i = 1, . . . , d:

(a) Sample ûi ∈ Sd−i proportional to fCi
(u) = exp( εi4 u

>Ciu) and let θ̂i = P>i ûi.

(b) Find an orthonormal basis Pi+1 ∈ R(d−i)×d orthogonal to θ̂1, . . . , θ̂i.
(c) Let Ci+1 = Pi+1CP>i+1 ∈ R(d−i)×(d−i).

3. Output Ĉ =
∑d
i=1 λ̂iθ̂iθ̂

>
i .

Our approach is similar to the algorithm of Kapralov and Talwar [2013] with one significant differ-
ence: in their algorithm, rather than projecting onto the orthogonal subspace of the first k estimated
eigenvectors, they subtract the rank-one matrix given by λ̂iθ̂iθ̂>i from C, where λ̂i is the estimate
of the ith eigenvalue. There are several advantages to using projections. First, the projection step
exactly eliminates the variance along the direction θ̂i, while the rank-one subtraction will fail to do
so if the estimated eigenvalues are incorrect (effectively causing us to pay for the eigenvalue ap-
proximation twice: once in the reconstruction of the covariance matrix and once because it prevents
us from removing the variance along the direction θ̂i before estimating the remaining eigenvectors).
Second, the analysis of the algorithm is substantially simplified because we are guaranteed that the
estimated eigenvectors θ̂1, . . . , θ̂d are orthogonal, and we do not require bounds for rank-one updates
on the spectrum of a matrix.

We now show that Algorithm 1 is differentially private. The algorithm applies the Laplace mecha-
nism once and the exponential mechanism d times, so the result follows from bounding the sensitiv-
ity of the relevant queries and applying basic composition.

Theorem 1. Algorithm 1 preserves
(∑d

i=0 εi
)
-differential privacy.

We now focus on the main contribution of this paper: a utility guarantee for Algorithm 1 in terms
of the Frobenius distance between Ĉ and the true covariance matrix C as a function of the privacy
parameters used for each step. An important consequence of this analysis is that we can optimize
the allocation of our total privacy budget ε among the d+ 1 queries in order to get the best bound.

First we provide a utility guarantee for the exponential mechanism applied to approximating the top
eigenvector of a matrix C. This result is similar to the rank-one approximation guarantee given by
Kapralov and Talwar [2013], but we include a proof in the appendix for completeness.

Lemma 5. Let X ∈ Rd×n be a data matrix and C = XX>. For any β > 0, with probability at
least 1 − β over û sampled from the density proportional to fC(u) = exp( ε4u

>Cu) on Sd−1, we
have

û>Cû ≥ λ1(C)−O
(

1

ε

(
d log λ1(C) + log

1

β

))
The following result characterizes the dependence of the Frobenius error on the errors in the es-
timated eigenvalues and eigenvectors. In particular, given that the eigenvalue estimates all have
bounded error, the dependence on the ith eigenvector estimate θ̂i is only through the quantity
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λi(C)− θ̂>i Cθ̂i, which measures how much less variance of C is captured by θ̂i as compared to the
true ith eigenvector. Moreover, the contribution of θ̂i is roughly weighted by λ̂i. This observation
allows us to tune the privacy budgeting across the d eigenvector queries, allocating more budget (at
runtime) to the eigenvectors with large estimated eigenvalues. Empirically, we find that this budget
allocation step improves performance in some settings.

Lemma 6. Let C ∈ Rd×d be any positive semidefinite matrix. Let θ̂1, . . . , θ̂d be any orthonormal
vectors and λ̂1, . . . , λ̂d be estimates of the eigenvalues of C satisfying |λ̂i − λi(C)| ≤ τ for all
i ∈ [d]. Then

‖C − Θ̂Λ̂Θ̂>‖F ≤

√√√√2

d∑
i=1

λi(C) · (λi(C)− θ̂>i Cθ̂i) + τ
√
d

where Θ̂ is the matrix with columns θ̂i and Λ̂ is the diagonal matrix with entries λ̂i.

Proof. Let Λ ∈ Rd×d be the diagonal matrix of true eigenvalues of C. We have ‖C− Θ̂Λ̂Θ̂>‖F ≤
‖C− Θ̂ΛΘ̂>‖F + ‖Θ̂(Λ− Λ̂)Θ̂>‖F . The second term is bounded by τ

√
d, so it remains to bound

the first term. We have that

‖C− Θ̂ΛΘ̂>‖2F = ‖C‖2F + ‖Θ̂ΛΘ̂>‖2F − 2 tr(CΘ̂ΛΘ̂>) = 2
∑
i

λi(C)2 − 2
∑
i

λi(C)θ̂>i Cθ̂i

= 2
∑
i

λi(C)(λi(C)− θ̂>i Cθ̂i),

where the second equation follows from the fact that the first two terms are both equal to
∑
i λi(C)2

and the cyclic property of the trace. The final bound follows by taking the square root.

