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Abstract
A centrally differentially private algorithm maps raw data to differentially private outputs. In con-
trast, a locally differentially private algorithm may only access data through public interaction with
data holders, and this interaction must be a differentially private function of the data. We study
the intermediate model of pan-privacy. Unlike a locally private algorithm, a pan-private algorithm
receives data in the clear. Unlike a centrally private algorithm, the algorithm receives data one
element at a time and must maintain a differentially private internal state while processing this
stream.

First, we show that pan-privacy against multiple intrusions on the internal state is equivalent
to sequentially interactive local privacy. Next, we contextualize pan-privacy against a single intru-
sion by analyzing the sample complexity of uniformity testing over domain [k]. Focusing on the
dependence on k, centrally private uniformity testing has sample complexity Θ(

√
k), while nonin-

teractive locally private uniformity testing has sample complexity Θ(k). We show that the sample
complexity of pan-private uniformity testing is Θ(k2/3). By a new Ω(k) lower bound for the
sequentially interactive setting, we also separate pan-private from sequentially interactive locally
private and multi-intrusion pan-private uniformity testing.
Keywords: Differential privacy, local differential privacy, pan-privacy, uniformity testing

1. Introduction

Differential privacy (Dwork et al. (2006)) promises that a randomized algorithm’s output distribu-
tion is relatively insensitive to small changes in its input data. This insensitivity hides the presence
or absence of individual data elements and provides privacy for the contributors of that data. Rig-
orous privacy guarantees have driven increasing adoption of differential privacy by industry (Apple
(2017); Bittau et al. (2017); Ding et al. (2017); Guevara (2019)), government (Abowd (2018)), and
academic researchers (Murtagh et al. (2018); Messing et al. (2019)).

In central differential privacy (Dwork et al. (2006)), the algorithm receives a database in the
clear, and privacy only constrains the algorithm’s eventual output. Central privacy therefore of-
fers the highest utility – for example, the lowest error or sample complexity – but weakest privacy
guarantee. In particular, in many real-world applications the input database is acquired over time,
and raw data is kept until the time arrives to produce (differentially private) outputs. A user may
worry that raw data sitting with a trusted algorithm operator may still be at risk of exfiltration by
subpoena, “mission creep” by the operator that contravenes users’ original wishes, or a change in
operator ownership. Since central privacy makes no guarantees about the intermediate representa-
tion of the data during processing, it offers no protection against these events.
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One solution to this family of problems is local differential privacy (Dwork et al. (2006); Ka-
siviswanathan et al. (2011)). Locally differentially private algorithms do not receive a database in
the clear. Instead, data remains distributed among users, and the algorithm must learn about the
data by interacting with these users in a public yet privacy-preserving way. Because users are in
charge of randomizing their communications in the protocol, they no longer need to trust an algo-
rithm operator. Unfortunately, this strong privacy guarantee often incurs a significant utility cost.
For example, one can compute the sum of n bits to O(1/ε) additive error under ε-central privacy
but, for constant ε, must incur Ω(

√
n) error under ε-local privacy (Chan et al. (2012)).

We study pan-privacy (Dwork et al. (2010b)) as a middle ground in this tradeoff between privacy
and utility. A pan-private algorithm receives a stream of raw data (for example, the gradual data ac-
quisition process mentioned above). Pan-privacy has two requirements. First, while processing the
data a pan-private algorithm must maintain an internal state that is differentially private against any
single intrusion. Second, a pan-private algorithm must ultimately produce a differentially private
output.

Central, pan-, and local privacy therefore correspond to different trust models. If a user trusts the
algorithm operator to not only perform the computation in question but to responsibly steward raw
data in the future, then central privacy is a sufficient guarantee. If a user currently trusts the operator,
but also wants to protect themselves against unknown future complications in data stewardship, pan-
privacy suffices. For a user who does not trust the operator at all, only local privacy is enough.

1.1. Contributions

We give several results about the relative merits of these models. Taken together, they suggest
pan-privacy as a middle ground for both privacy and utility between the central and local models.

1. Through constructive transformations in both directions, we show that pan-privacy against
multiple intrusions is equivalent to sequentially interactive local privacy (Section 3).

2. We give matching (in k) upper and lower bounds showing that uniformity testing — the prob-
lem of distinguishing uniform and non-uniform distributions through sample access — has
pan-private sample complexity Θ(k2/3). The best known locally private uniformity tester
achieves Θ(k) sample complexity by reducing uniformity testing to binary testing (Acharya
et al. (2019a)), while the optimal centrally private uniformity tester gets Θ(

√
k) without re-

ducing the problem domain at all (Acharya et al. (2018)). Our pan-private uniformity tester
intermediates between these approaches by reducing uniformity testing over [k] to, roughly,
uniformity testing over [k2/3] (Section 4). Our lower bound adapts the approach used by
Diakonikolas et al. (2019) to prove testing lower bounds under memory and communication
restrictions (Section 5.1).

3. By a new lower bound, again adapting the memory-restricted lower bound of Diakoniko-
las et al. (2019), we show that sequentially interactive locally private uniformity testing has
sample complexity Θ(k) (Section 5.2).

We briefly elaborate on the first contribution. We view this result as dictating the scope of when
pan-privacy is reasonable. If a user requires privacy against multiple intrusions, then the operator
suffers no utility loss by using an algorithm that is locally private instead of an algorithm that is
pan-private against multiple intrusions. However, there are cases where a user may be satisfied with
pan-privacy against a single intrusion. To see why, we use the following simple result.
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Fact 1 Suppose a user’s data is element st of an (ε, δ)-pan-private algorithm A’s stream. We say
an intrusion occurs at time t if the intrusion occurs immediately afterA updates its internal state to
it after seeing element st. If

1. the first intrusion (possibly of many) occurs at time t′ ≥ t, or

2. all intrusions occur at times t′ < t,

then the intruder’s view is an (ε, δ)-differentially private function of st.

Proof Pan-privacy guarantees that it is an (ε, δ)-differentially private function of st. In Case 1,
the adversary only sees a post-processing of it. Differential privacy’s resilience to post-processing
(see e.g. Proposition 2.1 in Dwork and Roth’s survey (Dwork et al. (2014))) implies that this view
is (ε, δ)-differentially private in st. In Case 2, the adversary’s view is independent of st, so (ε, δ)-
differential privacy is immediate.

By Fact 1, if A is pan-private against a single intrusion, then it guarantees privacy for users
who either contribute data before the first intrusion or after all intrusions. However, pan-privacy is
not sufficient to protect a user’s privacy if the operator has already been compromised and may be
compromised again. The key parameter for pan-privacy is therefore the user’s trust in the operator
when the user contributes their data. This motivates the trust model described in the introduction:
if a user trusts the operator today, but wants to “future-proof” themselves for tomorrow, then pan-
privacy is a reasonable privacy guarantee.

1.2. Related Work

We start with previous work on pan-privacy. Dwork et al. (2010b) introduced pan-privacy and gave
pan-private algorithms for several different counting problems over streams. They also gave two
lower bounds. First they separated pan-privacy against one and two intrusions by showing that esti-
mating the number of distinct elements in a stream is much harder with multiple intrusions. Second,
they gave a problem, inner product counting, that separates pan-privacy from noninteractive local
privacy. Mir et al. (2011) extended these results to new counting problems and dynamic streams.
They also showed that pan-private algorithms cannot approximate distinct element count to additive
accuracy o(

√
|X|) for data universe X . This improved upon the Ω(

√
|X|/ log(|X|)) lower bound

given by McGregor et al. (2010) for two-party differential privacy (a weaker guarantee than pan-
privacy), which was the first separation between central and pan-privacy. Dwork et al. (2010a) also
studied pan-privacy, albeit under the additional constraint of continual observation, which requires
the algorithm to provide accurate answers after every stream element. They and Chan et al. (2011)
gave both upper and lower bounds for counting problems under continual observation.

Our work departs from the above in a few ways. First, we generalize previous results on pan-
privacy against two intrusions by showing that it is equivalent to a different model, sequentially
interactive local privacy. Second, the testing problems we study focus on learning from samples
generated by some distribution, as opposed to previous work on adversarial streaming problems.
This distributional quality necessitates different lower bound techniques.

In uniformity testing, a line of work (Goldreich and Ron (2000); Paninski (2008); Valiant and
Valiant (2014)) has established that uniformity testing (without privacy) has sample complexity
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Θ
(√

k
α2

)
where k is the domain size and α is the total variation distance parameter (for more infor-

mation on testing, see the survey by Canonne (2015)). Acharya et al. (2018) showed that ε-centrally
private uniformity testing has sample complexity Θ

(√
k

α2 +
√
k

α
√
ε

+ k1/3

α4/3ε2/3
+ 1

αε

)
. Acharya et al.

(2019a) showed that noninteractive ε-locally private uniformity testing has sample complexity Θ
(

k
α2ε2

)
.

Acharya et al. (2019b) proved similar results with special attention to the amount of public random-
ness. A comparison of our results to this previous work appears in Figure 1.

In the data structures community, several works have studied history independence (Micciancio
(1997); Naor and Teague (2001); Blelloch and Golovin (2007)). A history independent data struc-
ture is one whose memory representation reveals no more information than its abstract representa-
tion does. For example, without history independence, the abstract representation of a dictionary
may only reveal keys and values while the memory representation also reveals insertion order. Pan-
privacy instead aims to guarantee that the abstract representation is a differentially private function
of the input data.

Setting Previous Work This Work

Non-private Θ
(√

k
α2

)
(Goldreich and Ron (2000);

Paninski (2008); Valiant and Valiant
(2014))

–

ε-central privacy Θ
(√

k
α2 +

√
k

α
√
ε

+ k1/3

α4/3ε2/3
+ 1

αε

)
(Acharya et al. (2018))

–

ε-pan-privacy –
–

O
(

k2/3

α4/3ε2/3
+
√
k

α2 +
√
k

αε

)
Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 + 1
αε

)
SI ε-local privacy O

(
k

α2ε2

)
(Acharya et al. (2019a)) Ω

(
k

α2ε2

)
NI ε-local privacy Θ

(
k

α2ε2

)
(Acharya et al. (2019a)) –

Figure 1: A comparison of the uniformity testing sample complexity bounds given in this and pre-
vious work. “SI” is sequentially interactive and “NI” is noninteractive. Before this work,
no pan-private bounds were known, and it was not known that O

(
k

α2ε2

)
is tight for se-

quentially interactive protocols.

2. Preliminaries

2.1. Central Differential Privacy

A randomized algorithmA satisfies central differential privacy if it maps raw databases to outcomes
such that the distribution over outcomes is relatively insensitive to small changes in the database.
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This insensitivity, which hides the presence or absence of any one user, provides the privacy guar-
antee.

Definition 1 (Central differential privacy (Dwork et al. (2006))) Given data universeX and two
databases D,D′ ∈ X n, D and D′ are neighbors if they differ in ≤ 1 element. Given algorithm
A : X n → Y , A is (ε, δ)-differentially private if for all subsets S ⊂ Y ,

PA [A(D) ∈ S] ≤ eεPA
[
A(D′) ∈ S

]
+ δ.

For this work, it is important to note that centrally private algorithms enjoy trusted (central)
access to the entire raw database. In particular, they may perform arbitrary computations on raw
data before releasing a private output. Pan- and locally private algorithms have restricted forms of
access to the data.

