
 REVIEW ON PERFORMANCE OF INSERTION SORT ALGORITHM

 Department of Computer Science and Engineering

 University B.D.T. College of Engineering Davanagere-577004,Karnataka

 Dr.Mohammed Rafi

 Professor and HOD

 DOS in Computer Science and Engineering

 Mdrafi2km@yahoo.com

 Bheemambhikeshwari.Katti Sukanya N

 Computer Science and Engineering Computer Science and Engineering

 bheemakatti173@gmail.com sukanyanpoojar@gmail.com

Abstract:

 Sorting is an important of computer science field.

Many sorting algorithms available,insertion sort

decrease and conquer technique.Knuth(TAOCP 3,p.82)

writes that the variant of using binary insertion “was

mentioned by John Mauchly as early as 1946,in the first

published discussion of computer sorting”. Insertion

sort is a simple sorting algorithm that works by

iteratively inserting each element of an unsorted list

into its correct position in a sorted portion of the list. It

is a stable sorting algorithm, meaning that elements

with equal values maintain their relative order in the

sorted output.

Introduction:

 Insertion sort is a simple sorting algorithm that works

by iteratively inserting each element of an unsorted list

into its correct position in a sorted portion of the list. It

is a stable sorting algorithm, meaning that elements

with equal values maintain their relative order in the

sorted output.

 Insertion sort is like sorting playing cards in your

hands. You split the cards into two groups: the sorted

cards and the unsorted cards. Then, you pick a card

from the unsorted group and put it in the right place in

the sorted group.

 Insertion sort with the efficiency of O(n2) is popular

and known best for its performance among the other

O(n2) sorting algorithm. It is adaptive to the presence

of ordering among the elements when elements are in

required order and shows a linear complexity (i.e. best

case O(n)). However, when the ordering among the

elements is not in required order, insertion sort shows

its worst case behavior which is O(n2) quadratic in

nature [1,2].

Literature Survey :

Insertion sort, like many classical algorithms, doesn't

have a single definitive inventor or author. However, its

conceptual roots can be traced back to early work in the

field of computer science and numerical analysis. Here

are a few key figures and resources that have

contributed to the understanding and popularization of

the insertion sort:

1. Donald Knuth: Knuth's seminal work, "The Art of

Computer Programming," is one of the most

comprehensive resources on algorithms and data

structures. In Volume 3, "Sorting and Searching," Knuth

provides a detailed description and analysis of insertion

sort, among other algorithms.

2. C.A.R. Hoare: Known for developing the quicksort

algorithm, Hoare also contributed to the broader study

of sorting algorithms, including discussions on insertion

sort in the context of comparison-based sorting

methods.

3.Robert Sedgewick: In his books and research,

Sedgewick has explored a wide range of algorithms,

including insertion sort. His works often include

practical considerations and efficient implementations.

4. Jon Bentley: Bentley's book "Programming Pearls"

contains practical advice and discussions on sorting

techniques, including insertion sort, focusing on real-

world applications and performance tuning.

mailto:Mdrafi2km@yahoo.com
mailto:bheemakatti173@gmail.com
mailto:sukanyanpoojar@gmail.com

5.Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein: The authors of "Introduction

to Algorithms," commonly known as "CLRS," provide a

comprehensive introduction to insertion sort, along

with a formal analysis of its performance and

properties.

These authors and their works are foundational in the

study of algorithms and provide a deep understanding

of insertion sort, both from theoretical and practical

perspectives.

Methodology:

At each iteration, insertion sort removes one element

from the input data, finds the location it belongs within

the sorted list, and inserts it there. It repeats until no

input elements remain. Sorting is typically done in-

place, by iterating up the array, growing the sorted list

behind it.

Insertion sort works by iterating through a list of items,

comparing each element to the ones that come before

it, and inserting it into the correct position in the list.

This process is repeated until the list is fully sorted. To

illustrate this process, let’s use the example of a list of

numbers that we want to sort in ascending order:

Step by step algorithm:

1. Initialize:

 Start with an array A of n elements.

 Assume the first element A[0] is already sorted.

2. Iterate Through the Array:

 For each element A[i] from the second element to the

last (i.e., from i = 1 to n - 1):

3. Set Key and Start Comparison:

 Set key = A[i]. This key will be inserted into the sorted

portion of the array.

 Initialize j = i - 1. This represents the last index of the

sorted portion.

4. Shift Elements to Make Space for the Key:

 While j >= 0 and A[j] > key, do the following:

 Shift A[j] to the right by setting A[j + 1] = A[j].

 Decrement j by 1 (i.e., j = j - 1).

5. Insert the Key:

 After exiting the while loop, insert the key into the

correct position in the sorted portion by setting A[j + 1]

= key.

6. Repeat:

 Repeat steps 3 to 5 for the next element in the array.

7. End:

 The array A is now sorted.