We are now ready to prove our main utility guarantee for Algorithm 1. The remaining analysis
focuses on the effect of working with the projected covariance matrices Ci. One interesting ob-
servation is that our algorithm does not have error accumulating across its iterations due to the
projection step. Following Lemma 6, we only need to show that θ̂i captures nearly as much of the
variance of C as the ith eigenvector. Fortunately, if our estimates θ̂1, . . . , θ̂i−1 have errors, then the
orthogonal subspace only contains more variance, and thus the sampling step in round i actually
becomes easier. In this sense Algorithm 1 is “self-correcting”.

Theorem 2. Let Ĉ be the output of Algorithm 1 run with inputs C and privacy parameters
ε0, . . . , εd. For any β > 0, with probability at least 1− β we have

‖C− Ĉ‖F ≤ Õ
(√√√√ d∑

i=1

dλi(C)

εi
+

√
d

ε0

)
,

where the Õ notation suppresses logarithmic terms in d, λ1(C), and β.

If Algorithm 1 is used to obtain a k-rank approximation, the above theorem can be modified to show

that the distance from the best k-rank approximation would be in O
(√∑k

i=1
dλi(C)
εi

+
√
d
ε0

)
. Since

Theorem 2 bounds the error in terms of the privacy parameters ε0, . . . , εd, we can tune our allocation
of the total privacy budget of ε across the d + 1 private operations in order to obtain the tightest
possible bound. In order to preserve privacy, we tune based on the estimated eigenvalues λ̂1, . . . , λ̂d
obtained in step (1) of Algorithm 1 rather than using the true eigenvalues. The following result
makes precise the natural intuition that more effort should be made to estimate those eigenvectors
with larger (estimated) eigenvalues; its proof can be found in Appendix B.
Corollary 1. Fix any privacy parameter ε and any failure probability β > 0, let ε0 = ε/2, and

let εi =
ε
2

√
λ̂i+τ∑

j

√
λ̂j+τ

where τ = 2
ε0

log(2d/β). Then Algorithm 1 run with ε0, . . . , εd preserves

ε-differential privacy and, with probability at least 1− β, the output Ĉ satisfies

‖C− Ĉ‖F ≤ Õ
(√

d

ε

d∑
i=1

√
λ̂i +

1

ε
+

√
d

ε

)
.
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3.1 Comparison of Bounds

In this section we compare the bound provided by Theorem 2 to previous state-of-the-art results.

Comparison to Kapralov and Talwar [2013]. The bounds given by Kapralov and Talwar [2013],
when applied to the case of recovering the full-rank covariance matrix, bound the spectral error
‖C − Ĉ‖2 by ζλ1(C) (for some ζ > 0) under the condition that λ1(C) is sufficiently large. In
particular, Theorem 18 from their paper shows that there exists an ε-differentially private algorithm
with the above guarantee whenever λ1(C) ≥ C1d

4/(εζ6) for some constant C1. Since ‖C−Ĉ‖2 ≤
‖C − Ĉ‖F , we can directly compare both algorithms after slightly rewriting our bounds. The
following result shows that we improve the necessary lower bound on λ1(C) by a factor of d/ζ4

(ignoring log terms).

Corollary 2. For any ζ > 0 and any positive semidefinite matrix Ĉ, with probability at least
0.99 (or any fixed success probability), running Algorithm 1 with ε0 = ε/2 and εi = ε/(2d) for
i = 1, . . . , d preserves ε-differential privacy and outputs Ĉ such that ‖C − Ĉ‖F ≤ O(ζλ1(C)) if
λ1(C) ≥ 2d3

εζ2 log( dεζ ).

Comparison to Gaussian Mechanism. We can also directly compare to the error bounds for the
Gaussian mechanism given by Dwork et al. [2014b]. Theorem 9 in their paper gives ‖C − Ĉ‖F ≤
O(d3/2

√
log(1/δ)/ε), where ε and δ are the (approximate) differential privacy parameters. Using

privacy parameters ε0 = ε/2 and εi = ε/(2d) for i = 1, . . . , d, Theorem 2 implies that with
high probability we have ‖C− Ĉ‖F ≤ O

(
d3/2

√
λ1(C) log(λ1(C))/ε +

√
d/ε
)
. For all values of

δ > 0, our algorithm provides a stronger privacy guarantee than the Gaussian mechanism. On the
other hand, whenever λ1(C) log(λ1(C)) ≤ log(1/δ)/ε, our utility guarantee is tighter. Given that
λ1(C) = O(n), where n is the number of data points, we see that our algorithm admits better utility
guarantees in both the low data regime and the high privacy regime.