2.2. Pan-privacy

A pan-private algorithm operates in a different setting with different guarantees. Here, the algorithm
A receives the database as a stream, one element at a time, and updates its internal state after seeing
each element. The element is then deleted from A’s memory, and A continues processing the
stream1. The entirety of A’s knowledge about the stream so far is thus contained in this internal
state. At the end of the stream, A produces an output as its final answer. Pan-privacy mandates
that A’s internal state and final answer must be differentially private functions of the stream on a
per-element basis.

Definition 2 (Pan-privacy (Dwork et al. (2010b))) Let X be a data universe, and let S = XN be
the set of streams from X . Two streams s, s′ ∈ S are neighbors if there exist x and x′ ∈ X such that
replacing a single instance of x ∈ s with x′ produces s′.

A pan-private algorithm consists of an internal algorithm AI and an output algorithm AO. A
maps streams to internal states by repeated application of AI , which maps an internal state and
element of X to an internal state, AI : I × X → I. At some time the stream ends and A publishes
a final output AO(i) where i is the internal state of A at the end of the stream. For stream s, let
AI(s) denote the internal state of A after processing s, and let s≤t denote the first t elements of
stream s. A is (ε, δ)-pan-private if, for any neighboring streams s and s′, any time t, and any set
E ⊂ I ×O

PA [(AI(s≤t),AO(AI(s))) ∈ E] ≤ eεPA
[
(AI(s′≤t),AO(AI(s′))) ∈ E

]
+ δ. (1)

This paper will focus on pure pan-privacy, where δ = 0. We shorthand this as ε-pan-privacy.

Pan-privacy thus protects against an adversary that sees any single internal state of A as well
as its final output. The second requirement implies that any pan-private algorithm is also centrally
private; the key additional contribution of pan-privacy is the maintenance of the differentially private
internal state. To generalize Definition 2 to c > 1 intrusions, we can replace inequality 1 with

PA
[
(AI(st)tct=t1 ,AO(AI(s))) ∈ E

]
≤ eεPA

[
(AI(s′t)

tc
t=t1

,AO(AI(s′))) ∈ E
]

+ δ

1. As is standard in pan-privacy, we assume that the process of receiving an element and updating the state is atomic:
the adversary cannot intrude on the internal state between the reception of a new stream element and the internal state
update. Without this assumption, nothing prevents the adversary from possibly seeing a data point in the clear, and
differential privacy is impossible.
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where E ⊂ Ic ×O.
We note that our definition of pan-privacy differs from the original. This stems from slightly

different goals. The original work of Dwork et al. (2010b) focused on tracking statistics of a stream
of unknown length and allowed for the possibility that the stream could end unexpectedly. They
also allowed for multiple outputs by the algorithm. We instead analyze problems from a sample
complexity perspective and focus on the number of samples needed to solve a problem pan-privately.
This leads us to consider streams of fixed length (determined by the algorithm as the required sample
complexity) and a single output (the answer to the problem in question). Additionally, Dwork et al.
(2010b) studied streams where each element is a (user, value) pair and a neighboring stream may
replace all values contributed by any one user. We remove the notion of a user and simply view
a stream as a sequence of elements. We therefore guarantee element-level rather than user-level
privacy2. Nonetheless, the basic idea of pan-privacy – its privacy against an adversary who sees a
single internal state and the output – remains intact.

2.3. Local Differential Privacy

A locally differentially private algorithm satisfies a still more restrictive privacy guarantee. Unlike
pan-private algorithms, locally private algorithms never see any data in the clear. Instead, a locally
private algorithm is a public interaction between users, each of whom privately holds a single data
element. Since our main point of comparison is pan-private algorithms, we view these users as
stream elements. A pan-private algorithm sees each stream element, but a locally private algorithm
only sees the randomizer output produced by each stream element. However, this is a difference
only in presentation, and a user obtains the same kind of local privacy guarantee whether we view
them as a user or a stream element. Up to this difference, our local differential privacy definitions
generally imitate those given by Joseph et al. (2019).

Definition 3 An (ε, δ)-randomizer R : X → Y is an (ε, δ)-differentially private function taking a
single data point as input.

Because communication occurs only through randomizers, the overall record of public interac-
tion is private. We more formally study this interaction in terms of its transcript.

Definition 4 A transcript π is a vector of tuples (Rt, yt) indicating the randomizer used and output
produced at each time t.

We can then view a locally private protocol as a coordinating mechanism that takes a transcript
and selects a randomizer for the next stream element.

Definition 5 Let Sπ denote the collection of transcripts and SR the collection of randomizers.
Then a protocol A is a function A : Sπ → SR mapping transcripts to randomizers.

A locally private protocol generally includes some post-processing of the transcript to generate
some final output. Since this post-processing is still a function of the transcript, we abstract it away
and focus only on the transcript. Next, we distinguish between different notions of interactivity for
locally private protocols.

2. Note that this allows the closest comparison with existing centrally and locally private uniformity testers, which all
employ element-level privacy.
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Definition 6 If locally private protocol A makes all randomizer assignments before the stream
begins (i.e., each randomizer choice Rt is independent of the transcript so far conditioned on t)
then A is noninteractive. IfA makes these assignments adaptively as the stream progresses, then A
is sequentially interactive (Duchi et al. (2013)).

The most general model of local privacy allows full interactivity: users may produce arbitrarily
many outputs in arbitrary sequences. In particular, a protocol may re-query past participants. This
is analogous to processing a stream with multiple passes. Since we focus on pan-privacy in the
single-pass model, we will compare it to noninteractive and sequentially interactive locally private
protocols, which can only query each participant at most once. We now formally define local
differential privacy.

Definition 7 A protocolA is (ε, δ)-locally differentially private if its transcript is an (ε, δ)-differentially
private function of the user data. If δ = 0, we say A is ε-locally differentially private.

In particular, a sequentially interactive protocol is (ε, δ)-locally differentially private if and only
if each randomizer used is an (ε, δ)-randomizer.

3. Pan-privacy and Local Privacy

We first show that any algorithm that is pan-private against multiple intrusions has a locally private
equivalent (Theorem 8). The main idea is that the operator of a pan-private algorithm A2P cannot
know when two intrusions will occur. In particular, if the two intrusions occur at times t and t+1 —
respectively, immediately after A2P processes st and st+1 — then failure to randomize the internal
state between t and t + 1 may reveal element st+1. The operator must therefore re-randomize the
state at every time step.

We briefly sketch the proof of Theorem 8 (full proofs of this and other results appear in the
Appendix). First, we observe that any A2P that is ε-pan-private against two intrusions can be
modified into an algorithm A1P that maintains all of its internal states thus far and still remain ε-
pan-private against one intrusion (Lemma 16). Because this single intrusion may come at the end of
the stream, the complete list of internal states during the stream must be an ε-differentially private
function of the stream. We can therefore simulate this procedure in the sequentially interactive local
model and have the transcript generate this complete list of internal states (Lemma 17).

In the other direction, we convert any ε-sequentially interactive locally private protocol AL to
A2P , which is ε-pan-private against two intrusions. A2P simulates AL and stores the transcript so
far as its internal state. Since this transcript is an ε-differentially private function of the data (recall
that the transcript for AL is public), A2P is ε-pan-private against an arbitrary number of intrusions
onto its internal state.

Theorem 8 For every A2P that is ε-pan-private against two intrusions and generates output dis-
tribution O given input stream s, there exists AL that is sequentially interactive ε-locally private
and generates transcript distribution O given s, and vice-versa.

Proof See Appendix, Section 7.
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4. Uniformity Testing

We now turn to upper bounds for pan-privacy against a single intrusion. Our benchmark problem
is uniformity testing. In uniformity testing, a tester receives i.i.d. sample access to an unknown
discrete distribution p over [k] and must determine with nontrivial constant probability whether p
is uniform or α-far from uniform in total variation distance. Below, let Uk denote the uniform
distribution over [k].

Definition 9 (Uniformity testing) An algorithmA is a uniformity tester on m samples if, given m
i.i.d. samples from p,

1. when p = Uk, with probability ≥ 2/3 A outputs “uniform”, and

2. when ||p− Uk||TV ≥ α, with probability ≥ 2/3 A outputs “non-uniform”.

The specific choice of 2/3 is arbitrary. The important point is that there is a constant separation
between output probabilities, which can be amplified to 2/3 with a constant number of repetitions.
We therefore focus on achieving any such constant separation. Details for this standard perspective
appear in Appendix 8.

4.1. Warmup: SIMPLEPANTEST

We start with a suboptimal uniformity tester SIMPLEPANTEST. SIMPLEPANTEST is a warmup and
eventual building block for a better algorithm PANTEST (Section 4.2).

Like many uniformity testers, SIMPLEPANTEST computes a statistic on the data and compares
it to a threshold. The statistic is designed to be small when p is uniform and large if p is α-far from
uniform. For SIMPLEPANTEST, our statistic is

Z ′ =

k∑
i=1

(Hi −m/k)2 −Hi

m/k

where m is the number of samples and H is a noisy histogram over [k] where bin i counts the
number of occurrences of element i in the stream. H contains Laplace noise added to each bin
both before and after the stream. The first addition of noise ensures the privacy of the internal
states during the stream, while the second addition of noise is for the privacy of the final output.
Pseudocode for SIMPLEPANTEST appears below; values for m and TU are determined in the proof
of Lemma 10.

Inspired by similar statistics in non-private testing (Acharya et al. (2013); Chan et al. (2014);
Acharya et al. (2015)), Cai et al. (2017) originally studied Z ′ for centrally private identity testing.
However, they lower bounded its variance and argued that high variance makes it a suboptimal
centrally private tester. We instead upper bound its variance and show that Z ′ yields a nontrivial
pan-private uniformity tester.

Our argument is simple. First, we upper bound the variance of Z ′. We then apply Chebyshev’s
inequality to upper bound Z ′ when p is uniform and lower bound Z ′ when p is α-far from uniform.
These bounds drive our choice of the threshold TU . We then compute the number of samples m
required to separate these quantities on either side of TU .

Finally, note that we actually draw m′ ∼ Poisson (m) samples, not m. This “Poissonization”
trick is important for the analysis used to prove Lemma 19. Since Poisson (m) concentrates around
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Algorithm 1 Pan-private uniformity tester SIMPLEPANTEST

Require: privacy parameter ε, domain [k]
Set sample size m′ ∼ Poisson (m) and threshold TU
Initialize private histogram H ← Lap

(
1
ε

)k ∈ Rk
for stream elements st = s1, . . . , sm′ do

Hst ← Hst + 1
end for
H ← H + Lap

(
1
ε

)k ∈ Rk

Z ′ ←
∑k

i=1
(Hi−m/k)2−Hi

m/k

if Z ′ > TU then
Output “non-uniform”

else
Output “uniform”

end if

m (Canonne (2016)), a uniformity tester on Poisson (m) samples implies a uniformity tester on a
constant factor more samples with a constant decrease in success probability (see Section D.4 in the
survey of Canonne (2015) for a more detailed discussion of Poissonization).

Lemma 10 For m = Ω
(
k3/4

αε +
√
k

α2

)
, SIMPLEPANTEST is an ε-pan-private uniformity tester on

m samples.

Proof See Appendix, Section 9.

4.2. Optimal pan-private tester: PANTEST

We now use SIMPLEPANTEST as a building block for a more complex tester PANTEST. At a high
level, PANTEST splits the difference between local and central uniformity testers. We briefly recap
these approaches for context.

