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Abstract: - 
The knapsack problem is a fundamental 
problem in computer science and 
operations research that involves finding 
the optimal way to pack a set of items of 
different weights and values into a 
knapsack of limited capacity. This problem 
has numerous applications in various fields, 
including resource allocation, logistics and 
transportation, finance and investment, 
and computer networks and 
telecommunications. The problem is NP-
complete, but various approximation 
algorithms and heuristics have been 
developed to solve it efficiently in practice. 
This review provides a comprehensive 
overview of the knapsack problem, 
including its formulation, complexity, and 
solution approaches, such as dynamic 
programming, greedy algorithms, branch 
and bound techniques, linear programming 
relaxation, and column generation. The 
review also highlights the key results and 
findings in the field, making it a valuable 
resource for researchers and practitioners 
interested in the knapsack problem. 

Introduction: - 
The knapsack problem is a classic problem 
in computer science and operations 
research that involves finding the optimal 
way to pack a set of items of different 
weights and values into a knapsack of 
limited capacity [12]. The problem has 

been extensively studied due to its wide 
range of applications in various fields, 
including resource allocation [11], logistics 
and transportation [20], finance and 
investment [16], and computer networks 
and telecommunications [15]. The 
knapsack problem is NP-complete [12], 
meaning that the running time of 
algorithms for solving the problem 
increases exponentially with the size of the 
input, making it a challenging problem to 
solve exactly in reasonable time. Despite 
this, various approximation algorithms and 
heuristics have been developed to solve the 
problem efficiently in practice [16]. 

Types of Knapsack 
Problems: - 
1. 0/1 Knapsack Problem: Each item can 
either be included or excluded. [4] 

2. Fractional Knapsack Problem: Items can 
be included in fractional amounts. [5] 

3. Unbounded Knapsack Problem: 
Unlimited copies of each item are 
available.[6] 

4. Multiple Knapsack Problem: Multiple 
knapsacks with different capacities.[7] 

5. Multi-Objective Knapsack Problem: 
Multiple objectives to optimize, such as 
profit and weight. [8] 

6. Dynamic Knapsack Problem: Items and 
capacities change over time. [9] 
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7. Online Knapsack Problem: Items arrive 
sequentially, and decisions must be made 
without knowing future items. [10] 

Application of Knapsack 
Problem 
1.Real-time Resource Allocation: - 

    - Application: Telecommunications, 
finance, and energy management. [9] 

2.Resource Allocation: - 

    - Application: Financial portfolios, cargo 
loading, and production planning. [5] 

3.Portfolio Optimization: -  

    - Application: Portfolio optimization, 
project selection, and resource allocation in 
multi-criteria decision-making. [8] 

4.Cloud Computing: - 

    - Application: Resource allocation in 
cloud computing, logistics, and supply 
chain management. [7] 

5.Scheduling: -  

    - Application: Inventory control, lot-
sizing, and manufacturing systems. [6] 

Literature Survey: - 
 The knapsack problem has been 
extensively studied in the field of 
operations research and computer science. 
Dantzig (1957) introduced the knapsack 
problem and proposed a linear 
programming relaxation method [11]. The 
problem was later shown to be NP-
complete by Garey and Johnson (1979) 
[12]. Exact algorithms for solving the 
knapsack problem have been developed, 
including dynamic programming 
approaches by Bellman (1957) [13] and 
Horowitz and Sahni (1974) [14]. Kellerer et 

al. (2004) presented a polynomial-time 
approximation scheme for the multiple 
knapsack problem [15]. Approximation 
algorithms have also been developed, 
including a fully polynomial-time 
approximation scheme (FPTAS) by Ibarra 
and Kim (1975) [16] and a 
pseudopolynomial-time algorithm by 
Lawler (1979) [17]. Heuristics and 
metaheuristics have also been applied to 
the knapsack problem, including a heuristic 
algorithm based on surrogate duality by 
Martello and Toth (1990) [3] and a tabu 
search algorithm by Glover (1998) [19]. 

Methodology: - 
1. Dynamic Programming [13] 

Formula: $dp[i][w] = max(dp[i-1][w], dp[i-
1][w-w_i] + v_i)$ 

Derivation: 

Let $dp[i][w]$ be the maximum value that 
can be obtained with a knapsack capacity 
of $w$ and considering the first $i$ items. 
We can derive the formula by considering 
two cases: 

- Either item $i$ is included in the knapsack, 
in which case the maximum value is $v_i + 
dp[i-1][w-w_i]$ 

- Or item $i$ is not included in the 
knapsack, in which case the maximum 
value is $dp[i-1][w]$. 

The dynamic programming approach solves 
the knapsack problem by breaking it down 
into smaller subproblems and storing the 
solutions to subproblems to avoid 
redundant computation. The formula 
above calculates the maximum value that 
can be obtained with a knapsack capacity 
of $w$ and considering the first $i$ items. 

2. Greedy Algorithm [16] 
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Formula: $x_i = \frac{v_i}{w_i}$ 

Derivation: Let $x_i$ be the fraction of item 
$i$ included in the knapsack. We can derive 
the formula by considering the ratio of 
value to weight for each item. The greedy 
algorithm solves the knapsack problem by 
selecting items with the highest value-to-
weight ratio until the knapsack is full. The 
formula above calculates the fraction of 
each item to include in the knapsack. 

