

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess
((IICCAACCCCCCTT))

669988

Review paper on Merge Sort
Students name: Deepa B M, Sahana M M Guide : Dr Mohamed Rafi.
deepamaner1234@gmail.com mdrafi2km@yahoo.com
sahanamudakavi97@gmail.com

—This paper aims at introducing a new sorting
al- gorithm which sorts the elements of an array In
Place. This algorithm has () best case Time
Complexity and (log) average and worst case Time
Complexity. We achieve our goal using Recursive
Partitioning combined with In Place merging to sort a
given array. A comparison is made between this
particular idea and other popular implementations. We
finally draw out a conclusion and observe the cases
where this outperforms other sorting algorithms. We
also look at its shortcomings and list the scope for
future improvements that could be made.

—

I. INTRODUCTION
In mathematics and computer science, the

process of ar- ranging similar elements in a definite
order is known as sorting. Sorting is not a new term
in computing. It finds its significance in various day
to day applications and forms the backbone of
computational problem solving. From complex
search engine algorithms to stock markets, sorting
has an impeccable presence in this modern day era
of information technology. Efficient sorting also
leads in optimization of many other complex
problems. Algorithms related to sorting have
always attracted a great deal of Computer
Scientists and Mathematicians. Due to the
simplicity of the problem and the need for solving it
more systematically, more and more sorting
algorithms are being devised to suit the purpose.

There are many factors on which the
performance of a sorting algorithm depends,
varying from code complexity to effective memory
usage. No single algorithm covers all aspects of
efficiency at once. Hence, we use different
algorithms under different constraints.

When we look on developing a new algorithm, it
is impor- tant for us to understand how long might
the algorithm take to run. It is known that the time
for any algorithm to execute depends on the size of
the input data. In order to analyze the efficiency of
an algorithm, we try to find a relationship on it’s
time dependence with the amount of data given.

Another factor to take into consideration is the
space used up by the code with respect to the input.

Algorithms that need constant minimum extra
space are called In Place. They are generally
preferred over algorithms that take extra memory
space

for their execution.
In this paper, we introduce a new algorithm which

uses the concept of divide and conquer to sort the
array recursively using bottom up approach.

Instead of using an external array to merge the two
sorted sub arrays, we use multiple pivots to keep

track of the minimum element of both the sub
arrays and sort it In Place.

Rest of the paper is organized as follows. Section
II discusses the various references used in making
this paper. Section III describes the basic working
idea behind this algorithm. Section IV contains the
pseudo code required for the implementation of
this algorithm. In Section V, we do a Case Study on
the merging process over an array. In Section VI, we
derive the time and space complexities of our code.
In Section VII, we do an experimental analysis of
this algorithm on arrays of varying sizes. In Section
VIII ,Advantages of merge sort In section IX ,
Disadvantages of merge sort .

In section X ,Disawe draw out asymptotic
conclusion based on Section VI and VII.
We finally list out the scope for future
improvements and conclude the paper in
Section XI.

II. LITERATURE SURVEY
You Ying, Ping You and Yan Gan[2], in the year

2011 made a comparison between the 5 major
types of sorting algorithms. They came to a
conclusion that Insertion or Selection sort performs
well for small range of elements. It was also noted
that Bubble or Insertion sort should be preferred for
ordered set of elements. Finally, for large random
input parameters, Quick or Merge sort outperforms
other sorting algorithms.

Jyrki Katajainen, Tomi Pasanen and Jukka
Teuhola[4], in the year 1996 explained the uses and
performance analysis of an In Place Merge Sort
algorithm. Initially, a straightforward variant was
applied with (log 2)+ () comparisons and 3(
log 2) + () moves. Later, a more advanced
variant was introduced which required at most (
log 2) + () comparisons and (log 2) moves,
for any fixed array of size ’ ’.

Wang Xiang[7], in the year 2011 presented a brief
analysis of the performance measure of Quick

ISBN No.978-1-4673-9545-8

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

669999

Sort algorithm this paper discusses about the
TimeComplexity of Quick Sort algorithm and makes

a comparison between the improved Bubble Sort
and Quick Sort through analysing the first order

derivative of the function that is found to co-relate
Quick Sort with other sorting algorithms.

