
 REVIEW PAPER ON MERGE SORT

 1.Sneha HM 2. Sindhu KR 3.Dr.Mohamed Rafi

 1.Student, Dept of Computer science & Engineering. UBDT College Of Engineering Davangere, Karnataka.

 2.Student, Dept of Computer science & Engineering. UBDT College Of Engineering Davangere, Karnataka.
3. Professor(Guide),Dept of Computer Science & Engineering, UBDT College Of Engineering Davangere.

 1.snehahanjgimath@gmail.com ;2.sindhukr2005@gmail.com; 3.mdrafi2km@yahoo.com

 ABSTRACT - Merge sort is a sorting

algorithm that follows the divide-and-

conquer approach. It works by

recursively dividing the input array into

smaller subarrays and sorting those

subarrays then merging them back

together to obtain the sorted array .This

algorithm has O(n) best case Time

Complexity and O(n log n) average and

worst case Time Complexity. Finally

draw out a conclusion and observe the

cases where this outperforms other

sorting algorithms. We also look at its

shortcomings and list the scope for

future improvement that could be made.

KEYWORDS:

Time complexity, Space complexity,

Optimizations, Algorithm analysis,

Recursion, Divide and Conquer, Merge.

I. INTRODUCTION

Merge Sort is a classic sorting algorithm

that utilizes the divide-and-conquer

strategy to efficiently sort an array or list.

Developed by John von Neumann in 1945,

Merge Sort is renowned for its reliable O(n

log n) time complexity in the best, average,

and worst cases, making it a consistently

efficient choice. Sorting algorithms are

crucial in computer science for organizing

data in a specified order, enhancing the

efficiency of other algorithms that require

sorted input. Merge Sort, developed by

John von Neumann in 1945, stands out as a

classic example of a divide-and-conquer

algorithm. Its consistent performance, with

a time complexity of O(n log n) in the best,

average, and worst cases, makes it an

indispensable tool for sorting large datasets.

Merge Sort operates by recursively dividing

an array into smaller subarrays until each

subarray contains a single element, which is

inherently sorted. These subarrays are then

merged in a sorted manner to produce larger

sorted subarrays, eventually resulting in a

fully sorted array. This divide-and-conquer

approach not only ensures efficient sorting

but also maintains stability, preserving the

relative order of equal elements. Despite its

advantages, Merge Sort requires additional

space for temporary arrays, leading to a

space complexity of O(n). This trade-off

between time and space efficiency makes it

important to understand the algorithm's

performance.

II. LITERATURE SURVEY

Merge Sort is a well-established sorting

algorithm in computer science, known for

its efficiency and stability. Over the years,

extensive research and numerous

publications have explored various aspects

of Merge Sort, from its theoretical

underpinnings to practical implementations

and optimizations. This literature survey

aims to review the significant contributions

to the understanding and development of

Merge Sort, highlighting key findings,

innovations, and applications.

2.1.Early Foundations:

1.Von Neumann, J. (1945). "First Draft

of a Report on the EDVAC":

John von Neumann's seminal work laid the

groundwork for the concept of stored-

program computers, indirectly influencing

the development of algorithms like Merge

Sort. Though not directly about

MergSort,von Neumann's contributions to

computing principles are foundational.

mailto:1.snehahanjgimath@gmail.com
mailto:2.sindhukr2005@gmail.com
mailto:3.mdrafi2km@yahoo.com
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/

2.Knuth, D. E. (1998). The Art of

Computer Programming, Volume 3:

Sorting and Searching (2nd ed.):

Knuth's comprehensive analysis of sorting

algorithms includes a detailed examination

of Merge Sort. This work is crucial for

understanding the mathematical and

theoretical aspects of Merge Sort, including

its time and space complexity.