3. Branch and Bound [14] 

Formula: $L = \sum_{i=1}^{n} v_i \cdot x_i$ 

Derivation: 

Let $L$ be the lower bound on the optimal 
solution value. We can derive the formula 
by considering the maximum value that can 
be obtained by including or excluding each 
item. 

The branch and bound approach solves the 
knapsack problem by systematically 
exploring all possible solutions and pruning 
branches that cannot lead to an optimal 
solution. The formula above calculates the 
lower bound on the optimal solution value. 

4. Linear Programming Relaxation [11] 

Formula: $max \sum_{i=1}^{n} v_i \cdot 
x_i$ 

Derivation: 

Let $x_i$ be the fraction of item $i$ 
included in the knapsack. We can derive the 
formula by considering the objective 
function and constraints. 

The linear programming relaxation 
approach solves the knapsack problem by 
relaxing the integer constraints and solving 
the resulting linear programming problem. 
The formula above calculates the maximum 
value that can be obtained. 

5. Column Generation [24] 

Formula: $z = \sum_{j=1}^{m} \lambda_j 
\cdot c_j$ 

Derivation: 

Let $z$ be the objective function value. We 
can derive the formula by considering the 
master problem and subproblem. 

The column generation approach solves the 
knapsack problem by generating columns 
(items) dynamically and solving the 
resulting linear programming problem. The 
formula above calculates the objective 
function value. 

6. FPTAS [16] 

Formula: $\epsilon \leq \frac{1}{1 + 
\delta}$ 

Derivation: 

Let $\epsilon$ be the approximation error. 
We can derive the formula by considering 
the approximation error. 

The FPTAS approach solves the knapsack 
problem approximately in polynomial time. 
The formula above calculates the 
approximation error. 

Results: - 
- The knapsack problem is NP-complete 
[12]. 

- The dynamic programming approach has 
a time complexity of O(nW) [13]. 

- The greedy algorithm has a time 
complexity of O(n log n) [16]. 

- The branch and bound approach has a 
time complexity of O(2^n) [14]. 

- The linear programming relaxation 
approach has a time complexity of O(n^3) 
[11]. 

- The column generation approach has a 
time complexity of O(n^2) [24]. 
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- The FPTAS approach has a time complexity 
of O(n/ε) [16]. 

Disclaimer: 
- The results are based on the assumption 
that the input values are integers. 

- The results are based on the assumption 
that the knapsack capacity is finite. 

- The results are based on the assumption 
that the number of items is finite. 

- The results may not be applicable to all 
instances of the knapsack problem. 

- The results may not be optimal for all 
instances of the knapsack problem. 

Future Work: - 
1. Improving Approximation Algorithms 
[16] 

    - Developing more efficient 
approximation algorithms for the knapsack 
problem. 

 - Improving the approximation ratio for 
specific instances of the problem. 

2. Exact Algorithms for Large Instances 
[14] 

    - Developing exact algorithms that can 
solve large instances of the knapsack 
problem efficiently. 

    - Improving the scalability of existing 
exact algorithms. 

3. Knapsack Problem with Multiple 
Constraints [12] 

    - Extending the knapsack problem to 
include multiple constraints. 

    - Developing algorithms that can handle 
multiple constraints efficiently. 

4. Stochastic Knapsack Problem [21] 

    - Extending the knapsack problem to 
include stochastic weights and values. 

    - Developing algorithms that can handle 
uncertainty in the input data. 

5. Knapsack Problem with Nonlinear 
Objective Function [22] 

    - Extending the knapsack problem to 
include nonlinear objective functions. 

    - Developing algorithms that can handle 
nonlinear objective functions efficiently. 

6. Parallel and Distributed Algorithms [3] 

    - Developing parallel and distributed 
algorithms for the knapsack problem. 

    - Improving the scalability of existing 
algorithms using parallel and distributed 
computing. 

7. Machine Learning Approaches [23] 

    - Applying machine learning techniques 
to solve the knapsack problem. 

    - Developing new machine learning 
models that can solve the knapsack 
problem efficiently. 

Conclusion: - 
The knapsack problem is a fundamental 
problem in computer science and 
operations research that involves finding 
the optimal way to pack a set of items of 
different weights and values into a 
knapsack of limited capacity. The problem 
has been extensively studied and has 
numerous applications in various fields, 
including resource allocation, logistics and 
transportation, finance and investment, 
and computer networks and 
telecommunications. The knapsack 
problem is NP-complete, which means that 
the running time of algorithms for solving 
the problem increases exponentially with 
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the size of the input. However, various 
approximation algorithms and heuristics 
have been developed to solve the problem 
efficiently in practice. Dynamic 
programming, greedy algorithms, branch 
and bound techniques, linear programming 
relaxation, and column generation are 
some of the key approaches used to solve 
the knapsack problem. Overall, the 
knapsack problem is a rich and complex 
problem that has far-reaching implications 
for many fields, and its study has led to 
numerous insights and innovations in 
computer science and operations research. 
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