3.2 Sampling on the Sphere

To implement Algorithm 1, we need a subprocedure for drawing samples from the densities pro-
portional to exp( ε4u

>Cu) defined on the sphere Sd−1, where C is a covariance matrix and ε is the
desired privacy parameter. This density belongs to a family called Bingham distributions. Kapralov
and Talwar [2013] also discuss this sampling problem and, while their algorithm could also be
used in our setting, we instead rely on a simpler rejection-sampling scheme proposed by Kent et al.
[2018]. This sampling technique is exact and we find empirically that it is very efficient. Pseudocode
for their method is given in Algorithm 2 in the appendix.

Recall that rejection sampling allows us to generate samples from the distribution with density pro-
portional to f , provided we can sample from the distribution with density proportional to a similar
function g, called the envelope. Kent et al. [2018] propose to use the angular central Gaussian
distribution as an envelope. This distribution has a matrix parameter Ω and unnormalized density
(defined on the sphere Sd−1) given by g(u) = (u>Ωu)−d/2. To sample from this distribution, we
can simply sample z from the mean-zero Gaussian distribution with covariance given by Ω−1 and
output u = z/‖z‖2. Kent et al. [2018] provide a choice of parameter Ω to minimize the number of
rejected samples. They show that under some reasonable assumptions the expected number of rejec-
tions grows like O(

√
d) (see [Kent et al., 2018] for more details). In our experiments we observed

the median number of samples was less than d, and the mean was around 2d. We believe that our
empirical rejection counts are larger than the asymptotic bounds of Kent et al. [2018] because the
dimensionality of our datasets is not large enough.

4 Experiments

We now present the results of an extensive empirical evaluation of the performance of our algorithm.
Given a data matrix X, we study the performance of the algorithm on two tasks: (i) privately esti-
mating the covariance matrix C = XX>, and (ii) privately regressing to predict one of the columns
of X from the others. Due to space constraints we present only the results of (i) and present the
results of (ii) in Appendix C.
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Figure 1: Results comparing our algorithm across the wine, airfoil and adult data sets. (a) Com-
parison to KT and L. Error is normalized Frobenius distance. (b) Comparison to the Gaussian
mechanism. The legend G-x corresponds to a value of δ = 10−x.

We compare the performance of our algorithm to a number of different baselines. We begin with two
general purpose output perturbation methods: the Laplace mechanism and the Gaussian mechanism.

• The Laplace mechanism [Dwork et al., 2006] (L). The output is given by Ĉ = C + M
where M is a matrix with entries distributed Lap( 2d

ε ).

• The Gaussian mechanism [Dwork et al., 2014b] (G). Notably, the Gaussian mechanism
achieves (ε, δ)-differential privacy, hence its privacy guarantees are weaker for the same
value of ε. Our goal is to measure if we can achieve similar utility under stricter privacy
constraints. We experiment with different values of δ.

• The algorithm proposed by Kapralov and Talwar [2013] (KT). This algorithm is ε-
differentially private. We use Algorithm 2 for the vector sampling subroutine.

• Algorithm 1 with adaptive privacy splitting (AD). We allocate the privacy budget in the
manner suggested by Corollary 1.

• Algorithm 1 with uniform privacy splitting (IT-U). Same as above except the privacy bud-
get used to sample eigenvectors is split uniformly.

One final modification we apply to all algorithms that release a covariance matrix is to round the
eigenvalues of the private matrix to fall in the interval [0, n], since this bound is data-independent
and is easy to derive analytically.

We measure the performance of our algorithm on three different datasets: Wine, Adult, and Airfoil
from the UCI repository2, These datasets have dimensions ranging from 13 to 108, and number
of points from 200 to 49,000. The approximation error of each algorithm is measured using the
normalized Frobenius distance ‖Ĉ−C‖F

n . To investigate the privacy/utility trade-off, we run each al-
gorithm with privacy parameter ε ∈ {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0}. For the Gaussian mechanism,
we also varied the parameter δ ∈ {1e−16, 1e−10, 1e−3}We ran each experiment 50 times, showing
the average error in Figure 1.

The first thing to notice is that our algorithm consistently outperforms all others except for the single
case of the wine data set with ε = 0.01. Recall that the Gaussian mechanism has an additional
failure probability δ, thus the privacy guarantees we obtain are strictly better for the same value of ε.
Therefore, it is particularly striking that we consistently beat the Gaussian mechanism even for the
very relaxed value of δ = .001.

Another important observation from this experiment is that the adaptive and non adaptive privacy
budget splitting seems to not have a big effect on the performance of the algorithm. Finally, we see
that the performance gap between AD and KT is largest on the dataset with the highest dimension.
This phenomenon is in line with the analysis of Section 3.1. We explore this effect in more detail in
Appendix C.

Finally, as we detail in Appendix C our approach outperforms the output perturbation method of
Chaudhuri et al. [2011] on the regression task, even though the latter achieves (ε, δ)-differential
privacy. As we mentioned previously, the private covariance matrix output by our algorithm can

2https://archive.ics.uci.edu/ml/datasets/
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be also be used to tune regularization parameters without affecting the privacy budget, thus giving
additional freedom to practitioners in tuning their algorithms.