Centrally private uniformity testers compute a fine-grained statistic depending on the empirical
counts of each element i ∈ [k]. Specific methods include χ2-style statistics (Cai et al. (2017)),
collision-counting (Aliakbarpour et al. (2018)), and empirical total variation distance from Uk
(Acharya et al. (2018)), but all of these methods depend on accurate counts for each i ∈ [k]. Cai
et al. (2017) observed that adding Laplace noise to each such count before analyzing the statistic
is centrally private. The cost is a large decrease in accuracy. This is unfortunate in our pan-private
setting, as pan-privacy appears to force the same kind of per-count noise. Intuitively, a pan-private
tester might benefit by maintaining a coarser statistic — i.e., one that tracks fewer counts — that is
easier to maintain privately.

The best known3 locally private uniformity tester, due to Acharya et al. (2019a), uses an extreme
version of this coarser strategy. Their approach randomly halves the domain [k] into sets U and U c

and compares the number of samples falling into each. They prove that if p is sufficiently non-
uniform to start, then p(U) and p(U c) will also be non-uniform — albeit to a much smaller degree

3. Note that existing lower bounds, including those in this paper, have not ruled out the possibility that a fully interactive
locally private uniformity tester obtains better sample complexity.
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— with constant probability. This reduces uniformity testing to a simpler binary testing problem
that, because of its much smaller domain, is more amenable to local privacy. However, it does so
at the cost of a large reduction in testing distance, which makes the core distinguishing problem
harder. Thus both locally private and pan-private versions of this approach have sample complexity
Ω(k). Intuitively, because pan-privacy does not force as much noise as local privacy, a pan-private
algorithm might benefit by maintaining a finer statistic.

PANTEST capitalizes on both of these ideas. First, it randomly partitions [k] into n groups
G1, . . . , Gn of size Θ(k/n). It then runs SIMPLEPANTEST to test uniformity of the induced distri-
bution over [n], treating samples falling in each Gj as samples of j ∈ [n].

PANTEST thus intermediates between the central and local approaches. It chooses n = n(α, ε, k)

according to k2/3ε4/3

α4/3 . When k2/3ε4/3

α4/3 < 2, n(α, ε, k) = 2 and PANTEST uses the half-partition

approach from local privacy. When k2/3ε4/3

α4/3 > k, then n(α, ε, k) = k and PANTEST uses the unpar-

titioned approach from central privacy. Finally, when k2/3ε4/3

α4/3 ∈ [2, k], n(α, ε, k) = bk2/3ε4/3
α4/3 c and

PANTEST takes a middle ground. These choices enable PANTEST to calibrate the noise contributed
by privately maintaining different counts with the testing distance α Making this tradeoff work re-
lies crucially on the O

(
1
α

)
dependence on distance achieved by SIMPLEPANTEST in its k3/4 term.

In contrast, the Ω
(
k
α2

)
dependence of the best known locally private uniformity tester yields no

improvement with this approach. Pseudocode for PANTEST appears below.

Algorithm 2 Improved pan-private uniformity tester PANTEST

Require: privacy parameter ε, domain [k]

if k
2/3ε4/3

α4/3 < 2 then
n← 2

else if k
2/3ε4/3

α4/3 > k then
n← k

else
n← bk2/3ε4/3

α4/3 c
end if
Randomly partition [k] into n groups G1, . . . , Gn of size Θ(k/n)
Run SIMPLEPANTEST(ε, [n]), treating each element st ∈ Gj as j ∈ [n]

For this reduction to work, the aforementioned decrease in testing distance between [k] and [n]
must not be too large. We show this in Lemma 11, which generalizes a similar result of Acharya
et al. (2019a) for the special case of a partition into two subsets. As pointed out by a reviewer, this
generalization is not new (see Theorem 3.2 from Acharya et al. (2019b)), but we include our proof
here for completeness.

Lemma 11 Let p be a distribution over [k] such that ||p − Uk||TV = α and let G1, . . . , Gn be a
uniformly random partition of [k] into n > 1 subsets of size Θ(k/n). Define induced distribution pn
over [n] by pn(j) =

∑
i∈Gj p(i) for each j ∈ [n]. Then, with probability ≥ 1

954 over the selection
of G1, . . . , Gn,

||pn − Un||TV = Ω
(
α
√

n
k

)
.

Proof See Appendix, Section 9.
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Due to the 1/954 success probability of Lemma 11, we have a smaller (but still constant) sepa-
ration between output probabilities. We thus use the amplification argument discussed after Defini-
tion 9 to get Theorem 12. The guarantee combines Lemma 11 with Lemma 10, substituting n for k
and α

√
n
k for α.

Theorem 12 For m = Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 +
√
k

αε

)
, PANTEST is an ε-pan-private uniformity tester

on m samples.

Proof See Appendix, Section 9.

5. Lower Bounds

We now turn to lower bounds. Our first result gives a tight (in k) Ω
(

k2/3

α4/3ε2/3

)
lower bound for ε-

pan-private testing (Section 5.1). Our second result extends the previous Ω
(

k
α2ε2

)
lower bound for

noninteractive (ε, δ)-locally private uniformity testing (Acharya et al. (2019a)) to the sequentially
interactive case (Section 5.2).

Both of our lower bounds adapt the approach used by Diakonikolas et al. (2019) to prove testing
lower bounds under memory restrictions and communication restrictions. Like Diakonikolas et al.
(2019), we consider the problem of distinguishing between two distributions. If uniform random
variable X is 0 then the distribution is uniform. If X is 1 then each element has probability mass
slightly perturbed from uniform such that the distribution is α-far from uniform in total variation
distance. Our argument then proceeds by upper bounding the mutual information between the
random variable X and the algorithm’s internal state (in the pan-private case) or transcript (in the
locally private case). Controlling this quantity lower bounds the number of samples required to
identify X . This gives the final uniformity testing sample complexity lower bounds.

The main difference in our lower bounds is that Diakonikolas et al. (2019) restrict their algorithm
to use an internal state with b bits of memory. This memory restriction immediately implies that
the internal state’s entropy (and thus its mutual information with any other random variable) is also
bounded by b. In our case, we must use our privacy restrictions to replace this result. Doing so
constitutes the bulk of our arguments.

Finally, we note that these results add to lines of work conceptually connecting restricted mem-
ory to pan-privacy (Dwork et al. (2010b); Mir et al. (2011)) and connecting restricted communi-
cation to local privacy (McGregor et al. (2010); Acharya et al. (2019a); Duchi and Rogers (2019);
Acharya et al. (2019b); Joseph et al. (2020)).

5.1. Pan-private Lower Bound

We start with the pan-private lower bound. While we state our result using α ≤ 1/2, the choice of
1/2 is arbitrary: the same argument works for any α bounded below 1 by a constant. A short primer
on the information theory used in our argument appears in Appendix 11.

Theorem 13 For ε = O(1) and α ≤ 1/2, any ε-pan-private uniformity tester requires m =

Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 + 1
αε

)
samples.

Proof See Appendix, Section 10.
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5.2. Locally Private Lower Bound

We now move to the locally private lower bound. We state our result for ε-locally private algorithms,
but this is without loss of generality by the work of Bun et al. (2018) and Cheu et al. (2019),
which demonstrates an equivalence between (ε, δ)- and (ε, 0)-local privacy for reasonable parameter
ranges. A concise statement of these results also appears as Lemma 5.2 in the work of Joseph et al.
(2019).

At a high level, the main difference the pan-private and sequentially interactive lower bounds is
that the locally private algorithm does not see any sample St. Instead, the algorithm sees a random-
izer output based on St. We can therefore use past work quantifying the information loss between a
randomizer’s input and output (Duchi et al. (2013)) to bound information learned more tightly than
under pan-privacy. This partially explains, for example, the locally private lower bound’s different
dependence on ε. Replacing the memory upper bound used by Diakonikolas et al. (2019) with the
local privacy restriction also requires a different argument than in the pan-private case.

Theorem 14 For ε = O(1), any sequentially interactive ε-locally private uniformity tester requires
m = Ω

(
k

α2ε2

)
samples.

Proof See Appendix, Section 10.
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7. Pan-Local Proof

Theorem 15 For every A2P that is ε-pan-private against two intrusions and generates output dis-
tribution O given input stream s, there exists AL that is sequentially interactive ε-locally private
and generates transcript distribution O given s, and vice-versa.

Proof ⇒ (pan to local): We start by converting from pan-privacy against two intrusions to pan-
privacy against one intrusion while preserving all internal states.

Lemma 16 Suppose A2P is ε-pan-private against two intrusions, and let I2,t be the random vari-
able for the internal state ofA2P after stream element t. Then there existsA1P that is ε-pan-private
against one intrusion such that, for analogously defined I1,t, for any stream s≤t, the concatenation
I2,1 ◦ I2,2 · · · ◦ I2,t is distributed identically to I1,t.

Proof We first define A1P . For j ∈ {1, 2}, define ij,t to be the realized internal state of AjP after
seeing the tth stream element. Each internal state i1,t of A1P is a concatenation of internal states
i2,1 ◦ · · · ◦ i2,t, and for any internal state i of A1P we let i−1 denote the most recently concatenated
state. For example, for i = i2,1 ◦ · · · ◦ i2,t, i−1 = i2,t

4. We then define the internal algorithm
of A1P by A1P,I(i, x) = i ◦ A2P,I(i

−1, x). Finally, we define the output algorithm of A1P by
A1P,O(i) = A2P,O(i−1). As a result, A1P,O(A1P,I(s)) = A2P,O(A2P,I(s)), and A1P and A2P

have identical output distributions.
We will prove this result for discrete state spaces; a similar approach works for continuous state

spaces if we replace probability mass functions with densities. To prove ε-pan-privacy of A1P

against one intrusion, it suffices to fix neighboring streams s and s′, internal state set i, output state
set o, stream position t, and show

PA1P
[A1P,I(s≤t) = i]PA1P

[A1P,O(A1P,I(s)) = o | A1P,I(s≤t) = i]

PA1P

[
A1P,I(s′≤t) = i

]
PA1P

[
A1P,O(A1P,I(s′)) = o | A1P,I(s′≤t) = i

] ≤ eε.
First, by the definition of A1P , it suffices to show

PA1P
[A1P,I(s≤t) = i]PA2P

[
A2P,O(A2P,I(s)) = o | A2P,I(s≤t) = i−1

]
PA1P

[
A1P,I(s′≤t) = i

]
PA2P

[
A2P,O(A2P,I(s′)) = o | A2P,I(s′≤t) = i−1

] ≤ eε. (2)

4. We assume that it is possible to separate a concatenation into states of A2P after the fact. This assumption is easily
(but less neatly) removed using a separator character ⊥.
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Suppose streams s and s′ differ at time t∗, i.e. st∗ 6= s′t∗ . If t∗ > t, then we immediately have

PA1P
[A1P,I(s≤t) = i] = PA1P

[
A1P,I(s

′
≤t) = i

]
, and

PA2P [A2P,O(A2P,I(s))=o|A2P,I(s≤t)=i
−1]

PA2P

[
A2P,O(A2P,I(s′))=o|A2P,I(s′≤t)=i

−1
] ≤

eε follows from the ε-pan-privacy of A2P . Thus Inequality 2 holds.