Shrinu Kushagra, Alejandro Lopez-Ortiz and J. Ian
Munro [8], in 2013, presented a new approach
which consisted of multiple pivots in order to sort
elements. They performed an experimental study
and also provided analysis on cache behavior of
these algorithms. Here, they proposed a 3 pivot
mechanism for sorting and improved the
performance by 7-8%.

Rohit Yadav, Kratika Varshney and Nitin
Verma[20], in the year 2013 discussed the run time
complexities of the recursive and non recursive
approach of the merge sort algorithm using a
simple unit cost model. New implementations the
for two way and four way bottom-up merge sort
were given, the worst case complexities of which
were shown to be bounded by 5 5 log 2 + ()
and 3 25 log 2 + (), respectively.

III. METHODOLOGY
In this particular section, we lay emphasis on the

idea behind the working of this algorithm. The
proposed algorithm solves our problem in two
steps, the strategies behind which are stated below.

We use the Divide and Conquer strategy to split
the given array into individual elements. Starting
from individual elements, we sort the array using
Bottom Up Approach, keeping track of the
minimum and maximum value of the sub arrays at
all times. The technique used for splitting the array
is similar to that of a standard Merge Sort, where
we recursively partition the array from start to mid,
and from mid to last after which, we call the sort
function to sort that particular sub array.

Fig. 1. A recursive algorithm to split and sort
array elements

This is the part from which this algorithm differs
from a standard Merge Sort. Instead of merging the
two sorted sub arrays in a different array, we use
multiple pivots to sort them In Place and save the
extra space consumed. Our function prototype to
sort the array looks somewhat like this:

Procedure (int * , int , int)

* = pointer to the array = starting
point of the first sub array = ending
point of the second sub array

We use 4 pivots ’ ’, ’ ’, ’ ’ and ’ ’ in the code to
accomplish our task. ‘ ’ and ‘ ’ initially mark
starting points of the two sorted sub arrays
respectively. As a result, ’ ’ is initialized to ’ ’ and ’ ’
is obtained by dividing the sum of ‘ ’ and ‘ ’ by two
and incrementing it. ‘ ’ is the point below which our
final array is sorted and is initialized to ’ ’. ‘ ’ is an
intermediate pivot, which marks the bound for pivot
‘ ’ and is initialized to ’ ’. All in all, our function is
targeted at sorting the main array ‘ ’ from position
‘ ’ to ‘ ’ given that the elements from ‘ ’ to ‘ - ’ and
from ‘ ’ to ‘ ’ are already sorted.

The variable ‘ ’ is used for keeping track of the
minimum value in the first sub array that has not
yet been accessed (for most of the time, barring a
few passes). Similarly, ’ ’ is used for keeping track
of the minimum value in the second sub array that
has not yet been accessed (again, for most of the
time, barring a few passes). As mentioned earlier,
‘ ’ is the point before which our final array is sorted.
So at any point, the array from ‘ ’ to ‘ -1’ is sorted.
Finally, we have another variable called ‘ ’, which
is initialized and always kept equal to ’ ’ till the
second sub array (from ’ ’ to ’ ’) is sorted. If not, we
keep on incrementing ‘ ’ and swap it with its next
value until the element at ‘ ’ gets placed in its
correct position and the second sub array becomes
sorted once again. We then make ‘ ’ equal to ’ ’.

Our logic revolves around comparing the current
minimum values in the two sorted sub arrays
(values at ’ ’ and ’ ’), and swapping the smaller

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770000

number with the value at ’ ’. We then increment ’ ’
and reposition (’ ’ or ’ ’) accordingly.

IV. PSEUDO CODE

Given below is the working pseudo code for the
idea proposed. We have two main functions to
achieve our
purpose, one to split the array and the other to sort
that particular sub array In Place.