5 Conclusion

We presented a new algorithm for differentially private covariance estimation, studied it analytically,
and demonstrated its performance on a number of synthetic and real world datasets. To the best of
our knowledge this is the first ε-differentially private algorithm to admit a utility guarantee that grows
as O(d3/2) with the dimension of the dataset. Previously, such bounds could only be achieved at the
cost (ε, δ)-differential privacy. We also showed that the average Frobenius approximation error of
our algorithm decreases asO

(
1√
n

)
, which is slower than theO

(
1
n

)
rate of the Gaussian and Laplace

mechanisms. This poses an open question of whether the suboptimal dependency on n is necessary
in order to achieve pure differential privacy or to achieve a dependency on the dimension ofO(d3/2).

Looking more broadly, practical machine learning and data analysis typically requires a significant
amount of tuning: feature selection, hyperparameter selection, experimenting with regularization,
and so on. If this tuning is performed using the underlying private dataset, then in principle all of
these count against the privacy budget of the algorithm designer (who must also, of course, have
access to that private dataset). By producing a differentially private summary of the dataset from
which multiple models can be trained with no additional privacy cost, our approach allows a prac-
titioner to operate freely, without worrying about privacy budgets or the secure handling of private
data. We believe that finding techniques for computing private representations in other settings is an
exciting direction for future research.
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A Proofs for Regression Bounds

To simplify notation, we will let A(C, t) ∈ R(d−1)×n and b(C, t) ∈ Rn denote the blocks extracted
from C so that the ridge regression model for predicting feature t with regularization parameter α is
given by wα = (A(C, t) + 2αnI)−1b(C, t).

Lemma 1. Let X ∈ Rd×n be a data matrix, C = XX> ∈ Rd×d, and Ĉ ∈ Rd×d be a symmetric
approximation to C. Fix any target feature t and regularization parameter α. Let wα and ŵα be the
ridge regression models learned for predicting feature t from C and Ĉ, respectively. Then

‖wα − ŵα‖2 ≤
‖C− Ĉ‖2,∞ + ‖C− Ĉ‖2 · ‖ŵα‖2

λmin(C) + 2αn
,

where ‖M‖2,∞ denotes the L2,∞-norm of M (the maximum 2-norm of its columns).

Proof. First, we introduce some shorthand notation: let A = A(C, t), b = b(C, t), Â = A(Ĉ, t),
and b̂ = b(Ĉ, t) be the blocks extracted from C and Ĉ so that (A + 2αnI)wα = b and (Â +

2αnI)ŵλ = b̂. Subtracting the equalities defining ŵα and wα, we have

(Â + 2αnI)ŵα − (A + 2αnI)wα = b̂− b.

Expanding the left hand side and adding and subtracting Aŵα, we have the following equivalences

(Â + 2αnI)ŵα − (A + 2αnI)wα = b̂− b
⇐⇒ Âŵα −Aŵα + Aŵα −Awα + 2αnI(ŵα − wα) = b̂− b
⇐⇒ ŵα − wα = (A + 2αnI)−1

(
b̂− b− (Â−A)ŵα).

Therefore

‖ŵα − wα‖2 ≤ ‖(A + 2αnI)−1‖2(‖b̂− b‖2 + ‖Â−A‖2 · ‖ŵα‖2

=
‖b̂− b‖2 + ‖Â−A‖2 · ‖ŵα‖2

λmin(A) + 2αn
.

It remains to show that ‖b̂− b‖2 ≤ ‖C‖2,∞, ‖Â−A‖2 ≤ ‖Ĉ−C‖2, and λmin(A) ≥ λmin(C).

First, since b and b̂ correspond to the tth columns of C and Ĉ after removing the tth entries, we have
that ‖b̂− b‖2 ≤ ‖Ĉ−C‖2,∞.

The second two relations follow from the Cauchy interlacing theorem below, which allows us to
relate the eigenvalues of a matrix M and any “principal sub-matrix”, which is a submatrix of M
obtained by repeatedly removing rows and columns with the same index.

Since Â −A and A − Â are a principal submatrices of Ĉ −C and C − Ĉ, respectively, we have
‖Â − A‖2 = max{λmax(Â − A), λmax(A − Â)} ≤ max{λmax(Ĉ − C), λmax(C − Ĉ)} =

‖Ĉ −C‖2, where the inequality follows from two applications of the interlacing theorem. Finally,
since A is a principal submatrix of C, we have that λmin(A) ≥ λmin(C).

Theorem 3 (Cauchy Interlacing Theorem). Let M ∈ Rd×d be a symmetric matrix and N ∈ Rr×r
be a principal submatrix of M. Then for all j ≤ r, λj(M) ≤ λj(N) ≤ λd−r+j(M), where λj(M)
denotes the jth smallest eigenvalue of M. In particular, if r = d− 1 then

λ1(M) ≤ λ1(N) ≤ · · · ≤ λd−1(M) ≤ λd−1(N) ≤ λd(M)

B Proofs for Iterative Covariance Estimation

We begin this section by formally proving that Algorithm 1 is private.