The remaining case is when t∗ ≤ t. Here,
PA2P [A2P,O(A2P,I(s))=o|A2P,I(s≤t)=i

−1]
PA2P

[
A2P,O(A2P,I(s′))=o|A2P,I(s′≤t)=i

−1
] = 1, and

we need to upper bound
PA1P [A1P,I(s≤t)=i]
PA1P

[
A1P,I(s′≤t)=i

] . Since A1P,I(s≤t) is conditionally independent of

A1P,I(s≤t∗−1) given A1P,I(s≤t∗), it suffices to show that
PA1P [A1P,I(s≤t∗ )=i]
PA1P

[
A1P,I(s′≤t∗ )=i

] ≤ eε. Recall that

Ij,t is the random variable for the internal state of Aj after seeing the tth stream element. Then it is

equivalent to show
PA1P [I1,t∗=i|S≤t∗=s≤t∗]
PA1P

[
I1,t∗=i|S≤t∗=s′≤t∗

] ≤ eε.
We introduce some additional notation to prove this claim. i is an internal state for A1P and

is therefore a concatenation of internal states for A2P . Let ia denote the ath state in the con-
catenation i, and let ia:b = ia ◦ ia+1 ◦ · · · ◦ ib, the concatenation of states ia through ib. Then
PA1P [I1,t∗=i|S≤t∗=s≤t∗ ]
PA1P

[
I1,t∗=i|S≤t∗=s′≤t∗

]

=
PA1P

[I1,t∗−1 = i1:t∗−1 | S≤t∗ = s≤t∗ ] · PA2P
[I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA1P

[
I1,t∗−1 = i1:t∗−1 | S≤t∗ = s′≤t∗

]
· PA2P

[
I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]
=

PA2P
[I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA2P

[
I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]
=

PA2P
[I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P
[I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]

where the second equality uses the fact that s<t∗ = s′<t∗ , and the third equality uses I2,t∗’s con-
ditional independence from S≤t∗−1 given I2,t∗−1. Now, since I2,t∗−1 and St∗ are independent, we

multiply by 1 =
PA2P [I2,t∗−1=it∗−1|St∗=st∗ ]
PA2P [I2,t∗−1=it∗−1|St∗=s′

t∗ ]
to get

PA2P
[I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P
[I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]

=
PA2P

[I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = st∗ ]

PA2P
[I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = s′t∗ ]

≤ eε

since A2P is ε-pan-private against two intrusions.

Next, we show how to convert this pan-private algorithm A1P into an equivalent locally private
algorithm AL.

Lemma 17 LetA1P be an ε-pan-private algorithm as described in Lemma 16. Then there exists a
sequentially interactive ε-locally private algorithmAL whose transcript distribution Πt is identical
to the A1P ’s state distribution It at each time t.

Proof At each time t, A1P computes a function A1P (it−1, st) of its current state and the current
element in the stream and concatenates it to its current state. We define AL to use A1P (it−1, ·) as a
randomizer, add the result A1P (it−1, st) to the transcript, and continue.
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AL is sequentially interactive because we take a single pass through the stream. Furthermore,
because A1P is ε-pan-private and maintains all previous states, the transcript Πt of AL is an ε-
differentially private function of the user data. Thus AL is ε-locally private. Finally, recalling that
Definition 4 defined a transcript to record not only outputs but the randomizers used as well, let
Π−Rt denote Πt with the randomizers omitted. Then for any input stream s, Π−Rt is distributed
identically to It.

We now combine Lemma 16 and Lemma 17: any A2P that is ε-pan-private against two intru-
sions yields a sequentially interactive ε-locally privateAL such that for any input stream s and time
t, I2,t is distributed identically to Π−R,−1

t , the most recent addition to the transcript.
⇐ (local to pan): Let AL : Π→ R be a sequentially interactive ε-locally private protocol map-

ping transcripts to randomizers, and let AI : I × X → I be A2P ’s internal algorithm with ini-
tial state ∅. We define AI(∅, x1) = (∅,AL(∅),AL(∅)(x1)) and define other internal states i by
AI(i, x) = i ◦ (AL(i),AL(i)(x)), the concatenation of the existing state i and the (randomizer,
output) pair (AL(i),AL(i)(x)). Thus It = Πt at each time t. Finally, we define the output algo-
rithm to be the identity function AO(i) = i.

Since AL is ε-locally private, its final transcript Π is an ε-differentially private function of the
stream: for any transcript realization π and neighboring streams s and s′,

PAL [Π=π|S=s]

PAL [Π=π|S=s′] ≤ e
ε. Let-

ting I∗ be a random variable for the final internal state ofA2P , it follows that
PA2P

[I∗=π|S=s]

PA2P
[I∗=π|S=s′] ≤ e

ε.
Thus the final internal state I ofA2P is also an ε-differentially private function of the stream. More-
over, because it is a transcript, I∗ includes a record of all previous internal states. Thus the additional
view of any two internal states (in fact, any number of internal states) is still an ε-differentially pri-
vate function of the stream: fixing times t1, . . . , tc and corresponding internal states π1, . . . , πc,

PA2P
[It1 = π1, . . . , Itc = πc, I

∗ = i | S = s]

PA2P
[It1 = π1, . . . , Itc = πc, I∗ = i | S = s′]

≤ eε.

Finally, since the output of A2P is the final state I∗, A2P is ε-pan-private against arbitrarily many
(and, in particular, two) intrusions.

8. Constant Separation in Uniformity Testing

Recall that Definition 9 requires success probabilities of at least 2/3, i.e.

P [output uniform | p = Uk] ≥ 2/3 and P [output uniform | ||p− Uk||TV ≥ α] ≤ 1/3.

As long as we achieve constant separation, i.e. have

P [output uniform | p = Uk] ≥ c1 and P [output uniform | ||p− Uk||TV ≥ α] ≤ c2

for positive c1 − c2 = Ω(1), we can amplify it to a 1/3 separation by repetition. After suffi-
ciently many repetitions, if p = Uk then the proportion of “uniform” answers will concentrate at
or above c1, and if ||p − Uk||TV ≥ α it will concentrate at or below c2. By a Chernoff bound,
r = Ω

(
1

(c1−c2)2

)
repetitions suffice to distinguish between these cases. Since this is still a constant

number of repetitions, our algorithms will focus on achieving any constant separation.
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9. Uniformity Testing Upper Bound Proofs

Lemma 18 For m = Ω
(
k3/4

αε +
√
k

α2

)
, SIMPLEPANTEST is an ε-pan-private uniformity tester on

m samples.

Proof Privacy: Let t be a time in the stream, let i be a possible internal state for SIMPLEPANTEST,
and let o be a possible output. Let pI,s,t be the probability density function for the internal state
of SIMPLEPANTEST after the first t elements of stream s, and let pO,s,t|i be the probability density
function for the output given stream s such that the internal state at time t was i. Finally, fix
neighboring streams s and s′. Then to prove that SIMPLEPANTEST is ε-pan-private, it suffices to
show that

pI,s,t(i)·pO,s,t|i(o)
pI,s′,t(i)·pO,s′,t|i(o)

≤ eε.
The final output of SIMPLEPANTEST is a deterministic function of its final internal state (after

the second addition of Laplace noise). The final internal state is after m samples, so it is enough to
choose arbitrary internal states i1 and i2 and show

pI,s,t(i1) · pI,s,m,t|i1(i2)

pI,s′,t(i1) · pI,s′,m,t|i1(i2)
≤ eε. (3)

We first recall a basic fact about differential privacy: if f is a real-valued function with sensitivity
∆f , i.e. a function whose output changes by at most ∆ between neighboring databases, then adding
Lap

(
∆f
ε

)
noise to the output of f is ε-differentially private (see e.g. Theorem 3.4 in the survey

of Dwork et al. (2014)). Here, each bin ofH is a 1-sensitive function and each sample alters a single
bin. Thus by the first application of Lap

(
1
ε

)
noise to each bin we get pI,s,t(i1)

pI,s′,t(i1) ≤ eε. Similarly, the

second application of Lap
(

1
ε

)
noise to each bin implies

pI,s,m,t|i1 (i2)

pI,s′,m,t|i1
(i2) ≤ e

ε. To get the overall claim,

we split into two cases. If s≤t = s′≤t, then pI,s,t(i1)
pI,s′,t(i1) = 1. If instead s≤t 6= s′≤t, then s>t = s′>t, so

pI,s,m,t|i1 (i2)

pI,s′,m,t|i1
(i2) = 1. Thus Equation 3 holds.

Sample complexity: To better analyze Z ′, we decompose it as the sum of a non-private χ2-
statistic Z and a noise term Y ,

Z =

k∑
i=1

(Ni −m/k)2 −Ni

m/k
and Y =

k∑
i=1

[Yi + Y ′i ]2 + 2[Yi + Y ′i ](Ni −m/k)− [Yi + Y ′i ]

m/k
.

whereNi is the true stream count of item i and Yi, Y ′i ∼ Lap
(

1
ε

)
are the first and second addition of

Laplace noise. This lets us rewrite Z ′ = Z+Y . In the uniform case, we will give a high-probability
upper bound for Z + Y , and in the non-uniform case we will give a high-probability lower bound.
Fortunately, Acharya et al. (2015) prove several results about Z. We summarize these results in
Lemma 19.

Lemma 19 (Lemmas 2 and 3 from Acharya et al. (2015)) If p = Uk and m = Ω
(√

k
α2

)
, then

E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . If ||p− Uk||TV ≥ α, then E [Z] ≥ α2m
5 and Var [Z] ≤ E[Z]2

100 .

We split into cases depending on p. For each case, Lemma 19 will control Z, and our task will
be to control Y .

18



PAN-PRIVATE UNIFORMITY TESTING

Case 1: p = Uk. By Lemma 19, E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . By Chebyshev’s inequal-

ity, P
[
Z >

(
1

500 + c
500
√

2

)
α2m

]
≤ 1

c2
.

Turning our attention to Y , define

A =
k∑
i=1

[Yi + Y ′i ]2

m/k
, B =

k∑
i=1

2[Yi + Y ′i ](Ni −m/k)

m/k
, and C =

k∑
i=1

Yi + Y ′i
m/k

.

Then we can rewrite Y = A+B−C. We control each ofA,B, andC in turn. First, by the indepen-

dence of all draws of noise, E [A] =
k2E[[Yi+Y ′i ]2]

m = 2k2Var[Yi]
m = 4k2

ε2m
because Var

[
Lap

(
1
ε

)]
= 2

ε2
.

Next,

Var [A] =
k3

m2
Var
[
Y 2
i + 2YiY

′
i + Y ′2i

]
=

k3

m2

(
E
[
(Y 2
i + 2YiY

′
i + Y ′2i )2

]
− E

[
Y 2
i + 2YiY

′
i + Y ′2i

]2)
=

k3

m2

([
2E
[
Y 4
i

]
+ 6E

[
Y 2
i

]2]− 4E
[
Y 2
i

]2)
=

2k3

m2

(
E
[
Y 4
i

]
+ E

[
Y 2
i

]2)
=

2k3

m2

(
12

ε4
+

4

ε4

)
=

32k3

ε4m2

where we use E
[
Y 4
i

]
= ε

2

∫∞
0 x4e−εxdx = 12

ε4
by repeated integration by parts. With Chebyshev’s

inequality, P
[
A > 4k2

ε2m
+ 6ck

3/2

ε2m

]
< 1

c2
.

