
Codebase is well-organized
Model naming is clear and intuitive
Experiment logs are accurate and detailed
Consider MLFlow, W&B or other similar tools and services.

Essential metadata for each model is available
Dataset version, train script version, and training parameters.
Consider using a DVC tool.

Original data visualization scripts/tools are used
To ensure accurate interpretation and adequacy of labels.
Original data analysis is conducted
Evaluating characteristics like class count, sample distribution by class, object size
distribution for detection, and pixel distribution in masks, among others.

Data has been converted to an optimal format
Consider HDF5 – one of the most convenient formats.
To reduce volume and disk load, it is advisable to store data in 8-bit if acceptable.
Split into Train and Test has been executed as separate sets
Ideally, Test and Validation should also be distinguished.
Data in the databases/sets are randomly shuffled
The relationship between the original data and the data in the
databases is preserved
Metadata is associated with the data
E.g. attributes in HDF5 store the version of the data generation script, parameters, etc.
Developed a script for visualizing data from the database
Thereby ensuring the correctness of data storage in the database.

Quality evaluation metrics are appropriate for the current task
IoU, Dice Scr., MSE, Recall/Precision, F-Score, Accuracy, ROC/AUC, Confusion Matrix.
Standard methodologies for evaluation utilize standard packages
sklearn.metrics, tf.metrics, ignite.metrics, etc.
Evaluation can be conducted separately from the training procedure
The quality of a baseline or trivial solution has been evaluated
In the case of a trivial solution, the evaluation can even be analytical. For example, a
random result based on uniform distribution or distribution based on sample analysis
or a fixed most probable outcome.

Augmentation is computationally efficient
GPU is used if available.
Augmentation correctly accounts for labeling
Typical problems: points order after flipping, incorrect rotation of a binary mask.
Augmentation scripts allow for visual verification of their correctness
Augmentation is sufficiently diverse
Affine transformations (including flip), brightness, contrast, gamma correction, white
balance, temperature, noise, blurring, cutout, etc.
Some tools: ImgAug, DeepMind Augmentation, Albumentations, NVidia DALI.

https://mlflow.org
https://wandb.ai
http://dvc.org
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://scikit-learn.org/stable/modules/model_evaluation.html
https://www.tensorflow.org/api_docs/python/tf/keras/metrics
https://pytorch.org/ignite/metrics.html
https://imgaug.readthedocs.io
https://github.com/google-deepmind/multidim-image-augmentation
https://albumentations.ai
https://github.com/NVIDIA/DALI


👉 api4.ai
👉 notion
👉 pdf

Developed a prediction script for applying the model to an image
database
Relevant for conducting quality evaluation as well.
Developed a demo script for applying the model to an individual image
Can be implemented at a later stage of the project.

Visualization of important information during the training process is
performed
E.g. Loss, Train/Test/Val Quality, examples of current results.
Some visualization packages: Visdom, TensorBoard, TensorBoardX.
The training script works with normalized data
E.g. data is normalized to the range [0, 1] or the mean is subtracted and divided by the
variance (with the assessment of statistical metrics).
The training script carefully manages IO/disk usage
Memory consumption is monitored
Memory does not "leak". Batch-size is chosen to maximize memory usage.
Use utilities like htop and nvidia-smi for monitoring.
Scripts intended for long-term use support pausing/resuming
For example, the model state is periodically saved during the training process.
Scripts have an adequate list of parameters
Provide a reasonable amount of command line arguments. Consider Click, Fire, Typer
to implement CLI and JSON or YAML to support configuration files. Do not hard-code
paths.

An adequate amount of computational resources in an appropriate
configuration has been allocated
Care for: the number of servers and GPUs, the topology of GPU interconnections, CPU
and GPU performance, the amount of main memory and video memory, etc.
Data on computational servers are stored on optimal disks
There is enough space, IOPS metric is taken into account, prefer local disks over
networked disks, prefer SSD over HDD.
Backup copies of critically important data are stored in a secure
location
For example, on cloud storage or a dedicated reliable storage server.

Standard architectures have been considered/tested
E.g. ResNet, Inception, MobileNet, EfficientNet, ViT, Swin, UNet, U2Net, PSPNet,
MaskRCNN, SSD, Yolo, FasterRCNN, CenterNet, etc.
Take a look into paperswithcode.com for current SOTA.
The network is capable of overfitting on a micro-dataset
An analysis of the best and worst predictions of the network is
regularly performed
Preferably on both the training and test datasets.
The network architecture and the number of parameters match
expectations
Convenient tools for architecture visualization: NETRON, TensorBoard.

https://api4.ai
https://link.api4.ai/a4a-deep-learning-checklist
https://link.api4.ai/a4a-deep-learning-checklist-pdf
https://github.com/fossasia/visdom
https://www.tensorflow.org/tensorboard
https://tensorboardx.readthedocs.io
https://htop.dev
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/pallets/click
https://github.com/google/python-fire
https://typer.tiangolo.com
http://paperswithcode.com
https://netron.app
https://www.tensorflow.org/tensorboard