Theorem 1. Algorithm 1 preserves
(∑d

i=0 εi
)
-differential privacy.
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Proof. Let X = [Z;x] and X̃ = [Z; x̃] be two neighboring data matrices in Rd×n with common
columns given by Z ∈ Rd×(n−1). For any matrix A, let Λ(A) = [λ1(A), . . . , λd(A)] denote the
vector of eigenvalues of A. First, we argue that ‖Λ(ZZ>) − Λ(XX>)‖1 ≤ 1. For any vector
v ∈ Rd, we have v>XX>v = v>ZZ>v + v>xx>v ≥ v>ZZ>v. From this, it follows that
λi(XX>) ≥ λi(ZZ>) for all i ∈ [d]. Therefore, we have

‖Λ(XX>)− Λ(ZZ>)‖1 = tr(XX>)− tr(ZZ>) = tr(xx>) ≤ 1.

This bound also holds for X̃X̃>, so ‖Λ(XX>) − Λ(X̃X̃>)‖1 ≤ 2. Therefore, the instance of the
Laplace mechanism in step (1) preserves ε0-differential privacy.

Next, for any matrix A, let g(A, θ) = θ>Aθ. For any direction θ ∈ Sd−1, we have

|g(XX>, θ)− g(X̃X̃>, θ)| = |θ>(xx> − x̃x̃>)θ| ≤ 2.

This bound also holds whenever we project the data into any subspace, so it follows that step (a) of
the algorithm is using the exponential mechanism to maximize a utility function of sensitivity 2 and
preserves εi-differential privacy.

The final privacy guarantee follows by basic composition over the d+ 1 queries.

We now turn to the utility guarantees of this algorithm. Starting with the proof of Lemma 5. We
begin with a more precise bound on the probability that the exponential mechanism outputs a vector
that captures τ less variance/energy of the covariance matrix C than the top eigenvector. In this
result, we take advantage of the following lower bound on the µ◦-measure of a spherical cap:
Lemma 7 (Lemma 2.3 of Ball [1997]). For any radius 0 ≤ r ≤ 2 and any center v ∈ Sd−1, we
have

µ◦
(
{u ∈ Sd−1 : ‖v − u‖2 ≤ r}

)
≥ 1

2
(r/2)d−1.

Lemma 8. Let X be any data matrix and C = XX>. Let û be a sample drawn from the distribution
with density proportional to fC(u) = exp( ε4u

>Cu) on Sd−1. For any τ > 0, we have

Pr(û>Cu ≤ λ1(C)− τ) ≤ 2 exp

(
−τε

8

)(
8λ1(C)

τ

)d−1

.

Proof. Define Gτ = {u ∈ Sd−1 : u>Cu ≥ λ1(C) − τ} to be the set of directions with at
most τ suboptimality. Applying the utility guarantee of Lemma 4, together with the fact that the
sensitivity of g(X, u) = u>XX>u is 2 (see the proof of Theorem 1), we have that Pr(û 6∈ Gτ ) ≤
exp( τε8 )/µ◦(Gτ/2). Our main arguments focus on lower bounding µ◦(Gτ/2).

Our strategy is to pick any direction u∗ ∈ argmaxu∈Sd−1 u>Cu and argue that all directions in a
spherical cap of `2-radius r = τ

4λ1(C) around u∗ have utility at least λ1(C) − τ/2. It follows that
µ◦(Gτ/2) is at least the µ◦-measure of a spherical cap of `2 radius r = τ

4λ1(C) , which by Lemma 7

is at least 1
2 ( τ

8λ1(C) )d−1. Therefore, we have Pr(û 6∈ Gτ ) ≤ 2 exp(− τε8 )( 8λ1(C)
τ )d−1, as required.

It remains to prove the following claim:

Claim. Let u∗ ∈ argmaxu∈Sd−1 u>Cu. Then for every u ∈ Sd−1 with ‖u − u∗‖2 ≤ τ
4λ1(C) , we

have u>Cu ≥ λ1(C)− τ/2.

Proof. Let r = ‖u∗ − u‖2 be the distance between u∗ and u. We want to show that if r ≤ τ
4λ1(C)

then u>Cu ≥ λ1(C) − τ/2. Let ‖ · ‖C be the induced seminorm (i.e., ‖v‖C =
√
v>Cv)). Then

we have that u>Cu = ‖u‖2C and√
λ1(C) = ‖u∗‖C ≤ ‖u∗ − u‖C + ‖u‖C = ‖u∗ − u‖C +

√
u>Cu,

which implies
√
u>Cu ≥

√
λ1(C) − ‖u∗ − u‖C. Next, since ‖u∗ − u‖C =√

(u∗ − u)>C(u∗ − u) ≤ r
√
λ1(C), we have u>Cu ≥ (1 − r)2λ1(C) = λ1(C) + r2λ1(C) −

2rλ1(C) ≥ λ1(C) − 2rλ1(C). Therefore, if r ≤ τ
4λ1(C) , we have 2rλ1(C) ≤ τ/2 and thus

u>Cu ≥ λ1(C)− τ/2.