To bound B, we use E [B] = 0 and

Var [B] =
4k2

m2
· Var

[
k∑
i=1

[Yi + Y ′i ]
(
Ni −

m

k

)]

=
4k2

m2
· E

( k∑
i=1

[Yi + Y ′i ]
[
Ni −

m

k

])2


=
4k2

m2

∑
i1,i2∈[k]

E
[
(Yi1 + Y ′i1)(Yi2 + Y ′i2)

]
· E
[(
Ni1 −

m

k

)(
Ni2 −

m

k

)]

=
4k2

m2

k∑
i=1

E
[
(Yi + Y ′i )2

]
· E
[(
Ni −

m

k

)2
]

=
16k3

ε2m2

(
E
[
N2

1

]
− 2mE [N1]

k
+
m2

k2

)
=

16k3

ε2m2

(
Var [N1] + E [N1]2 − 2m2

k2
+
m2

k2

)
=

16k2

ε2m
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where the last two equalities use Ni ∼ Poisson
(
m
k

)
and Var

[
Poisson

(
m
k

)]
= m

k . Again applying

Chebyshev’s inequality gives P
[
B > 4c k

ε
√
m

]
< 1

c2
.

Similarly, E [C] = 0, and with Var [C] = k3

m2 · Var [Yi + Y ′i ] = 4k3

ε2m2 , P
[
C < −2ck

3/2

εm

]
≤ 1

c2
.

Combining the above bounds on Z,A,B, and C, with probability at least 1− 4
c2

,

Z ′ ≤
(

1
500 + c

500
√

2

)
α2m+

4k2

ε2m
+ 6c

k3/2

ε2m
+ 4c

k

ε
√
m

+ 2c
k3/2

εm
.

Taking c = 4
√

2 and

TU = 1
100α

2m+ 4 k2

ε2m
+ 24
√

2k
3/2

ε2m
+ 16
√

2 k
ε
√
m

+ 8
√

2k
3/2

εm ,

P [Z ′ ≤ TU ] ≥ 7/8.

Case 2: ||p − Uk||TV ≥ α. By Lemma 19, E [Z] ≥ α2m
5 and Var [Z] ≤ E[Z]2

100 . Chebyshev’s
inequality now gives

1− 1

c2
≤ P

[
Z ≥ E [Z]− c

√
Var [Z]

]
≤ P

[
Z ≥

(
1− c

10

)
E [Z]

]
≤ P

[
Z ≥

(
1− c

10

) α2m

5

]
where the last inequality requires c ≤ 10. Returning to the decomposition of Y used in Case 1,
A and C are unchanged and we can use our previous expressions for them (with appropriate sign
changes for lower bounds). Our last task is to lower bound B = 2k

m

∑k
i=1[Yi +Y ′i ](Ni−m/k). For

any term i, Yi and Y ′i are symmetric, so

P
[
[Yi + Y ′i ](Ni −m/k) > 0

]
= P

[
[Yi + Y ′i ](Ni −m/k) < 0

]
and P [B ≥ 0] ≥ 1/2.

Summing up, with probability at least 1
2 −

3
c′2 ,

Z ′ ≥
(

1

5
− c′

50

)
α2m+ 4

k2

ε2m
− 6c′

k3/2

ε2m
− 2c′

k3/2

εm
.

Taking c′ = 2
√

3 and Tα = α2m
10 + 4 k2

ε2m
− 12

√
3k

3/2

ε2m
− 4
√

3k
3/2

εm , P [Z ′ ≥ Tα] ≥ 1
4 .

For Tα > TU , it is enough that Tα − TU > 0.

Tα − TU =
9

100
α2m−

(
12
√

3 + 24
√

2
) k3/2

ε2m
− 16
√

2
k

ε
√
m
−
(

4
√

3 + 8
√

2
) k3/2

εm
.

Dropping constants, we need α2m = Ω
(
k3/2

ε2m
+ k

ε
√
m

+ k3/2

εm

)
. We can drop the lower-order term

k3/2

εm and get α2m = Ω
(
k3/2

ε2m
+ k

ε
√
m

)
, i.e. m = Ω

(
k3/4

αε + k2/3

α4/3ε2/3

)
.

Putting it all together and recalling the assumption from Lemma 19, there exists constant c such
that if m > c

(
k3/4

αε + k2/3

α4/3ε2/3
+
√
k

α2

)
then

P [output “uniform” | ||p− Uk||TV ≥ α] ≤ 3/4 and P [output “uniform” | p = Uk] ≥ 7/8.
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Thus we get a constant 1/8 separation. By the amplification argument outlined after Definition 9,
SIMPLEPANTEST is a uniformity tester. Finally,

k2/3

α4/3ε2/3
=

(
k3/4

αε

)2/3

·

(√
k

α2

)1/3

≤ 2

3

(
k3/4

αε

)
+

1

3

(√
k

α2

)

by the AM-GM inequality, and our statement simplifies to m = Ω
(
k3/4

αε +
√
k

α2

)
.

Lemma 20 Let p be a distribution over [k] such that ||p − Uk||TV = α and let G1, . . . , Gn be a
uniformly random partition of [k] into n > 1 subsets of size Θ(k/n). Define induced distribution pn
over [n] by pn(j) =

∑
i∈Gj p(i) for each j ∈ [n]. Then, with probability ≥ 1

954 over the selection
of G1, . . . , Gn,

||pn − Un||TV = Ω
(
α
√

n
k

)
.

Proof It is equivalent to sample G1, . . . , Gn as follows: randomly partition [k] into n/2 same-size
subsets G′1, . . . , G

′
n/2 (for neatness, we assume n is even), and then randomly halve each of those

to produce G1 and G2 (from G′1), G3 and G4 (from G′2), and so on. We use the following lemma
from Acharya et al. (2019a) to connect the distances induced by {G′a}

n/2
a=1 and {Gb}nb=1. Here, for

a set S we let p(S) denote the total probability mass of set S, p(S) =
∑

s∈S p(s).

Lemma 21 (Corollary 15 in Acharya et al. (2019a)) Let p be a distribution over [k] with ||p −
Uk||TV ≥ α, and let U be a random subset of [k] of size k/2. Then PU

[
|p(U)− 1/2| ≥ α√

5k

]
>

1
477 .

Slightly more generally, the proof of Lemma 21 shows that for any distribution p over [k] and
S ⊂ [k], if 1

2

∑
i∈S |p(i) −

1
k | ≥ α′, and we choose a random subset S′ ⊂ S of size |S|2 , then

PS′
[
|p(S′)− p(S)

2 | ≥
α′√
5|S|

]
> 1

477 .

Fix the choice of G′1, . . . , G
′
n/2. For each a ∈ [n/2], let αa = 1

2

∑
i∈G′a |p(i) −

1
k |, the portion

of ||p − Uk||TV contributed by G′a. Replacing α′ with αa and |S| with k/(n/2) above, for each
a ∈ [n/2],

P
[∣∣∣∣p(G2a−1)− p(G′a)

2

∣∣∣∣ ≥ αa√ n
10k

]
≥ 1

477
.

p(G2a−1) + p(G2a) = p(G′a), so

P
[
|p(G2a−1)− p(G2a)| ≥ 2αa

√
n

10k

]
≥ 1

477
.

Then by triangle inequality

P
[∣∣∣∣p(G2a−1)− 1

n

∣∣∣∣+

∣∣∣∣p(G2a)−
1

n

∣∣∣∣ ≥ 2αa

√
n

10k

]
≥ 1

477

and in particular

E
[∣∣∣∣p(G2a−1)− 1

n

∣∣∣∣+

∣∣∣∣p(G2a)−
1

n

∣∣∣∣] ≥ 2αa
477

√
n

10k
.
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For each b ∈ [n] define Yb = min
(∣∣p(Gb)− 1

n

∣∣ , αdb/2e√ n
10k

)
. Let Y =

∑n
b=1 Yb. First, we

can lower bound E [Y ], over the choice of G′1, . . . , G
′
n/2 and G1, . . . , Gn, as

E [Y ] =

n∑
b=1

E
[
min

(∣∣∣∣p(Gb)− 1

n

∣∣∣∣ , αdb/2e√ n

10k

)]

≥
n∑
b=1

αdb/2e
477

√
n

10k

= 2α
477

√
n

10k (4)

where the inequality uses the expectation lower bound above.
Second, by definition of Yb, max(Y ) ≤

∑n
b=1 αdb/2e

√
n

10k = 2α
√

n
10k . Now assume for con-

tradiction that P
[
Y ≥ α

477

√
n

10k

]
< 1

954 . Then

E [Y ] < α
477

√
n

10k + max(Y )
954 ≤ 2α

477

√
n

10k .

Thus E [Y ] < 2α
477

√
n

10k , which contradicts Equation 4. It follows that our assumption is false, and
P
[
Y ≥ α

477

√
n

10k

]
≥ 1

954 . The final claim follows from

Y

2
=

1

2

n∑
b=1

min

(∣∣∣∣p(Gb)− 1

n

∣∣∣∣ , αdb/2e√ n

10k

)

≤ 1

2

n∑
b=1

∣∣∣∣p(Gb)− 1

n

∣∣∣∣
= ||pn − Un||TV .

Theorem 22 For m = Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 +
√
k

αε

)
, PANTEST is an ε-pan-private uniformity tester

on m samples.

Proof Privacy: PANTEST only interacts with the data through SIMPLEPANTEST, so PANTEST in-
herits SIMPLEPANTEST’s pan-privacy guarantee.

Sample complexity: Substituting n for k and α
√

n
k for α in Lemma 10, we require

m = Ω

(
n1/4
√
k

αε
+

k

α2
√
n

)
. (5)

We consider the three cases for k2/3ε4/3

α4/3 . Together, these cases exhaust the possible relationships
among α, k, and ε, with a different highest-order term in each. This leads to the three terms in our
bound.

First, if k
2/3ε4/3

α4/3 ∈ [2, k], then n = bk2/3ε4/3
α4/3 c. By Equation 5 it is enough for

m = Ω

(
k1/6ε1/3

√
k

α1/3αε
+

k

α2 · k1/3ε2/3
α2/3

)
= Ω

(
k2/3

α4/3ε2/3

)
.
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Next, if k2/3ε4/3

α4/3 > k, then n = k, and Equation 5 necessitates m = Ω
(
k3/4

αε +
√
k

α2

)
. The

condition k2/3ε4/3

α4/3 > k gives ε4

α4 > k, so ε
α > k1/4, and then multiplying both sides by

√
k

αε gives
√
k

α2 >
k3/4

αε .Thus it suffices for m = Ω
(√

k
α2

)
.

Finally, if k2/3ε4/3

α4/3 < 2, then n = 2 and by Equation 5 we require m = Ω
(√

k
αε + k

α2

)
.

k2/3ε4/3

α4/3 < 2 implies ε < 2α√
k

, so multiplying both sides by k
α2ε

yields k
α2 <

2
√
k

αε and
√
k

αε = Ω
(
k
α2

)
.

Thus it suffices for m = Ω
(√

k
αε

)
.

10. Uniformity Testing Lower Bound Proofs

Theorem 23 For ε = O(1) and α ≤ 1/2, any ε-pan-private uniformity tester requires m =

Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 + 1
αε

)
samples.

Proof First, recall the centrally private lower bound (Acharya et al. (2018)):

m = Ω

(√
k

α2
+

√
k

α
√
ε

+
k1/3

α4/3ε2/3
+

1

αε

)
.