Algorithm 1 SPLITTING ALGORITHM

1: Procedure (int * , int , int):
2: if = + 1 or = then 3:
if [] [] then
4: ([] [])
5: return
6: end if
7: else
8: = (+) 2
9: split (ar, i, mid)
10: split (ar, mid+1, j)
11: if [+ 1] [] then
12: sort (ar, i, j)
13: end if
14: end if

1: Procedure (int * , int , int) :

2: , , (+) 2 + 1, and
3: while do
4: if and [] [+ 1] then

5: ([] [+ 1])

6: + 1

7: end if

8: if or [] = [+ 1] then

9:

10: end if

11: if and and = + 1 and and = then

12:

13: else if and and = then

14:

15: else if and = then

16: break

17: end if

18: if = and = and = then

19:

20: else if = then

21:

22: end if

23: if and + 1 and [] [] and = then

24: ([] [])

25: ([] [])

26: + 1 , + 1

27: if [] [+ 1] then

28: ([] [+ 1])

29: + 1

30: end if

31: else if = and = and [] [] then

32: ([] [])

33: , + 1 , + 1

34: if = 1 then

35: + 1

36: end if

37: else if = and = and [] = [] then

38: + 1 and + 1

39: else if = + 1 and [] [] then

40: ([] [])

41: ([] [])

42: + 1 , + 1 , + 1

43: if = 1 then

44: + 1

45: end if

46: else if = + 1 and [] = [] then

47: ([] [])

48: , + 1

49: else if = and and = + 1 and [] [] then

50: ([] [])

51: + 1 , + 1

52: if = 1 then

53: + 1

54: end if

55: else if + 1 and [] = [] then

56: ([] [])

57: + 1 , + 1

58: end if

59: end while

V. CASE STUDY
In this Case Study, we take a look into the

merging process of the two sorted sub arrays. Let
us consider an array of size 18 elements for the
sake of this example. The two sorted sub arrays are
from ’ ’ to ’ -1’ and from ’ ’ to ’ ’.

INITIAL ARRAY:

PASS 1:

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770011

This is the first pass inside the ’ ’ loop of our ’
’ procedure. As mentioned, we compare the

current minimum values of the two sub arrays
(value at ’ ’ (-4) and ’ ’ (-3)). The value at ’ ’ is less
than that at ’ ’. Since ’ ’ is equal to ’ ’, we don’t
need to swap the values at ’ ’ and ’ ’. Instead, we
increment ’ ’ and ’ ’. The first element (-4) is now in
its correct position. ’ ’ holds the minimum value of
first sub array that has not yet been accessed (-1)
and the array before ’ ’ is sorted.
if = and = and [] = [] then

+ 1 and + 1 end if

PASS 2:
In this pass, the value at ’ ’ is less than that at ’ ’.

So we swap the value at ’ ’ with the value at ’ ’. ’ ’
is incremented accordingly. The second element
(-3) is now in its correct sorted position. We
reassign ’ ’ as ’ ’ and increment ’ ’. ’ ’ now
contains the current minimum value of the second
sub array (-2) and ’ ’ keeps track of its previously
pointed value (-1).
if = and = and [] [] then

([] []) , + 1 ,
+ 1 if = 1 then

+ 1
end if end if

PASS 3:
Our motto behind each pass is to assign ’ ’ and ’

’ such that they contain the current minimum
values of the two sub arrays (This condition is true
for all but few passes (discussed in Pass 7)).
if = + 1 and [] [] then

([] []) ([]
[]) + 1 , + 1 ,
+ 1 if = 1 then +

1 end if end if

PASS 4:
if = + 1 and [] [] then (

[] []) ([] []) + 1 ,
+ 1 , + 1 if = 1 then

+ 1
end if
end if

PASS 5:
if = + 1 and [] = [] then

([] []) , +
1 end if

PASS 6:
if + 1 and [] = [] then

([] []) + 1 ,
+ 1 end if

FEW NOTES:
1. It is noticeable up till now that our aim has
been to keep elements from ‘ ’ to ‘ 1’ and
elements from ‘ ’ to ‘ 1’ sorted (for =).