12



All that remains to prove Lemma 5 is to choose an appropriate value of τ .
Lemma 5. Let X ∈ Rd×n be a data matrix and C = XX>. For any β > 0, with probability at
least 1 − β over û sampled from the density proportional to fC(u) = exp( ε4u

>Cu) on Sd−1, we
have

û>Cû ≥ λ1(C)−O
(

1

ε

(
d log λ1(C) + log

1

β

))

Proof. The proof follows by setting τ = 8
ε log

(
e + 2(8λ1(C))d−1

β

)
in Lemma 8. In particular, this

guarantees that with probability at least 1− β, we have

û>Cû ≥ λ1(C)− 8

ε
log

(
e+

2(8λ1(C))d−1

β

)
.

We can now prove the main utility guarantee of our algorithm.

Theorem 2. Let Ĉ be the output of Algorithm 1 run with inputs C and privacy parameters
ε0, . . . , εd. For any β > 0, with probability at least 1− β we have

‖C− Ĉ‖F ≤ Õ
(√√√√ d∑

i=1

dλi(C)

εi
+

√
d

ε0

)
,

where the Õ notation suppresses logarithmic terms in d, λ1(C), and β.

Proof. First we bound the error in each of the differentially private estimations made by Algorithm 1.
Let β′ = β/(2d). For each eigenvalue estimate, Lemma 3 guarantees that with probability at least
1 − β/2, we have |λ̂i − λi(C)| ≤ 2

ε0
log 1

β′ . For each eigenvector estimate, Lemma 5 guarantees
that with probability at least 1− β′ we have

λ1(Ci)− û>i Ciûi ≤ O
(

1

εi
((d− i+ 1) log λ1(Ci) + log

1

β′
)

)
. (2)

By the union bound, all events hold simultaneously with probability at least 1−β. Assume this high
probability event holds for the remainder of the proof.

The key remaining step is to argue that the guarantee from (2) implies that λi(C) − θ̂>i Cθ̂i is also
small. First, let u ∈ Rd−i+1 be any unit vector and let θ = P>i u. Then we have ‖θ‖2 = 1 (since Pi

has orthonormal rows) and θ>Cθ = u>PiCP>i u = u>Ciu. Additionally, if a unit vector θ ∈ Rd
can be expressed as θ = P>i u, then ‖u‖2 = 1, and θ belongs to the (d−i+1)-dimensional subspace
spanned by the rows of Pi. Thus, using the min-max characterization of λi(C) we have

λi(C) = min
V⊂Rd

dim(V )=d−i+1

max
θ∈V
‖θ‖2=1

θ>Cθ ≤ max
θ∈rowspan(Pi)
‖θ‖2=1

θ>Cθ = max
u∈Rd−i+1

‖u‖2=1

u>Ciu = λ1(Ci).

This implies that

λi(C)− θ̂>i Cθ̂i ≤ λ1(Ci)− û>i Ciûi ≤ O
(

1

εi
(d log λ1(C) + log

1

β′
)

)
,

where the final inequality uses (2) together with the fact that λ1(Ci) ≤ λ1(C). Combining with
Lemma 6, we have

‖C− Ĉ‖F ≤ O
(√√√√ d∑

i=1

λi(C)(
1

εi
(d log λ1(C) + log

1

β′
) +

√
d log 1

β′

ε0

)

= Õ

(√√√√ d∑
i=1

dλi(C)

εi
+

√
d

ε0

)
,

as required.
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Next we prove the error bound for Algorithm 1 using the adaptive privacy budgeting.
Corollary 1. Fix any privacy parameter ε and any failure probability β > 0, let ε0 = ε/2, and

let εi =
ε
2

√
λ̂i+τ∑

j

√
λ̂j+τ

where τ = 2
ε0

log(2d/β). Then Algorithm 1 run with ε0, . . . , εd preserves

ε-differential privacy and, with probability at least 1− β, the output Ĉ satisfies

‖C− Ĉ‖F ≤ Õ
(√

d

ε

d∑
i=1

√
λ̂i +

1

ε
+

√
d

ε

)
.

Proof. With probability at least 1− β we are guaranteed that the high probability event from Theo-
rem 2 occurs. In particular, we have that |λ̂i − λi(C)| ≤ τ for all i and that

‖C− Ĉ‖F ≤ Õ
(√√√√ d∑

i=1

dλi(C)

εi
+

√
d

ε0

)
.

Assume this high probability event holds for the remainder of the proof.

