
Persistence of Vision Display



What’s POV?
Persistence of vision traditionally refers to the optical illusion that occurs 

when visual perception of an object does not cease for some time after the 
rays of light proceeding from it have ceased to enter the eye.



How to do POV

• Spin some lights real fast.

The Hard PartThe Easy Part

• Turn the lights on and off at the 
right time to draw “pixels.”



BOM

• STM32F405 MCU 

• APA102C LEDs 

• I2C Rotary Encoders 

• OLED Display 

• Stepper Motor & Driver 

• Less interesting stuff (power supply, nuts, bolts, slipring, etc.)



Immediate Challenges
• The LEDs have to be turned on and off 

within about a millisecond of precision. 

• We need to know the exact position of 
the display at each update. 

• To enable more complex graphics, we 
need to track other state like the current 
time, current spin count, etc. 

• System needs to be highly-responsive to 
multiple sources of input: 

• e.g. timer interrupts, control knobs, 
system clock, etc.

Some of the state that’ll be available to the update function.



Embedded Programming Challenges

• There is no heap, so no dynamic memory allocation 

• Very little available in terms of software abstractions for complex 
peripherals 

• e.g. using a timer requires reading the MCU reference manual and 
configuring registers 

• Not a lot of memory to work with; all data is shared by reference 

• No threads, concurrency only vaguely possible through IRQs



Embedded Programming Solutions

• We’re using Rust ❤ 

• 100% memory-safe; shared references and null-pointers are a non-issue 

• No memory overhead; rust has no need for a garbage-collector or a heap 

• It’s not C++ 🎉 

• We’re using the RTIC framework (Real-Time Interrupt-driven Concurrency) 

• Provides mutex-like primitives for safe, ergonomic access to shared resources 

• Enables compile-time checking of potentially-dangerous resource modifications 

• Built-in interrupt management and prioritization



Starting with the easy part
Make something that can spin

(designed these components using Fusion 360)

Component Design Printed Assembly



Stepper Motors
• Type of DC motor  

• Allows controlled, precise motion 

• A single rotation is divided into discrete 
“steps”  

• e.g. our N=200 stepper means that it 
moves in increments of  1.8˚ (360˚ / 200) 

• Current and target position can be known at 
all times through software 

• Signal waveforms (bottom right) are a pain to 
manage manually; you’ll almost always use a 
stepper driver Signals to drive a single “step”

Stepper motor wiring



Driving the Stepper
We’ll be using the stepper driver seen here. It expects 3 
electrical inputs from us: 

1. Direction  

• +5V motor will move forward, 0V motor will move in reverse 

• We don’t actually care about direction for our display, so this 
is set to ground (0V) 

2. Enable  

• +5V motor is active, 0V motor is idle (no power) 

• We do control this in software, otherwise motor is in a “brake” 
state even when not moving, which is a waste of power 

3.     Pulse 

• Each rising edge (signal goes from 0V to 5V) will drive the 
motor one step forward 

• Motor speed is therefore a function of the frequency of the 
digital signal sent to this input 



Driving the Stepper

• The stepper driver we’re using can be 
configured to use “micro steps” 

• Allows for more precise motion in smaller 
increments 

• For our display, we’re using a micro step 
divisor of 32 

• So, this means it will require 6,400 pulses 
(32 x 200) to move the motor one full 
rotation 

• Our assembly uses timing pulleys with a 2:1 
ratio, so one rotation of the POV display is 
equal to exactly 3,200 pulses (aka “ticks”)

Continued

1 spin  
= 3,200         

ticks



Generating & Counting Ticks

• Timers are common to all processors; the 
MCU we’re using has 14 of them 

• Extremely versatile 

• Maintains a set of counter registers that 
can be read at any time by software 

• Giant PITAs to work with; requires reading 
hundreds of pages of reference manual 

• Our display’s motor speed is a function of 
the pulse frequency, so we have to turn 
one of these timer units into a frequency 
generator

Enter hardware timer unit peripherals

RUN



Frequency Generation
• The code at right is the constructor for a simple 

abstraction of our frequency generator 

• It configures TIM4 to output its signal on pin D9, which 
we wire up to the stepper driver 

• The code below performs the calculations and register 
writes to actually set the frequency 

• We’ll use the timer’s interrupt functionality to preempt 
a function that updates the display LEDs on each tick



Frequency Control
• A stepper motor, especially one intended to spin fast, has to be “brought up” to speed 

• For that, human control is easiest, for which we’re using some I2C-driven rotary encoders 
and an OLED display held together by 3D-printed components 

• Uses IRQs to prevent unnecessary reads; knob can be pressed for emergency stops 

• This is a separate project that spun out of the POV thing



The APA102 LED

• Driven by SPI 

• Dead-simple data protocol 

• Each LED contains a tiny little 
processor and can be 
individually updated 

• Spec’d at a 1.2MHz clock 
speed, in practice they seem to 
run fine at well over 10MHz

And why we’re using them



Talking to the LEDs
APA102s’ Protocol

• Data packets start with a 4 byte header frame 

• Each subsequent frame is 4 bytes per LED in the strand. First byte is always 0xFF, and 
the following 3 bytes correspond to the blue, green, and red value of the LED, 
respectively. 