2. Another thing worth observing is that
elements from ‘ ’ to ‘ -1’ are less than the elements
from ‘ ’ to ‘ -1’, (provided =). This means that
the first sub array can be accessed in sorted order
from ‘ ’ to ‘ -1’ and then from ‘ ’ to ‘ -1’.
PASS 7:

Till now, we had assumed that the value of the
variable ‘ ’ to be equal to ‘ ’. This was only
because [] was less than or equal to [+1] i.
e. the array starting from ‘ ’ was sorted. However,
to preserve the two conditions stated in Pass 6, we
make a swap that costs us the order of the two
sub arrays. We solve this dilemma by swapping

[] with [+1] and increment ‘ ’. We keep on
doing this until [] becomes less than or equal
to [+1]. After this, ‘ ’ once again is made
equal to ‘ ’ (PASS 8).
if and + 1 and [] [] and = then (

[] []) ([] []) + 1 , + 1
if [] [+ 1] then ([] [+ 1]) + 1 end if end
if

PASS 8:
if or [] = [+ 1] then

end if

PASS 9:
if = + 1 and [] [] then ([]

[]) ([] []) + 1 , + 1 ,
+ 1 if = 1 then + 1

end if end if

PASS 10:
if = + 1 and [] [] then ([]

[]) ([] []) + 1 , + 1 ,
+ 1 if = 1 then + 1

end if end if
PASS 11:

if = then
end if

PASS 12:
if = + 1 and [] = [] then (

[] []) , + 1 end if

PASS 13:
if = + 1 and [] = [] then (

[] []) , + 1 end if

PASS 14:

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770022

if = + 1 and [] [] then (
[] []) ([] []) +

1 , + 1 , + 1

if = 1 then
+ 1

end if end if

PASS 15:
if = + 1 and [] [] then

([] []) ([]
[]) + 1 , + 1 ,
+ 1

if = 1 then
+ 1

end if
end if

PASS 16:
if = then

end if

PASS 17:
if = + 1 and [] [] then

([] [])

([] []) + 1 ,
+ 1 , + 1 if = 1

then + 1
end if

end if

PASS 18:
if = + 1 and [] [] then
([] []) ([] [])
+ 1 , + 1 , + 1 if = 1
then + 1

end if
end if

PASS 19:
Since the value of ‘ ’ is greater than ‘ ’, it has

gone out of bounds. Hence, we re- initialize the
values of our pivots accordingly.
if and and = + 1 and and = then

end
if

PASS 20:
if = and = and = then

end if

PASS 21:

if = and = and [] [] then
([] []) , + 1 ,

+ 1 if = 1 then
+ 1

end if
end if

PASS 22:

In the previous pass, ’ ’ and ’ ’ have again
gone out of bounds. This condition is similar to
that of Pass 19 but with different side condition. if

and and = and = then
end if

PASS 23:
if = and = and [] []
then ([] []) ,
+ 1 , + 1
if = 1 then

+ 1
end if
end if

It took us about 23 passes to do an In Place
merge on 18 elements. Although in code, it would
have taken less iterations since multiple
conditions can be evaluated at the same time.
This more or less covers our sorting logic.

VI. COMPLEXITY ANALYSIS
In this section, we analyze the time and space

complexity for this algorithm’s best and worst
case scenarios.

We saw in previous sections that our code
structure was similar to the following:
1. Procedure (int * , int , int) :
2. if = + 1 or = then if [] [] then
3. ([] [])
4. end if

6. else
7. = (+) 2 (ar, i, mid) (ar, mid+1, j)
8. if [+ 1] [] then
9. sort (ar, i, j)

10. end if end if

1. : Procedure (int * , int , int) :

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770033

2. while do
3. Sorting logic (multiple if-else statements)

4. end while

Our algorithm starts its execution in the ’ ’
procedure. Let ’ 1’ be the constant time taken to
execute the ’ condition in this procedure and ’ 2’
be the constant time taken to execute the ’ ’
condition. Inside the ’ ’ condition, we
recursively call the same function twice for size
’ 2’. We then call the ’ ’ procedure.