Given that λi(C) ≤ λ̂i + τ and the above bound is increasing in λi(C), we can upper bound the
loss in terms of the estimated eigenvalues as well:

‖C− Ĉ‖F ≤ Õ
(√√√√ d∑

i=1

d(λ̂i + τ)

εi
+

√
d

ε0

)
.

Substituing the given values for ε0, . . . , εd, this becomes

‖C− Ĉ‖F ≤ Õ
(√√√√√ d∑

i=1

d(λ̂i + τ) ·
2
∑
j

√
λ̂j + τ

ε
√
λ̂i + τ

+

√
d

ε

)

= Õ

(√√√√d

ε

d∑
i=1

√
λ̂i + τ

d∑
j=1

√
λ̂j + τ +

√
d

ε

)

= Õ

(√√√√d

ε

( d∑
i=1

√
λ̂i + τ

)2

+

√
d

ε

)

= Õ

(√
d

ε

d∑
i=1

√
λ̂i + τ +

√
d

ε

)
,

as required.

Corollary 2. For any ζ > 0 and any positive semidefinite matrix Ĉ, with probability at least
0.99 (or any fixed success probability), running Algorithm 1 with ε0 = ε/2 and εi = ε/(2d) for
i = 1, . . . , d preserves ε-differential privacy and outputs Ĉ such that ‖C − Ĉ‖F ≤ O(ζλ1(C)) if
λ1(C) ≥ 2d3

εζ2 log( dεζ ).

Proof. From Theorem 2, we know that with probability at least 0.99 the output Ĉ of Algorithm 1
satisfies

‖C− Ĉ‖F ≤ O
(√√√√ d∑

i=1

dλi(C) log(λ1(C))

εi
+

√
d

ε0

)
.

Upper bounding λi(C) by λ1(C) and substituting the given privacy parameters ε0, . . . , εd, we have

‖C− Ĉ‖F ≤ O
(
d3/2

√
λ1(C) log(λ1(C))/ε+

√
d/ε
)

≤ O
(
max{d3/2

√
λ1(C) log(λ1(C))/ε,

√
d/ε}

)
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Algorithm 2 Top Eigenvector Sampler
Input: Covariance matrix C ∈ Rd×d, privacy parameter ε > 0.
1. Let A = − ε

4C + ε
4λd(C) · I .

2. Let Ω = I + 2A/b where b satisfies
∑d
i=1 1/(b+ 2λi(A)) = 0.

3. Let M = exp(−(d− b)/2) · (d/b)d/2.
4. Repeat forever:

(a) Sample z ∼ N (0,Ω−1) and set u = z/‖z‖2.

(b) With probability exp(−u>Au)
M ·(u>Ωu)d/2

‘accept’ and return u.

Algorithm 3 Data generating algorithm
Input: Dimension d, number of points n.
1. Sample X ∈ Rd×n from normal distribution N(0, 1). Sample U ∈ Rd×d from uniform distribu-

tion U(0, 1).
2. Return Normalize(UX)

It follows that if ζλ1(C) ≥ max{d3/2
√
λ1(C) log(λ1(C))/ε,

√
d/ε}, then ‖C − Ĉ‖F ≤

O(ζλ1(C)). Whenever λ1(C) ≥
√
d/(εζ) we have ζλ1(C) ≥

√
d/ε. On the other hand, if

λ1(C) ≥ d3

εζ2 log(λ1(C)), we have that ζλ1(C) ≥ d3/2
√
λ1(C) log(λ1(C))/ε. Using the fact

that for any a > 0, the inequality x ≥ 2a log(a) implies that x ≥ a log(x), it follows that when
λ1(C) ≥ 2d3

εζ2 log( dεζ ) we have that ζλ1(C) ≥ d3/2
√
λ1(C) log(λ1(C))/ε. Since the second re-

quirement on λ1(C) is stronger, we are guaranteed that when λ1(C) ≥ 2d3

εζ2 log( dεζ ), with probability

at least 0.99 we have ‖C− Ĉ‖F ≤ O(ζλ1(C)).

C Experiments

In this section we provide a more comprehensive empirical evaluation of our algorithm.

C.1 Synthetic datasets

To properly measure the effects of dimension and data set size we evaluate the performance of all al-
gorithms on a synthetic data set. The data is generated according to Algorithm 3, where Normalize()
is a subroutine that ensures every column of X has mean 0, variance 1, and L2-norm 1. Intuitively,
the uniform matrix U described in the algorithm is used to introduce correlations between between
features.

We consider different data regimes by varying d ∈ {10, 100} and n ∈ {1000, 10000, 50000}.
Similar to Section 4 we measure the error of the algorithms by the normalized Frobenius distance
between the estimated and true covariance matrices. We ran each experiment 100 times and the
average error is presented in Figure 2.