2.2.Algorithmic Developments:

Cormen, T. H., Leiserson, C. E., Rivest,

R. L., & Stein, C. (2009). Introduction to

Algorithms (3rd ed.):

This textbook provides a thorough

discussion of Merge Sort, presenting

pseudocode, performance analysis, and

practical considerations. It is widely used in

computer science education and serves as a

primary reference for understanding Merge

Sort's implementation and efficiency.

2.3.Optimizations and Variants:

Weiss, M. A. (2012). Data Structures and

Algorithm Analysis in C++ (4th ed.):

Weiss discusses various optimizations of

Merge Sort, such as using insertion sort for

small subarrays and minimizing the

overhead of recursive calls. These

optimizations can significantly improve the

practical performance of Merge Sort.

III. METHODOLOGY

In this particular section, we lay emphasis

on the idea behind the working of this

algorithm. The proposed algorithm solves

our problem in two steps, the strategies

behind which are stated below.

The methodology section will cover the

step-by-step process of the Merge Sort

algorithm, including:

1.Divide: Splitting the unsorted list into

sub-lists until each sub-list contains a single

element.

2.Conquer: Sorting each of the sub-lists.

3.Combine/Merge: Merging the sorted

sub-lists to produce a sorted list.

3.1.HOW DOES IT WORKS?

Divide Phase:

In the divide phase, the algorithm

recursively splits the list into two halves

until each sub-list contains a single element.

This is typically implemented using a

recursive function that continues to divide

the list until the base case (a single-element

list) is reached.

Conquer Phase:

Once the list has been divided into

individual elements, the algorithm begins

the process of sorting and merging the sub-

lists. Since each sub-list contains only one

element, they are inherently sorted.

Merge/Combine Phase:

In the combine phase, the sorted sub-lists

are merged together to form a single sorted

list. This is done by comparing the elements

of each sub-list and arranging them in the

correct order. The merging process is

repeated recursively until the entire list is

sorted.

3.2.Pseudocode:

function mergeSort(array):

if length of array <= 1:

return array

middle = length of array / 2

leftHalf = mergeSort(array[0:middle])

rightHalf=mergeSort(array[middle:length

of array])

return merge(leftHalf, rightHalf)

function merge(left, right):

result = []

i = 0

j = 0

while i < length of left and j < length of

right:

if left[i] < right[j]:

append left[i] to result

i = i + 1

else:

append right[j] to result

j = j + 1

while i < length of left:

append left[i] to result

i = i + 1

while j < length of right:

append right[j] to result

j = j + 1

return result

3.3.EXAMPLE:

Divide:

[38, 27, 43, 10] is divided into [38, 27] and

[43, 10] .

[38, 27] is divided into [38] and [27] .

[43, 10] is divided into [43] and [10] .

Conquer:

[38] is already sorted.

[27] is already sorted.

[43] is already sorted.

[10] is already sorted.

Merge:

Merge [38] and [27] to get [27, 38] .

Merge [43] and [10] to get [10,43] .

Merge [27, 38] and [10,43] to get the final

sorted list [10, 27, 38, 43]

Therefore, the sorted list is[10, 27, 38, 43].

3.4. APPLICATIONS:

Merge sort has a variety of practical

applications due to its efficiency and

stability. Here are some key areas where

merge sort is particularly useful:

1.External Sorting: Ideal for sorting large

datasets that do not fit into memory, such as

sorting data stored on disk.

2. Parallel Processing: Merge sort can be

easily parallelized, making it suitable for

multi-core processors and distributed

systems.

3.Stable Sorting Requirement: Useful in

scenarios where the relative order of equal

elements must be preserved, such as sorting

records in a database by multiple fields.

4.Linked Lists: Efficient for sorting linked

lists because it doesn't require random

access to elements.

5. Inversion Count: Merge sort can be used

to count the number of inversions in an

array, which is useful in computational

biology and other fields.

6. K-Way Merging: Used in scenarios that

require merging multiple sorted lists, such

as in multi-way merge algorithms for

database joins.

7. Data Processing Pipelines: Often used in

data processing and transformation

pipelines where large datasets need to be

sorted and merged.