• Once we’ve sent our packet o’four-byte frames down the SPI data line, the first LED in 
the strand will eat the first frame and update its color to the values specified. Then it’ll 
pass the rest of the data down to the next LED in the strand which will do the same, etc.

header 0x00 0x00 0x00 0x00

led_n 0xFF blue green red



Talking to the LEDs

• So, if we’ve got 3 LEDs and 
send this packet of frames, we 
get the picture at the right.

Continued

header 0x00 0x00 0x00 0x00

led_0 0xFF 0x00 0x00 0xFF

led_1 0xFF 0x00 0xFF 0x00

led_2 0xFF 0xFF 0x00 0x00



Spatial Modeling

• Display can be thought of as a 2D array of pixels 
projected onto a sphere 

• Each update of the LEDs creates a vertical strip of 
pixels, this will be the m-axis, where M = 19 
because we have 19 LEDs in the strand 

• The (curvy) horizontal axis will be the n-axis, 
where N = 3,200, the number of discrete steps of 
the stepper to complete one spin 

• But, our eyes can’t process 3,200 updates of the 
LEDS per revolution (all of the colors blend 
together to create white), so we’ll only update the 
LEDs every 40th tick, leaving us with an x 
resolution of N = 80

Discretizing motion

m

n



Data Modeling
• A pixel is a 3-byte array [R, G, B] 

• There are 19 LEDs in the strand, so we store a 
“column” as an array of 19 pixels 

• We’ve split the rotational n-axis into 80 
columns, so we’re left with an 80x19 array of 
3-byte values 

• We have to know these values in advance 
because remember, we can’t dynamically 
allocate memory onto the heap 

• Const generics are a neat feature of rust 
that, among other things, allow stack 
memory allocation to be performed at 
compile-time as part of the type system

For us, M = 19 and N = 80



Abstracting Simple Effects
• We need a generic abstraction to describe 

animations and effects 

• Rust has a thing called traits that allow defining 
behavior without the implementation 

• They’re kinda like interfaces in Java, except not 
really, but a little bit 

• We’ll define an Effect trait that requires 
implementation of a “next” function. 

• “next” will be called for each n-tick of the stepper 
and should return an array of pixels with length M 

• The pixel array will be sent directly to the LED 
strip 

• “next” will be provided with some information 
about the current system state, for convenience



Effects with Buffers
• We’ll define another trait for effects that 

maintain a buffer in memory and therefore 
need to perform some sort of initialization 
step 

• The BufferedEffect trait requires 
implementation of a “create” function, 
where implementors can perform buffer 
allocation and setup 

• Memory mutation is intrinsically fallible, so 
the “create” function returns a “Result” 

• The trait specifies that in order to 
implement BufferedEffect, the Effect trait 
must also be implemented



Drawing Graphics

• The embedded-graphics library provides 
mechanisms for simple drawing of things like 
geometry and text 

• Think of it as like the canvas API in a web 
browser 

• Specifically designed to be used with 
embedded displays 

• We just have to provide the library with a 
function (specified by the library’s DrawTarget 
trait) that specifies how to store pixels in 
memory 

• The library will give us x and y coordinates and 
a color, and we dictate how to store that in an 
effect buffer (not pictured here) 

• Implementation of DrawTarget at right

Using the embedded-graphics library



GlobeEffect

• The struct at right defines a 
GlobeEffect 

• Structs are kinda like classes 
in Java, except not really, but 
a little bit 

• Our GlobeEffect has a single 
property, which is an 
EffectBuffer that’ll hold its pixel 
values

Drawing Stuff



Implement BufferedEffect

• Since our effect will maintain 
memory in a buffer, we need to 
implement our BufferedEffect 
trait 

• Here’s where we get to use the 
API provided by the 
embedded-graphics library to 
draw the horizontal and 
vertical lines of our globe

The initialization step



Implement Effect

• Now we just have to tell the system 
what to do with our effect on each 
update, by implementing our Effect 
trait 

• First we check the current state  and 
previous state; if the display is on a 
new revolution, we rotate our globe 
by (-1, 0) 

• Then we return the current vertical 
strip of pixels using the current tick (n 
value) as an index to access the buffer

Update Step



DEMO