The results of these experiments are fairly similar to the ones on the real data sets. Our algorihtm
seems to consistently outperform all others. What is truly interesting however is to observe how the
performance gap between AD and KT changes as a function of d and n. As the dimension increases
the gap seems to increase and the opposite occurs as n increases. This was already foretold in
Section 3.1. However, by observing this gap empirically we show that the theoretical improvement is
not an artifact of the analysis but a an inherent quality of the algorithm. When comparing against the
Gaussian mechanism we see that the relative performance of our algorithm degrades as n increases.
This was also established theoretically in Section 3.1. On the other hand, it is interesting to observe
that for high privacy regimes, the relative performance of our algorithm is better as the dimension
increases. This phenomenon can be explained by the fact that the utility guarantees of the Gaussian
mechanism are inO(d

3/2

ε ) whereas those of our algorithm are inO(d
3/2
√
ε

+ d
ε ). Thus our performance

will be better for small values of ε and large values of d.
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Figure 2: (a) Comparison of our algorithm to other ε-differentially private algorithms on artificial
data. Rows in the grid correspond to a fixed value of d, while columns correspond to a fixed value of
n. (b) Comparison of our algorithm to the Gaussian mechanism. G-x corresponds to the Gaussian
mechanism with parameter δ = 10−x

C.2 Regression

We now turn to the problem of learning a regressor in a private manner. More precisely, we will
attempt to predict the first coordinate of the data matrix X based on all other coordinates. Let Xs:t

denote a matrix consisting of columns of matrix X in the range [s, t]. Let y = X1:1 and X′ = X2:d.
We are interested in solving the problem

min
w∈Rd

‖X′w − y‖2 + α‖w‖2. (3)

while ensuring that the output is private.

One way to solve this problem is to use the private covariance matrix to find the optimal vector w, as
shown in Section 1.1. A different approach is to solve (3) on the true data and then add noise to the
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Figure 3: Results comparing our algorithm to the perturbation algorithm of Chaudhuri et al. [2011]
on the regression task. The value of the regularization parameter is appended to the algorithm name
in the plot legend. The error metric is the average squared loss when predicting the first coordinate
of the data.

output, as described in the output perturbation algorithm of Chaudhuri et al. [2011]. We refer to this
perturbation algorithm as P. We refrain from comparing to objective perturbation methods such as
those of Chaudhuri et al. [2011] and Kifer et al. [2012] since their performance is somewhat similar
to that of output perturbation. Moreover, our goal is not to provide a state of the art algorithm for
regression. Instead, we want to show that the utility of our algorithm does not degrade too much
compared to a specialized algorithm, even when the privacy task of releasing a full covariance matrix
is harder than that of releasing a regression vector.

To assess the quality of the solution w we measure the squared loss of the prediction on a test data set
generated from the same distribution as X. Since the baseline method of Chaudhuri et al. [2011] de-
pends on the regularization parameter α, we vary this parameter over the set {0.1, 1, 10, 100, 1000}.
The results of this comparison on synthetic data are presented in Figure 3.

We begin by noting that, for a fixed ε, the best performing version of P performs similarly to the
best performing version of AD (although there are cases where each algorithm performs slightly
better). Nonetheless, our algorithm has the practical advantage that its performance is much more
stable across different choices of α.

The instability of P can be understood from the fact that α plays two roles in the algorithm of
Chaudhuri et al. [2011]. First, it serves as a regularization parameter that helps avoid overfitting.
Second, it works as a privacy parameter: their approach adds less noise for larger α. While this may
be a desirable property, it introduces a complication, since α must be tuned privately for optimal
performance. As an example, consider the case when d = 10 and n = 10000. For our algorithm AD,
the optimal regularization parameter is fixed at α = 100 for all ε. For the P baseline, the performance
of a fixed α degrades rapidly as ε decreases, and different values of α emerge as optimal. Since
performing this tuning requires adding a different amount of noise every time, each tuning iteration
uses additional privacy budget. In contrast, since we release a single covariance matrix, we can test
an unlimited number of values for α and remain differentially private without any additional privacy
loss.

Another advantage of privately estimating the full covariance matrix is that it allows us to regress any
coordinate against any of the others. This is not true of the perturbation algorithm, which operates
one instance at a time. In their setting, if we wanted to choose different regression targets we would
have to split the privacy budget ε among all of the runs. To show how privacy splitting affects the
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Figure 4: Results comparing our algorithm against the perturbation algorithm of Chaudhuri et al.
[2011] on the regression task. The error metric is the average squared loss across all possible targets
in the data matrix.
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Figure 5: Comparison to the perturbation algorithm of Chaudhuri et al. [2011]. Error is the squared
loss on the test data.

perturbation algorithm, we conducted the same regression task d times to predict each column of
the data matrix X from the others. In every run we set the privacy parameter in the perturbation
algorithm to ε

d . We show the average squared loss (over all predicted columns) in Figure 4. Clearly,
if there is a need to perform multiple regressions on the same dataset, our approach offers significant
advantages.

We conclude this section by solving the same regression task on the real-world datasets used in
Section 4. We splitted the data set and used 80% for training and 20% for testing. The results shown
in Figure 5 report the test error.
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