8.Functional Programming: Merge sort's

recursive nature fits well with functional

programming paradigms.

9.Memory Management: Suitable for

systems with limited memory or for

embedded systems where memory

management is critical.

10.Scientific Computing: Used in scientific

computing applications where large

datasets need to be sorted, such as in

numerical simulations and data analysis.

11. File Merging: Helpful in merging large

log files or other data files that are

periodically appended.

12.Sorting Objects: Useful in object-

oriented programming for sorting objects

based on multiple properties.

13.Geographic Information Systems (GIS):

Used in GIS applications to sort large

spatial datasets.

14. Data Warehousing: Essential in ETL

(Extract, Transform, Load) processes for

sorting and merging large volumes of data.

15. Competitive Programming: Frequently

used in coding competitions due to its

guaranteed O(n log n) time complexity.

3.5. ADVANTAGES:

1. Guaranteed O(n log n) Time Complexity.

2. Stability.

3. Parallelizability.

4. External Sorting Capability.

5. Optimal for Linked Lists.

6. Predictable Memory Usage.

7. Simple and Elegant Implementation.

8. Effective for Large Datasets.

9. Adaptability.

10. Deterministic Behaviour.

IV. RESULTS AND DISCUSSIONS

4.1Results: The review of the literature on

Merge Sort reveals a comprehensive

understanding of the algorithm’s theoretical

foundations, practical implementations,

performance metrics, and various

optimizations. The following key findings

emerged from the analysis of the selected

sources:

4.1.1. Theoretical Foundations:

1. Merge Sort is a stable, comparison-

based, divide-and-conquer sorting

algorithm.

2. It has a consistent time complexity

of O(n log n) across best, average, and

worst-case scenarios.

3. The space complexity of Merge Sort

is O(n) due to the additional storage

required for temporary arrays during the

merge process.

4.1.2. Practical Implementations:

1.Detailed pseudocode and step-by-step

algorithm descriptions are widely available

in textbooks and online resources.

2.Implementations in various programming

languages (C++, Java, Python, etc.)

demonstrate the algorithm’s versatility.

3.Practical examples and visualizations aid

in understanding the merging process and

the divide-and-conquer strategy.

4.1.3.Optimizations:

Several optimizations have been proposed

to improve the practical performance of

Merge Sort:

1.Using insertion sort for small subarrays to

reduce overhead.

2.Implementing in-place merge techniques

to reduce space complexity.

3.Parallel and concurrent versions of Merge

Sort leverage multicore processors for

faster sorting.

4.These optimizations are crucial for

enhancing the efficiency of Merge Sort in

real-world applications.

4.2.Discussions:

The comprehensive review of Merge Sort

demonstrates its enduring significance in

computer science. The algorithm’s

consistent O(n log n) time complexity,

stability, and suitability for large datasets

make it a reliable choice for various sorting

tasks. Despite its higher space complexity

compared to in-place sorting algorithms,

the benefits of stability and predictable

performance often outweigh the drawbacks.

4.3.Analysis of Merge Sort Time

Complexity:

4.3.1.Best Case Time Complexity of

Merge Sort:

The best case scenario occurs when the

elements are already sorted in ascending

order. If two sorted arrays of size n need to

be merged, the minimum number of

comparisons will be n. This happens when

all elements of the first array are less than

the elements of the second array.

The best case time complexity of merge sort

is 𝑂(𝑛∗𝑙𝑜g𝑛).

4.3.2.Average Case Time Complexity of

Merge Sort:

The average case scenario occurs when the

elements are jumbled (neither in ascending

nor descending order). This depends on the

number of comparisons. The average case

time complexity of merge sort is

O(n∗logn).

4.3.3.Worst Case Time Complexity of

Merge Sort:

The worst-case scenario occurs when the

given array is sorted in descending order

leading to the maximum number of

comparisons. In this case, for two sorted

arrays of size n, the minimum number of

comparisons will be 2n. The worst-case

time complexity of merge sort is

O(n∗logn).