We will prove m = Ω
(

k2/3

α4/3ε2/3

)
in the pan-private case. k2/3

α4/3ε2/3
dominates the third term above

and also dominates the second term for ε = O(1), so this produces our final lower bound.
We start with the lower bound construction used by Diakonikolas et al. (2019), which itself

uses the Paninski lower bound construction (Paninski (2008)). Let X be a uniform random bit
determining which of two distributions over [2k] generates the samples. For both X = 0 and
X = 1 we draw Y1, . . . , Yk ∈ {±1} i.i.d. uniformly at random. If X = 0, p = U2k. If instead
X = 1, then we pair the bins as {1, 2}, {3, 4}, . . . , {2k− 1, 2k} and define p(2j − 1) =

1+Yjα
2k and

p(2j) =
1−Yjα

2k . Thus if X = 0 then p is uniform, and if X = 1 each pair i of bins is biased toward
one of the bins according to Yj . Equivalently, we can view each sample St ∼ p as a pair (Jt, Vt)
where Jt ∈ [k] determines the bin pair chosen and Vt ∈ {0, 1} determines which of the bin pair is
chosen. Thus Jt ∼ Uk, and Vt ∼ Ber

(
1
2

)
if X = 0 or Vt ∼ Ber ([1 + αYjt ]/2) if X = 1, where

Ber (·) denotes the Bernoulli distribution.
To avoid confusion with the mutual information I(·), denote by Mt the random variable for

the internal state of the algorithm after seeing sample St. Our goal is to upper bound the mutual
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information between X and the internal state after m samples,

I(X;Mm) =
m∑
t=1

I(X;Mt)− I(X;Mt−1)

≤
m∑
t=1

I(X;Mt−1, St)− I(X;Mt−1)

=
m∑
t=1

I(X;St |Mt−1)

=

m∑
t=1

I(X;Vt |Mt−1, Jt) (6)

where the last equality uses St = (Jt, Vt) and the independence of X and Jt
We now have a narrower goal: we choose an arbitrary term in the sum in Equation (6) and upper

bound it. For neatness, we use the convention thatH2(p) is the entropy of a Ber (p) random variable.
When subscripting we abuse notation and let a ∼ A denote a sample a from the distribution for
random variable A. The following reproduces (and slightly expands) the first part of the argument
given by Diakonikolas et al. (2019). It largely reduces to rewriting mutual information in terms of
binary entropy and expanding conditional probabilities.

We start by rewriting the chosen term I(X;Vt |Mt−1, Jt) as

= Em∗∼Mt−1 [Ej∼Jt [H(Vt |Mt−1 = m∗, Jt = j)]]

− Em∗∼Mt−1 [Ej∼Jt [Ex∼X [H(Vt |Mt−1 = m∗, Jt = j,X = x)]]]

= Em∗∼Mt−1 [Ej∼Jt [H2(P [Vt = 0 |Mt−1 = m∗, Jt = j])]]

− Em∗∼Mt−1 [Ej∼Jt [P [X = 1 |Mt−1 = m∗, Jt = j]H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])]]

− Em∗∼Mt−1 [Ej∼Jt [P [X = 0 |Mt−1 = m∗, Jt = j]H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])]]

where the second equality uses H2(p) = H2(1− p). Let βm
∗,j

t−1 = P [X = 1 |Mt−1 = m∗, Jt = j].
Since Jt is a uniform draw from [k] independent of Mt−1, we now continue the above chain of
equalities as

= Em∗∼Mt−1

1

k

k∑
j=1

H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j])


− Em∗∼Mt−1

1

k

k∑
j=1

βm
∗,j

t−1 H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])


− Em∗∼Mt−1

1

k

k∑
j=1

(1− βm
∗,j

t−1 )H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])

 . (7)
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Now recall that Vt ∼ Ber
(

1
2

)
when X = 0 and Vt ∼ Ber ([1 + αYJt ]/2) when X = 1. Then we

can rewrite P [Vt = 0 |Mt−1 = m∗, Jt = j] as

= βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j] + (1− βm
∗,j

t−1 )P [Vt = 0 | X = 0,Mt−1 = m∗, Jt = j]

= βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = 1]P [Yj = 1 |Mt−1 = m∗]

+ βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = −1]P [Yj = −1 |Mt−1 = m∗]

+ (1− βm
∗,j

t−1 )P [Vt = 0 | X = 0]

= βm
∗,j

t−1

(
P [Yj = 1 |Mt−1 = m∗] · 1− α

2
+ P [Yj = −1 |Mt−1 = m∗] · 1 + α

2

)
+

1− βm
∗,j

t−1

2

= βm
∗,j

t−1 E
[

1− αYj
2

|Mt−1 = m∗
]

+
1− βm

∗,j
t−1

2

=
βm
∗,j

t−1 (1− αE [Yj |Mt−1 = m∗]

2
+

1− βm
∗,j

t−1

2
=

1− αβm
∗,j

t−1 E [Yj |Mt−1 = m∗]

2
.

where the first equality uses the independence of Yj from X and Jt as well as the independence of
Vt from Mt−1 and Jt conditioned on X = 0, and the second equality uses the independence of Vt
and Mt−1 conditioned on X, Jt = j, and Yj . Thus

P [Vt = 0 |Mt−1 = m∗, Jt = j] =
1− αβm

∗,j
t−1 E [Yj |Mt−1 = m∗]

2
.

Using the work above, we can also rewrite

P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1] =
1− αE [Yj |Mt−1 = m∗]

2

and
P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0] =

1

2
.

In the following chain of equalities, for space we let E be the event that Mt−1 = m∗. Now we can
return to Equation 7 and, since H2(1

2) = 1, get

(7) = Em∗∼Mt−1

1

k

k∑
j=1

(
H2

(
1− αβm

∗,j
t−1 E [Yj | E]

2

)
− βm

∗,j
t−1 H2

(
1− αE [Yj | E]

2

)
− (1− βm

∗,j
t−1 )

)
= Em∗∼Mt−1

1

k

k∑
j=1

(
βm
∗,j

t−1

[
1−H2

(
1− αE [Yj | E]

2

)]
−

[
1−H2

(
1− αβm

∗,j
t−1 E [Yj | E]

2

)])
≤ Em∗∼Mt−1

1

k

k∑
j=1

[
1−H2

(
1− αE [Yj | E]

2

)]
= Em∗∼Mt−1

1

k

k∑
j=1

[
1−H2

(
1 + αE [Yj | E]

2

)] (8)
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where the inequality uses H2, β
m∗,j
t−1 ≤ 1 and the equality uses H2

(
1
2 − b

)
= H2

(
1
2 + b

)
. We now

control the terms withH2. The Taylor series forH2(p) near 1/2 isH2(p) = 1− 1
2 ln(2)

∑∞
n=1

(1−2p)2n

n(2n−1) ,
so for a < 1/2

1−H2

(
1

2
+ a

)
<
∞∑
n=1

(2a)2n

n2
= 4a2

∞∑
n=1

(2a)2n−2

n2
< 4a2

∞∑
n=1

1

n2
=

2a2π2

3
.

Substituting 1−H2

(
1
2 + a

)
< 2π2a2

3 into Inequality 8 and tracing back to Equation 6,

I(X;Vt |Mt−1, Jt) <
π2α2

6k
Em∗∼Mt−1

 k∑
j=1

E [Yj |Mt−1 = m∗]2

 (9)

We now depart from the argument of Diakonikolas et al. (2019). Our new goal is to upper bound

A = Em∗∼Mt−1

 k∑
j=1

E [Yj |Mt−1 = m∗]2


= Em∗∼Mt−1

 k∑
j=1

(2P [Yj = 1 |Mt−1 = m∗]− 1)2


= Em∗∼Mt−1

 k∑
j=1

(
P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
− 1

)2


by Bayes’ rule and P [Yj = 1] = 1/2. To upper bound this sum, we choose an arbitrary j and show
that P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] is close to 1. We pause to recap what we’ve accomplished and what remains.

Note that proving P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] ≈ 1 “looks like” a privacy statement: we are claiming that the

state distribution Mt−1 looks similar when its input distribution is slightly different. However, there
is still a gap between a difference in input distribution and a difference in input. We close this gap
in the following lemma, which relies on pan-privacy.

Lemma 24
∣∣∣P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] − 1
∣∣∣ = O

(
αεt
k

)
.

Proof We will prove this claim by showing that both the numerator and denominator of P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗]

fall into a bounded range. This implies that the whole fraction is near 1.
First consider the case X = 0. Then the Yj are irrelevant, so

∣∣∣P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] − 1

∣∣∣ = 0.
Next, consider the case X = 1. It will be useful to consider an equivalent method of sampling

the stream S. At each time step t, we first sample a bin pair Jt ∼U [k] uniformly at random from
the k bin pairs. Having sampled bin pair j, with probability 1 − α we take a uniform random
draw from {2j − 1, 2j}. With the remaining probability α, if Yj = 1 then we sample 2j − 1,
and if Yj = −1 then we sample 2j. Note that this method is equivalent because if Yj = 1 then
P [sample 2j − 1] = 1

k ·
1−α

2 + α
k = 1+α

2k and P [sample 2j] = 1−α
2k , with these equalities swapped

for Yj = −1. With this view of sampling, let Eαj,t = 1 if Jt = j and we sample from the α mixture
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component and Eαj,t = 0 otherwise. Finally, let Nα
j,t =

∑t
t′=1E

α
j,t′ , the number of samples from

the α mixture component of bin pair j through the first t stream elements.
We pause to justify bothering with this alternate view. We use it because the original ratio

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] is comparing the views ofMt−1 depending on Yj . It is not obvious how to directly

use pan-privacy to reason about this comparison because Yj is a property of the distribution gen-
erating the samples (stream elements) rather than the samples themselves. In contrast, pan-privacy
is a guarantee formulated in terms of the samples. By defining the Eαj,t and Nα

j,t above we better
connect Yj to the actual samples received. The alternate view therefore makes using pan-privacy
easier.

We first analyze the denominator of P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] . We can rewrite it as

P [Mt−1 = m∗] =
t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]
· P
[
Nα
j,t−1 = q

]
. (10)

Fix some q ∈ {0, 1, . . . , t− 1}. Let Sj,≤t∗ be the random variable for the bin pairs and component
of j sampled through time t∗, i.e. Sj,≤t∗ = {(Jt, Eαj,t)}t

∗
t=1. Note that this means the tuple (j′, 1) is

possible only when j′ = j. Define Sαj,q,t to be the set of realizations of Sj,≤t with exactly q samples
from the α component of bin pair j. Then

P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s] · P
[
Sj,≤t−1 = s | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s] (11)

where the second equality uses the fact that, conditioned on Nα
j,t−1 = q, there are

(
t−1
q

)
kt−1−q

equiprobable realizations of Sj,≤t−1. Note that we are now reasoning directly about the stream’s
effect on the state Mt−1. This is much closer to the application of pan-privacy that we set out to
achieve.