Our ’ ’ procedure comprises of a ’ ’ loop that
has the logic for merging the two sorted arrays into
a single sorted array. Let ’ 3’ be the constant time
taken to execute this procedure. Our overall
equation for time complexity becomes:

We use Recurrence Relation to find out the time
complexity for the code. For a large input size ‟ ‟,
the above equation for calculating the Time
Complexity ()can be simplified as:
T(n) = 2T(n/2) + n + C2+ 3

() =2[2 (4)+ 2+ 2+ 3]+ + 2+ 3 () =
4 (4)+2 +3 2+3 3

() =4[2 (8)+ 4+ 2+ 3]+ 2 + 3 2+3 3 ()=8
(8) +3 +7 2+7 3

For k iterations the equation for T(n) becomes:
() = 2 (2) + +(2 1) 2+ (2 1) 3

The base condition for recursion in our algorithm
occurs when ‟ ‟ is equal to 2 i.e. T(2). This implies:
n/2 =2 k= log2 -1

This also means that the recursion runs up to log2
-1 times before reaching its base condition.

Substituting this value of ‟ ‟ in the above equation,
we get:

()= 2log2 1 ((2log2 1))+(log2 -1)n
+ (2log2 1 1) 2+(2log2 1 1) 3
We know, (2log2 1) = 2 Substituting
this and the value of (2), we get:

()=(2) 1+ (log2) +(2 1) 2+(2 1) 3

The efficiency of this sorting algorithm is directly
proportional to the orderliness in the given array. As
a result, the best case of this algorithm occurs
when the array is already sorted (or even almost
sorted). Let us consider the sorted array given as
an example to find out the time taken by this
algorithm in its best case:

() = 4[2 (8) + 2] + 3 2

() = 8 (8) + 7 2

For ‟ ‟ iterations the equation for T(n) becomes:

()= 2 (2)+ (2 1) 2

Similar to the previous condition, the base
condition for recursion occurs when ‟ ‟ is equal to
2 i.e. ‟ (2)‟.
This implies:

n/2 = 2
=log2 -1
Again, this means that the recursion runs up to log2

-1 times before reaching its base condition.
Substituting this value of ‟ ‟ in the above equation,
we get:

() = 2log2 1 ((2log2 1)) +(2log2 1 1) 2

() = (n/2)C1 +(2 1) 2

This is an In Place sorting algorithm and takes
constant amount of memory for sorting a particular
array. This property is quite important for any
algorithm since it results in almost nonexistent
computational space in the memory. In some
cases, this is even considered more important than
an algorithm‟s Time Complexity.

Instability is a major drawback in this sorting
algorithm. Due to this, similar elements are not
evaluated as distinct and lose their order as a result.

This issue can be sorted out by increasing the
number of pivots and treating similar elements as
distinct, but the implementation becomes way too
complicated and is beyond the scope of this paper.
For a sorted array however, the stability is
maintained since no swaps are being made.

VIII EXPERIMENTAL ANALYSIS
We evaluated the performance of the code for array
inputs up to 32,000 elements by denoting the time
taken to sort the elements.
7.1 WORST CASE

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770044

The worst case scenario in this algorithm occurs
when each element in the input array is distinct and
there is no order in the array whatsoever. We
noticed that for large values of input elements, this
algorithm performs slower than the Standard
Merge Sort and Quick Sort. However, for array
elements up to 1000, this algorithm is faster than

both Merge and Quick Sort even in its worst case.

We consider the average case to be an array
with partial order in it.

7.1 BEST CASE

The Best Case scenario happens when the
array is completely sorted or has similar
elements. Since we know that the Time
Complexity for this condition is (), we only
compare this algorithm with those having the

similar Time Complexities (Bubble and
Insertion sort). Also, since the time difference
between them was very small and
non-comparable, we compared the 3
algorithms with respect to the number of
iterations taken to sort the array. We noticed
that this algorithm performs better than
Bubble Sort but is slightly slower than
Insertion Sort.

NUMBER OF ITERATIONS

ELEMENTS INSERTION BUBBLE HYBRID
1000 998 1996 1023
2000 1998 3996 2047
4000 3998 7996 4095
8000 7998 15996 8191
16000 15998 31996 16383
32000 31998 63996 32767

VIII ASYMPTOTIC ANALYSIS
In this section, based on experimental

analysis and previously stated proof, we draw
out an asymptotic analysis of our algorithm.

