
Animations in Compose

Cheat Sheet

#JetpackCompose

Animate multiple properties at once
Use the Transition API to animate multiple properties at the same time when
transitioning between different states.

var currentState by remember { mutableStateOf(Collapsed) }

val transition = updateTransition(currentState)

val rect by transition.animateRect { state ->

 when (state) {

 Collapsed -> Rect(0f, 0f, 100f, 100f)

 Expanded -> Rect(100f, 100f, 300f, 300f)

 }

}

val borderWidth by transition.animateDp { state ->

 when (state) {

 Collapsed -> 1.dp

 Expanded -> 0.dp

 }

}

Animate individual properties from state

val animatedColor = animateColorAsState(/*your

 changing value here*/)

Column(modifier = Modifier.drawBehind {

 drawRect(animatedColor.value)

}) {

 // your composable here

}

animateDpAsState()

animateOffsetAsState()

animateFloatAsState()

animateSizeAsState()

animateRectAsState()

animateIntAsState()

Use animate*AsState APIs for any property animations based on state (for
instance: state from a ViewModel). Use the variable in a Modifier or Canvas
drawing properties.

Change between different Composables based on state changes using
AnimatedContent. For a simple fade between the two, use CrossFade
instead.

AnimatedContent(state) { targetState ->

 when (targetState) {

 Loaded -> /* your composable */

 Loading -> /* your composable */

 }

}

Animate changes between Composables

Animation specs

 tween- animate (with easing) between two values with a
duration.

Specify how animation value should transform between
the start and target values:

 spring - physics-based animation with damping ratio and
stiffness (no duration)

 keyframes - spec for specifying different specs at different
key frames of the animation.

 repeatable- duration based spec runs repeatadly for # of
iterations.

 infiniteRepeatable - duration based spec runs forever
 snap - spec that instantly switches to new value

Easing functions
Describe the rate of change over time for an animation. Linear
moves at the same constant speed. Others like EaseIn, are slow to
start then progress to a linear function.

Linear EaseInOutEaseIn EaseOut

Animate item reordering of items in a list use animateItemPlacement().

 Make sure to specify a key for the correct replacement.

 Additions and deletions are coming soon.

Lazy list item changes

LazyColumn {

 items(books, key = { it.id }) {

 Row(Modifier.animateItemPlacement(

 tween(durationMillis = 250)

)) {

 // ...

 }

 }

}

Start an animation on launch

val alphaAnimation = remember {

 Animatable(0f)

}

LaunchedEffect(key) {

 alphaAnimation.animateTo(1f)

}

Box(modifier = Modifier.alpha(alphaAnimation))

 If used in a lazy layout, LaunchedEffect will be called every time you scroll
your view on and off screen. You may need to hoist your state outside of
the lazy composable to have the animation only run once.

LaunchedEffect is run when a Composable enters the composition.

 Adds / Removes the item from composition.

Animate appearing / disappearing ️
Use AnimatedVisibility to hide/show a Composable.

 Children inside AnimatedVisibility can use Modifier.animateEnterExit()
for their own enter/exit transition.

OR

 Keeps item in the composition - animates its alpha instead

AnimatedVisibility(visible) {

 // your composable here

}

val animatedAlpha = animateFloatAsState(/*your

 changing value here*/)

Column(modifier = Modifier.graphicsLayer{

 alpha = animatedAlpha.value

}) {

 // your composable here

}

val infiniteTransition = rememberInfiniteTransition()

val color by infiniteTransition.animateColor(

 initialValue = Color.Red,

 targetValue = Color.Green,

 animationSpec = infiniteRepeatable(

 animation = tween(1000, easing = LinearEasing),

 repeatMode = RepeatMode.Reverse

)

)

Box(Modifier.fillMaxSize().background(color))

Repeat an animation
Use infiniteRepeatable to continuously repeat your animation. Change
RepeatMode’s to specify how it should go back and forth.

Use finiteRepeatable to repeat a set number of times.

Animate VectorDrawable paths with animatedVectorResource

Animated Vector Drawable

val image = AnimatedImageVector

 .animatedVectorResource(R.drawable.avd_hourglass)

var atEnd by remember { mutableStateOf(false) }

Image(

 painter = rememberAnimatedVectorPainter(image, atEnd),

 modifier = Modifier.clickable {

 atEnd = !atEnd

 },

 contentScale = ContentScale.Crop,

 contentDescription = "hourglass"

)

Use animateContentSize for animations between composable size
changes.

 ️Ordering of the modifier matters, make sure to place it before any size
modifiers.

Animate size changes

var message by remember { mutableStateOf("Hello") }

Box(

 modifier = Modifier

 .background(Color.Blue)

 .animateContentSize()

) {

 Text(text = message)

}

Sequential animations
Use the Animatable coroutine APIs to do sequential animations.

Calling animateTo on the Animatable one after the other will wait for the
previous animations to finish before proceeding to the next as its a suspend
function.

val alphaAnimation = remember { Animatable(0f) }

val yAnimation = remember { Animatable(0f) }

LaunchedEffect(“animationKey”) {

 alphaAnimation.animateTo(1f)

 yAnimation.animateTo(100f)

 yAnimation.animateTo(500f, animationSpec = tween(100))

}

Concurrent animations
Use coroutine APIs, or Transition API (see transition block for
alternative) for concurrent animations.

Using launch in a coroutine context will launch the animations at
the same time.

val alphaAnimation = remember { Animatable(0f) }

val yAnimation = remember { Animatable(0f) }

LaunchedEffect(key) {

 launch {

 alphaAnimation.animateTo(1f)

 }

 launch {

 yAnimation.animateTo(100f)

 }

}

Learn more
docs: goo.gle/compose-animation

codelab: goo.gle/compose-animation-codelab

http://goo.gle/compose-animation
http://goo.gle/compose-animation-codelab