Consider a length-(t− 1) realization s ∈ Sαj,q,t−1. Recall that each index of s takes one of j+ 1
possible values: (1, 0), (2, 0), . . . , (k, 0), or (j, 1). Let s′ ∈ Sαj,0,t−1 be a realization such that the
Hamming distance dH(s, s′) = q, i.e. s and s′ differ in exactly q indices. Then because Mt−1 is
an ε-differentially private function of the stream, by group privacy (see e.g. Theorem 2.2 in Dwork
et al. (2014))

P [Mt−1 = m∗ | Sj,≤t−1 = s] ≤ eqεP
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
.
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Moreover, there are exactly kq such s′ for each such s. Denote this set of s′ by Ts,q. We can now
continue

(11) =
∑

s∈Sαj,q,t−1

1

kq

∑
s′∈Ts,q

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s]

≤
∑

s∈Sαj,q,t−1

∑
s′∈Ts,q

eqε(
t−1
q

)
kt−1

· P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
=

∑
s′∈Sαj,0,t−1

eqε

kt−1
· P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
=

∑
s′∈Sαj,0,t−1

eqε · P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
· P
[
Sj,≤t−1 = s′ | Nα

j,t−1 = 0
]

= eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]

where the first inequality uses the above group privacy guarantee; the second equality uses the fact
that, for a given s′ ∈ Ts,q, there are exactly

(
t−1
q

)
length-(t− 1) realizations s with q samples from

the α mixture component from bin pair j and dH(s, s′) = q; and the last equality uses the fact that
Mt−1 andNα

j,t−1 are independent conditioned on Sj,≤t−1. Note that this expression depending only
on the conditioning for Nα

j,t−1 = 0 is useful because it will give us a “fixed point” to relate the
numerator and denominator analyses. By expressing both quantities with respect to this condition,
we can better compare them (and in particular, obtain a cancellation in the final ratio).

Returning to Equation 10

P [Mt−1 = m∗] =

t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]
· P
[
Nα
j,t−1 = q

]
we get

P [Mt−1 = m∗] ≤
t−1∑
q=0

eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
· P
[
Nα
j,t−1 = q

]
= P

[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
t−1∑
q=0

eqεP
[
Nα
j,t−1 = q

]
= P

[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
· E
[
eεN

α
j,t−1

]
. (12)

To analyze this last quantity, recall that we defined random variable Eαj,t as the indicator variable
for drawing stream element t from the α mixture component of bin pair j. Then

E
[
eεNj,t−1

]
= E

[
e
∑t−1
i=1 εE

α
j,i

]
=

t−1∏
i=1

E
[
eεE

α
j,i

]
=
[(

1− α

k

)
e0 +

α

k
eε
]t−1

=

[
1 +

α(eε − 1)

k

]t−1

.

Since 1 + x ≤ ex, [1 + α(eε−1)
k ]t−1 ≤ e

α(eε−1)(t−1)
k . We analyze this quantity in cases.
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In the first case, α(eε−1)(t−1)
k ≥ 1. Then t > k

α(eε−1) , and since ε = O(1) there exists constant

C such that t > C k
αε . t ≤ m so m > C k

αε . However, by the non-private uniformity testing lower

bound, I(X;Mm) = Ω(1) requires m = Ω
(√

k
α2

)
. This means we have some constant C ′ such that

m > C ′

(√
k

α2

)1/3(
k

αε

)2/3

= Ω
(

k5/6

α4/3ε2/3

)
(13)

which suffices for our overall lower bound.
All that remains is the second case, α(eε−1)(t−1)

k < 1. Then since ex ≤ 1 + 2x for x ∈ [0, 1],

e
α(eε−1)(t−1)

k ≤ 1 + 2α(eε−1)(t−1)
k . Again using ε = O(1), there exists constant C1 such that[

1 + α(eε−1)
k

]t−1
≤ e

α(eε−1)(t−1)
k ≤ 1 + C1

αε(t−1)
k . Thus we return to Equation 12 and get

P [Mt−1 = m∗] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1 + C1
αε(t−1)

k

)
.

If we repeat this process using the other direction of group privacy, we get

P [Mt−1 = m∗] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
] [

1 +
α(e−ε − 1)

k

]t−1

.

k ≥ 2, ε > 0, and α ≤ 1, so α(e−ε−1)
k ∈ (−1, 0). Thus

[
1 + α(e−ε−1)

k

]t−1
≥ 1 + α(e−ε−1)(t−1)

k .

By ε = O(1), we get a constant C2 such that
[
1 + α(e−ε−1)

k

]t−1
≥ 1− C2

αε(t−1)
k . Tracing back,

P [Mt−1 = m∗] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1− C2
αε(t−1)

k

)
.

Returning to the beginning of our proof, we can repeat the argument for the numerator of
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] :

P [Mt−1 = m∗ | Yj = 1] =
t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]
· P
[
Nα
j,t−1 = q | Yj = 1

]
=

t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]
· P
[
Nα
j,t−1 = q

]
since Nα

j,t and Yj are independent. Fixing a q, we rewrite P
[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]

=
∑

s∈Sαj,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] · P
[
Sj,≤t−1 = s | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] (14)
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where the first equality uses the independence of Mt−1 and Nα
j,t−1 conditioned on Sj,t−1 as well as

the independence of Sj,≤t−1 and Yj , and the second equality uses the same counting argument as in
the denominator case. Next, ε-pan-privacy gives

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] ≤ eqεP
[
Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1

]
and so

(14) =
∑

s∈Sαj,q,t−1

1

kq

∑
s′∈Ts,q

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,t−1 = s, Yj = 1]

≤
∑

s∈Sαj,q,t−1

∑
s′∈Ts,q

eqε(
t−1
q

)
kt−1

P
[
Mt−1 = m∗ | Sj,t−1 = s′, Yj = 1

]
=

∑
s′∈Sαj,q,t−1

eqε

kt−1
· P
[
Mt−1 = m∗ | Sj,t,−1 = s′, Yj = 1

]
=

∑
s′∈Sαj,0,t−1

eqε · P
[
Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1

]
· P
[
Sj,≤t−1 = s′ | Nα

j,t−1 = 0, Yj = 1
]

= eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]

where the last equality uses the independence of Sj,≤t−1 and Yj conditioned on Nα
j,t−1 = 0 and the

independence of Mt−1 and Yj and Nα
j,t−1 conditioned on Sj,≤t−1. In turn we get

P [Mt−1 = m∗ | Yj = 1] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
] t−1∑
q=0

eqεP
[
Nα
j,t−1 = q

]
which is the same quantity as in Equation 12. The same analysis thus gives

P [Mt−1 = m∗ | Yj = 1] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1 + C1
αε(t− 1)

k

)
as in the denominator case, and

P [Mt−1 = m∗ | Yj = 1] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1− C2
αε(t− 1)

k

)
.

Summing up, both P [Mt−1 = m∗] and P [Mt−1 = m∗ | Yj = 1] lie in the interval[
P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1− C2
αε(t− 1)

k

)
,P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1 + C1
αε(t− 1)

k

)]
.

Thus

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≤

1 + C1
αε(t−1)

k

1− C2
αε(t−1)

k

= 1 +
C1 + C2

1− C2
αε(t−1)

k

· αε(t− 1)

k

= 1 +O

(
αεt

k

)
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where the last equality uses αε(t−1)
k < 1

2C2
(otherwise, we getm = Ω

(
k
αε

)
and can use the argument

given in Equation 13). Similarly,

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≥

1− C2
αε(t−1)

k

1 + C1
αε(t−1)

k

= 1− C1 + C2

1 + C1
αε(t−1)

k

· αε(t− 1)

k

= 1−O
(
αεt

k

)
and the claim follows.

Lemma 24 gives A ≤ α2ε2t2

k , so α2A
k ≤ α4ε2t2

k2
. Returning to Equation 9 and using t ≤ m,

I(X;Vt | Mt−1, Jt) = O
(
α4ε2m2

k2

)
. Then we trace back to Equation 6 and get I(X;Mm) =

O
(
α4ε2m3

k2

)
. Finally, a uniformity tester requires I(X;Mm) = Ω(1), so m = Ω

(
k2/3

α4/3ε2/3

)
.

Theorem 25 For ε = O(1), any sequentially interactive ε-locally private uniformity tester requires
m = Ω

(
k

α2ε2

)
samples.

Proof Let Mt be the random variable for the message sent by user t with sample St, and let M1:t

be the concatenation of messages sent through time t. We start by distinguishing our approach
for this lower bound from its pan-private analogue. Recall that in the pan-private lower bound we
expressed the mutual information between the distribution parameter X and the internal state after
m samples Mm as I(X;Mm) =

∑m
t=1 I(X;St | Mt−1). Here, we want to control the mutual

information between X and the transcript through m samples, I(X;M1:m). A key difference in
the local setting is that the algorithm does not see any sample St. Instead, the algorithm sees a
randomizer output based on St. We should therefore expect some information loss between the
sample and its randomizer output. We formalize this using existing local privacy work (Lemma 26)
and get I(X;M1:m) <

∑m
t=1O(ε2) · I(X;St | M1:t−1). This partially explains the locally private

lower bound’s different dependence on ε.
More formally, by the chain rule for mutual information, I(X;M1:m) =

∑m
t=1 I(X;Mt |

M1:t−1). Choose one term I(X;Mt |M1:t−1) and fix a value m for M1:t−1. By the KL divergence
formulation of mutual information (see e.g. Fact 2) we can rewrite I(X;Mt |M1:t−1 = m) as

= EX|M1:t−1=m [DKL (Mt | X,M1:t−1 = m||Mt |M1:t−1 = m)]

= P [X = 0 |M1:t−1 = m]DKL (Mt | X = 0,M1:t−1 = m||Mt |M1:t−1 = m)

+ P [X = 1 |M1:t−1 = m]DKL (Mt | X = 1,M1:t−1 = m||Mt |M1:t−1 = m) . (15)

M1:m is generated by a sequentially interactive ε-locally private protocol. We can therefore use the
following result from Duchi et al. (2013).

Lemma 26 (Theorem 1 (Duchi et al. (2013))) LetQ be the output distribution for an ε-local ran-
domizer in a sequentially interactive protocol. For any two input distributions P1 and P2, the
induced output distributions Q1 and Q2 have

DKL (Q1||Q2) +DKL (Q2||Q1) ≤ 4(eε − 1)2||P1 − P2||2TV .
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Here, we let P1 be the distribution for St | M1:t−1 = m, P2 for St | X = 0,M1:t−1 = m,
and P3 for St | X = 1,M1:t−1 = m. Q1 is then the distribution for Mt | M1:t−1 = m, Q2 for
Mt | X = 0,M1:t−1 = m, and Q3 for Mt | X = 1,M1:t−1 = m. Lemma 26 then gives

(15) ≤ 4(eε − 1)2
[
P [X = 0 |M1:t−1 = m] ||P1 − P2||2TV + P [X = 1 |M1:t−1 = m] ||P1 − P3||2TV

]
≤ 2(eε − 1)2[P [X = 0 |M1:t−1 = m]DKL (P1||P2) + P [X = 1 |M1:t−1 = m]DKL (P1||P3)]

= 2(eε − 1)2I(X;St |M1:t−1 = m)

where the second inequality uses Pinsker’s inequality (Lemma 31 in Appendix 11). Now we can
quantify the loss in information between the sample St and the private message Mt:

I(X;M1:m) =
m∑
t=1

I(X;Mt |M1:t−1)

≤
m∑
t=1

2(eε − 1)2I(X;St |M1:t−1)

≤
m∑
t=1

2(eε − 1)2I(X;Vt |M1:t−1, Jt) (16)

and, by the same reasoning as in the proof of Theorem 8,

I(X;Vt |M1:t−1, Jt) = O

α2

k
EM1:t−1

 k∑
j=1

E [Yj |M1:t−1]2

 . (17)

and in turn rewrite the RHS inside O (·) as

α2

k

t−1∑
i=1

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
. (18)

We now fix some i and want to upper bound

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
.