4.4.Space Complexity Analysis of Merge

Sort:

Merge sort has a space complexity of O(n).

This is because it uses an auxiliary array of

size n to merge the sorted halves of the

input array. The auxiliary array is used to

store the merged result, and the input array

is overwritten with the sorted result.

V.CONCLUSION AND FUTURE

DIRECTIONS.

5.1. CONCLUSION: Merge Sort's

enduring relevance and effectiveness make

it a cornerstone in the study and

application of sorting algorithms. Its

theoretical soundness, coupled with

practical versatility and ongoing

enhancements, ensures its continued

prominence in addressing sorting

challenges across diverse domains of

computer science.

Merge Sort, renowned for its efficiency and

stability, has been extensively studied and

applied across various domains of computer

science. Throughout this review paper, we

have explored the algorithm's theoretical

foundations, practical implementations,

optimizations, comparative advantages,

applications, and future directions

5.2. FUTURE DIRECTIONS:

Future research could focus on further

optimizing Merge Sort for specific

applications, such as:

1.Parallel and Distributed Systems:

Exploring advanced parallelization

techniques to leverage modern multicore

and distributed computing environments.

2.Hybrid Algorithms: Combining Merge

Sort with other sorting algorithms to create

hybrid models that balance time and space

efficiency based on specific use cases.

3.Algorithm Adaptation: Adapting Merge

Sort for specialized data structures and

emerging computing paradigms, such

asquantum computing and machine

learning algorithms.

4.Comparative Strengths: Comparative

studies affirm Merge Sort's consistent

performance and stability, making it

preferable in scenarios where these factors

are critical. However, for applications

where space efficiency is paramount, other

algorithms like Quick Sort may be more

suitable.

This review paper consolidates a

comprehensive understanding of Merge

Sort, underscoring its impact, innovations,

and enduring relevance in the quest for

efficient data processing and algorithmic

excellence. As computing technologies

evolve, Merge Sort stands poised to adapt

and excel, maintaining its position as a

foundational algorithm in the ever-

expanding field of computer science.

VI.REFERENCES

[1]. Cormen, T. H., Leiserson, C. E., Rivest,

R. L., & Stein, C. (2009). Introduction to

Algorithms (3rd ed.).

[2]. Knuth, D. E. (1998). The Art of

Computer Programming, Volume 3:

Sorting and Searching (2nd ed.).

[3]. Weiss, M. A. (2012). Data Structures

and Algorithm Analysis in C++ (4th ed.).

[4]. Goodrich, M. T., Tamassia, R., &

Goldwasser, M. H. (2014). Data

Structures and Algorithms in Java (6th

ed.).

[5]. GeeksforGeeks.

(https://www.geeksforgeeks.org/merge-

sort/)

[6]. Khan Academy.

(www.khanacademy.org.)

[7]. Wikipedia.

[8]. my.eng.utah.edu.

[9]. Sedgewick, R., & Wayne, K. (2011).

Algorithms (4th ed.):

[10]. Aho, A. V., Hopcroft, J. E., & Ullman,

J. D. (1983). Data Structures and

Algorithms (1st ed.).

http://www.khanacademy.org/

[11]. Von Neumann, J. (1945). "First Draft

of a Report on the EDVAC".

[12]. Coursera and edX Courses.

 [Coursera - Algorithms, Part1]

(https://www.coursera.org/learn/algorithms

-part1).

[13]. Research Papers and Articles:

 "Sorting and Searching" in "The Art of

Computer Programming" by Donald E.

Knuth.

"Parallel Merge Sort" by Tridib S.

Chakraborti and P. Sadayappan, which

discusses the parallelization of merge sort.

[14]. Scientific Journals and Conference

Proceedings:

 Publications in journals such as the

Journal of Parallel and Distributed

Computing.

https://www.coursera.org/learn/algorithms-part1
https://www.coursera.org/learn/algorithms-part1