ANALYSIS

FACTORS BEST CASE AVERAGE CASE WORST CASE
TIME
SPACE
STABILITY

()
(1) YES

(log)
(1) NO

(log)
(1)NO

If the array is already sorted, this would imply that the
starting element of the second sub array would be
greater than the ending element of first sub array i.e.

. Hence the program would not
even enter the procedure. This means that our
time complexity for merging the two sorted sub arrays
is constant.
Hence, the time taken to split the array is the only factor
affecting the total Time Complexity. As a result, our
overall equation becomes:

T(n) = 2T(n/2) + C
=

22001166 IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn AAddvvaanncceedd CCoommmmuunniiccaattiioonn CCoonnttrrooll aanndd CCoommppuuttiinngg TTeecchhnnoollooggiieess ((IICCAACCCCCCTT))

770055

o
o
o
o
o
o
o

o
o
o

o
o

XI CONCLUSION

This idea, like most standard algorithms
has room for improvement. During our
implementation phase, we noticed that
the code slows down for very large
values of The instability of the
algorithm is also a cause of concern.

Future improvements can be made to
enhance the performance over larger number of
input array. Since we have the minimum and
maximum value of the sub array at any time,
instead of starting from the beginning, we can
combine the current logic with an end first search
to reduce the number of iterations. Regarding its
stability, as mentioned earlier, this algorithm can
be made stable by increasing the number of
pivots but this would lead to other complications.
Any improvement though, however trivial, would
be highly appreciated.

REFERENCES

[1] Dr. D. E. Knuth. ”Sorting and Searching”, The Art of
Computer

Programming, 3rd volume, second edition
[2] You Yang, Ping Yu and Yan Gan. ”Experimental Study on

the Five Sort Algorithms”, International Conference on
Mechanic Automation and Control Engineering (MACE),
2011

[3] W. A. Martin. ”Sorting”, ACM Comp Survey., 3(4):147-174,
1971

[4] Jyrki Katajainen, Tomi Pasanen and Jukka Teuhola. ”
Practical in-place mergesort”, Nordic Journal of
Computing Archive Volume 3 Issue 1, 1996

[5] R. Cole. “Parallel Merge Sort,” Proc. 27th IEEE Symp.
FOCS, pp. 511516, 1988

[6] Wang Xiang. ” Analysis of the Time Complexity of Quick
Sort Algo- rithm”, Information Management, Innovation

Management and Indus- trial Engineering (ICIII),
International Conference, 2011

[7] Shrinu Kushagra, Alejandro Lopez, J. Ian Munro and
Aurick Qiao ”Multi-Pivot Quicksort: Theory and
Experiments”, Proceedings of the 16th Meeting on
Algorithm Engineering and Experiments (ALENEX), pp. 47-
60, 2014.

[8] L. T. Pardo. ”Stable sorting and merging with optimal
space and time bounds”, SIAM Journal on Computing,
6(2):351–372, 1 9 7 7 .

[9] Jeffrey Ullman, John Hopcroft and Alfred Aho. ” The
Design and Analysis of Computer Algorithms”, 1974.

[10] E.Horowitz and S.Sahni. ”Fundamentals of Data
Structures”, Computer Science Press, Rockville, 1976

[11] A.Symvonis. ”Optimal stable merging”, Computer Journal,
38:681–690, 1995

[12] F. K. Hwang and S. Lin. ”A Simple algorithm for merging
two disjoint linear ordered sets”, SIAM Journal on
Computing, 1972

[13] Hovarth, E. C. ”Stable sorting in asymptotically optimal
time and extra space”, Journal of the ACM 177-199, 1978

[14] S.Dvorak and B.Durian. ”Stable linear time sub linear
space merging”, The Computer Journal 30 372-375, 1987

[15] J.Chen. ”Optimizing stable in-place merging”, Theoretical
Computer Science, 302(1/3):191–210, 2003.

[16] Rohit Yadav, Kratika Varshney and Nitin Verma. ”Analysis
of Recursive and Non-Recursive Merge Sort Algorithm”,

International Journal of Advanced Research in Computer Science
and
Software Engineering Volume 3, Issue 11, November 2013