Choose one term j and define γj = P [Yj = 1 |M1:i]. Then we get

EM1:i

[
E [Yj |M1:i]

2
]

= EM1:i

[
(γj − (1− γj))2

]
= EM1:i

[
4γ2

j − 4γj + 1
]

= 4EM1:i

[
γ2
j

]
− 4EM1:i [γj ] + 1

= 4EM1:i

[
γ2
j

]
− 1

where the last equality uses 4EM1:i [γj ] = 4EM1:i [P [Yj = 1 |M1:i]] = 4P [Yj = 1] = 2. By
similar reasoning, if we define ηj = P [Yj = 1 |M1:i−1] then we get

EM1:i−1

[
E [Yj |M1:i−1]2

]
= 4EM1:i−1

[
η2
j

]
− 1.

32



PAN-PRIVATE UNIFORMITY TESTING

Tracing back, our goal is now to upper bound

EM1:i

[
E [Yj |M1:i]

2
]
− EM1:t−1

[
E [Yj |M1:i−1]2

]
= 4

(
EM1:i

[
γ2
j

]
− EM1:i−1

[
η2
j

])
. (19)

Our analysis will be easier if we restrict the message space for M1, . . . ,Mi to be binary. We do so
by a result from Bassily and Smith (2015). This again relies on the local privacy of the protocol.

Lemma 27 (Theorem 4.1 in Bassily and Smith (2015)) Given a sequentially interactive ε-locally
private protocol with expected number of randomizer calls T , there exists an equivalent sequentially
interactive ε-locally private protocol with expected sample complexity eεT where each user sends
a single bit from a single randomizer call.

The cost of this transformation is an eε blowup in expected sample complexity and an additional
O(m log(log(m))) bits of public randomness. First, since we assumed ε = O(1), by Markov’s
inequality we can trade an arbitrarily small constant c decrease in overall success probability for
a constant (O(eε/c) = O(1)) blowup in sample complexity. Combined with our assumption of
arbitrary access to public randomness for locally private protocols, it is without loss of generality to
assume all of our M1, . . . ,Mi are binary.5

Returning to 4
(
EM1:i

[
γ2
j

]
− EM1:i−1

[
η2
j

])
in Equation (19), suppose we fix M1:i−1 below.

Then

EM1:i

[
γ2
j

]
= P [Mi = 1] · P [Yj = 1 |Mi = 1]2 + P [Mi = 0] · P [Yj = 1 |Mi = 0]2

=
[P [Mi = 1 | Yj = 1] · P [Yj = 1]]2

P [Mi = 1]
+

[P [Mi = 0 | Yj = 1] · P [Yj = 1]]2

P [Mi = 0]

= η2
j

[
P [Mi = 1 | Yj = 1]2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]2

P [Mi = 0]

]
where the second equality uses Bayes’ rule. Now, using −2x+ 2y− 2(1− x) + 2(1− y) = 0 with
x = P [Mi = 1 | Yj = 1] and y = P [Mi = 1], we get

−2P [Mi = 1 | Yj = 1] + 2P [Mi = 1]− 2P [Mi = 0 | Yj = 1] + 2P [Mj = 0] = 0.

We can now add 0 inside the bracketed term to get

η2
j

[
P [Mi = 1 | Yj = 1]2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]2

P [Mi = 0]

]
= η2

j [A+B]

where

A =
P [Mi = 1 | Yj = 1]2 − 2P [Mi = 1 | Yj = 1]P [Mi = 1] + 2P [Mi = 1]2

P [Mi = 1]

=
(P [Mi = 1 | Yj = 1]− P [Mi = 1])2

P [Mi = 1]
+ P [Mi = 1]

5. Note that this step relies on the fact that, in sequentially interactive protocols, the number of randomizer calls is the
same as the sample complexity. For fully interactive protocols, the number of randomizer calls may arbitrarily exceed
the sample complexity. However, using the transformation given by Joseph et al. (2019), our argument also extends
to any O(1)-compositional fully interactive protocol.
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and

B =
P [Mi = 0 | Yj = 1]2 − 2P [Mi = 0 | Yj = 1]P [Mi = 0] + 2P [Mi = 0]2

P [Mi = 0]

=
(P [Mi = 0 | Yj = 1]− P [Mi = 0])2

P [Mi = 0]
+ P [Mi = 0] .

Thus we may rewrite η2
j [A+B] as

η2
j

[
1 +

(P [Mi = 1 | Yj = 1]− P [Mi = 1])2

P [Mi = 1]
+

(P [Mi = 0 | Yj = 1]− P [Mi = 0])2

P [Mi = 0]

]
. (20)

For neatness, let C = P [Mi = 1 | Yj = 1, Ji = j] and D = P [Mi = 1 | Yj = −1, Ji = j]. Recall
that Ji denotes which of k bin pairs is chosen. Then

P [Mi = 1 | Yj = 1] = P [Mi = 1 | Yj = 1, Ji 6= j] · P [Ji 6= j | Yj = 1]

+ P [Mi = 1 | Yj = 1, Ji = j] · P [Ji = j | Yj = 1]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

C

k

since Ji is independent of Yj and P [Ji = j] = 1
k . Similarly,

P [Mi = 1] = P [Mi = 1 | Ji 6= j] · P [Ji 6= j] + P [Mi = 1 | Ji = j] · P [Ji = j]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j]

+
1

k
· (P [Mi = 1 | Ji = j, Yj = 1] · P [Yj = 1] + P [Mi = 1 | Ji = j, Yj = −1] · P [Yj = −1])

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

1

k
(ηjC + (1− ηj)D)

where the second equality uses the conditional independence of Mi and Yj given Jt 6= j and fixed
M1:i−1. We substitute these expressions for P [Mi = 1 | Yj = 1] and P [Mi = 1] and get

(P [Mi = 1 | Yj = 1]− P [Mi = 1])2 =

[
(1− ηj)(C −D)

k

]2

= (P [Mi = 0 | Yj = 1]−P [Mi = 0])2

where the last equality follows from P [Mi = 0 | Yj = 1] = 1−P [Mi = 1 | Yj = 1] and P [Mi = 1] =
1− P [Mi = 0]. Returning to Equation (20), we have

η2
j [A+B] = η2

j

[
1 +

(
(1− ηi)(C −D)

k

)2( 1

P [Mi = 1]
+

1

P [Mi = 0]

)]

= η2
j

[
1 +

(
(1− ηi)(C −D)

k

)2

· 1

P [Mi = 1]P [Mi = 0]

]
(21)

since P [Mi = 1]+P [Mi = 0] = 1. We now analyze |C−D|
P[Mi=1] . It will be useful to recall the sampling

thought experiment used in the proof of Lemma 24: at each time t, we first uniformly sample bin

34



PAN-PRIVATE UNIFORMITY TESTING

pair Jt ∼U [k] and then sample the bin from a mixture: having sampled bin pair j, with probability
1 − α we take a uniform random draw from {2j − 1, 2j}. With the remaining probability α, if
Yj = 1 then we sample 2j − 1, and if Yj = −1 then we sample 2j. Finally, we define Eαj,t = 1 if
Jt = j and we sample from the α mixture component and Eαj,t = 0 otherwise.

Under this equivalent sampling method, we can rewrite

C = P [Mi = 1 | Yj = 1, Ji = j]

= P
[
Mi = 1 | Eαj,i = 1, Yj = 1, Ji = j

]
P
[
Eαj,i = 1 | Yj = 1, Ji = j

]
+ P

[
Mi = 1 | Eαj,i = 0, Yj = 1, Ji = j

]
P
[
Eαj,i = 0 | Yj = 1, Ji = j

]
= αP

[
Mi = 1 | Yj = 1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 1 | Eαj,i = 0, Ji = j

]
where the last equality uses the fact that Mi is independent of Ji conditioned on Eαj,i = 1 and Mi is
independent of Yj conditioned on Eαj,i = 0. Similarly

D = αP
[
Mi = 1 | Yj = −1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 1 | Eαj,i = 0, Ji = j

]
.

Thus we can rewrite

|C −D|
P [Mi = 1]

=
|α(P

[
Mi = 1 | Yj = 1, Eαj,i = 1

]
− P

[
Mi = 1 | Yj = −1, Eαj,i = 1

]
)|

P [Mi = 1]

≤ |α(eε − e−ε)P [Mi = 1] |
P [Mi = 1]

= O(αε)

where the inequality uses the ε-local privacy of Mi (recalling that we have been conditioning on
M1:i−1), and the equality uses ε = O(1). Similarly, we get

1− C = P [Mi = 0 | Yj = 1, Ji = j]

= αP
[
Mi = 0 | Yj = 1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 0 | Eαj,i = 0, Ji = j

]
and

1−D = αP
[
Mi = 0 | Yj = −1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 0 | Eαj,i = 0, Ji = j

]
.

This gives us

|C −D|
P [Mi = 0]

=
|(1− C)− (1−D)|

P [Mi = 0]

=
|α(P

[
Mi = 0 | Yj = 1, Eαj,i = 1

]
− P

[
Mi = 0 | Yj = −1, Eαj,i = 1

]
)|

P [Mi = 1]

≤ |α(eε − e−ε)P [Mi = 0]

P [Mi = 0]

= O(αε)
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as well. Thus by Equation 21 η2
j [A + B] = η2

j + O

(
η2j (1−ηi)2α2ε2

k2

)
= η2

j + O
(
α2ε2

k2

)
because

η2
j (1− ηj)2 < 1. Returning to Equation (19), we can now bound

EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

]
= O

(
α2ε2

k2

)
.

Since this analysis was for an arbitrary j, we get

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
= O

(
α2ε2

k

)
.

We substitute this into Equation (18) and get I(X;Vt |M1:t−1, Jt) = O
(
α4ε2t
k2

)
. Finally, substitut-

ing back into Equation (16) and using t ≤ m and ε = O(1), I(X;M1:m) = O
(
α4ε4m2

k2

)
. Since the

output of a locally private algorithm is a function of the transcript, a uniformity tester with sample
complexity m requires I(X;M1:m) = Ω(1). We therefore get sample complexity m = Ω

(
k

α2ε2

)
.

11. Information Theory

Definition 28 Let X be a random variable with probability mass function pX . Then the entropy of
X , denoted by H(X), is defined as

H(X) =
∑
x

pX(x) log

(
1

pX(x)

)
,

and the conditional entropy of random variable X conditioned on random variable Y is defined as
H(X|Y ) = Ey[H(X|Y = y)].

Next, we can use entropy to define the mutual information between two random variables.

Definition 29 The mutual information between two random variables X and Y is defined as
I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), and the conditional mutual information between
X and Y given Z is defined as I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Definition 30 The Kullback-Leibler divergence between two random variablesX and Y with prob-
ability mass functions pX and pY is defined as

DKL (X||Y ) =
∑
x

pX(x) log

(
pX(x)

pY (x)

)
.

Fact 2 Let X,Y, Z be random variables, we have

I(X;Y |Z) = Ex,z[DKL ((Y |X = x, Z = z)||(Y |Z = z))].

Lemma 31 (Pinsker’s inequality) Let X and Y be random variables with probability mass func-
tions pX and pY . Then √

2DKL (X||Y ) ≥ 2||pX − pY ||TV .

36


	Introduction
	Contributions
	Related Work

	Preliminaries
	Central Differential Privacy
	Pan-privacy
	Local Differential Privacy

	Pan-privacy and Local Privacy
	Uniformity Testing
	Warmup: SimplePanTest
	Optimal pan-private tester: PanTest

	Lower Bounds
	Pan-private Lower Bound
	Locally Private Lower Bound

	Acknowledgments
	Pan-Local Proof
	Constant Separation in Uniformity Testing
	Uniformity Testing Upper Bound Proofs
	Uniformity Testing Lower Bound Proofs
	Information Theory