Pseudocode:

function insertionSort(A):

 n = length(A)

 for i from 1 to n - 1 do

 key = A[i]

 j = i - 1

 while j >= 0 and A[j] > key do

 A[j + 1] = A[j]

 j = j - 1

 A[j + 1] = key

 return A

 Example:

Given the array A = [5, 2, 9, 1, 5, 6]:

1. Initial Array: [5, 2, 9, 1, 5, 6]

2. Iteration 1 (i = 1):

 key = 2

 Compare and shift: 5 > 2, so A = [5, 5, 9, 1, 5, 6]

 Insert key: A = [2, 5, 9, 1, 5, 6]

3. Iteration 2 (i = 2):

 key = 9

 9 is greater than 5, no shifting needed.

4. iteration 3(i = 3):

 key = 1

 Compare and shift: 9 > 1, 5 > 1, 2 > 1, so A = [2, 5, 9,

9, 5, 6], then A = [2, 5, 5, 9, 5, 6], then A = [2, 2, 5, 9, 5,

6]

 Insert key: A = [1, 2, 5, 9, 5, 6]

5. Iteration 4 (i = 4):

 key = 5

 Compare and shift: 9 > 5, so A = [1, 2, 5, 9, 9, 6]

 Insert key: A = [1, 2, 5, 5, 9, 6]

6. Iteration 5 (i = 5):

 key = 6

 Compare and shift: 9 > 6, so `A = [1, 2, 5,

Example 1:

 [22, 6, 15, 48, 1].

Compare the first element, 22, to the second element,

6. Since 15 is smaller than 22, we swap them, resulting

in the list [6, 22, 15, 48, 1].

Compare the second element, 22, to the third element,

15. Since 15 is smaller than 22, we swap them, resulting

in the list [6, 15, 22, 48, 1].

Compare the third element, 22, to the fourth element,

48. Since 48 is larger than 22, no swap is necessary.

Compare the fourth element, 48, to the fifth element,

1. Since 1 is smaller than 48, we swap them, resulting in

the list [6, 15, 22, 1, 48].

Compare the third element, 22, to the fourth element,

1. Since 1 is smaller than 22, we swap them, resulting in

the list [6, 15, 1, 22, 9].

Compare the second element, 15, to the third element,

1. Since 1 is smaller than 15, we swap them, resulting in

the list [6, 1, 15, 22, 48].

Compare the first element, 6, to the second element, 1.

Since 1 is smaller than 6, we swap them, resulting in the

final sorted list of [1, 6, 15, 22, 48].

Here is an illustration for you to have a better

understanding of the sorting method.

Illustration for Insertion sort technique

 Example 2 :

As we have seen, the amount of comparisons insertion
sort needs to perform between the item to insert and
the items in the sorted sublist isn't always the same; it
depends on the input data. This is why it is useful to

look at the best- and worst-case scenarios.

Best-case scenario

• The best-case scenario is when the algorithm
performs the smallest possible number of
comparisons. For insertion sort, this happens
when the items are already in order. Then the
algorithm performs only one comparison
during each pass since the item to insert is
already in the correct position and does not
need to be moved. The algorithm will

perform n−1 passes (where n is the number

of items) because the first item is already in
the sorted sublist. Therefore, one comparison

per pass for n−1 passes will result

in n−1 comparisons.

For example, suppose that you have five playing
cards as shown in Figure 11. You want to sort the
cards into ascending order. The first card is in the
sorted group and the remaining cards are in the
unsorted group. Each time a card from the
unsorted group is compared to the previous card
(the last card in the sorted group), it is already in
the correct position and is now part of the sorted
group. This is the best-case scenario, where each
of the four unsorted cards only need to be
compared once to the previous card and none of
the cards are moved.

Figure 11: The cards are already sorted into
ascending order
Worst-case scenario

• The worst-case scenario takes place when the
list of items you are sorting results in the
greatest possible number of comparisons. For
insertion sort, this happens when the items
are the most unordered they can be; for
example, the original list of items is in
descending order and the algorithm is sorting
the items into ascending order. Then the
algorithm has to move every item in the
sorted sublist along one place every single
pass to make room for the item to insert at
the start of the list.

For example, suppose that you have five playing
cards arranged in descending order, as shown
in Figure 12. The insertion sort algorithm you are
using orders the cards into ascending order.

Figure 12: The starting order of the worst-case
scenario
In the first pass, the card in the sorted group is
moved up one place and the card to insert is
placed at the start of the group (see Figure 13).

Figure 13: The order of the cards after the first
pass
In the second pass, the two cards in the sorted
group are each moved up one place and the card
to insert is placed at the start of the group. In the
third pass, there are three cards in the sorted
sublist to move, and in the fourth pass there are
four cards to move.

This is the worst-case scenario, where you will
need to move every card in the sorted group up
one place every single pass (see Figure 14). As the
sorted group grows in size, the number of
comparisons also increases at the same rate.

Figure 14: The order of the cards after the final
pass
Advanced

Insertion sort – complexity
Time complexity

If you are asked only to state the "time
complexity" of the insertion sort algorithm, you

should give the worst case, which is O(n2). This is

called polynomial time efficiency.

How the time complexity is calculated

• The outer for loop is repeated n−1 times,

because it starts with the second item.

• The inner while loop is repeated a variable
number of times because it checks and moves
all the previous items that need to be shifted
to free up space for the value to insert.

Best, average, and worst-case time complexity

• In the best case, when the items are
already in order, no items will need to be
moved. The outer for loop will

iterate n−1 times. The condition of the

inner while loop will evaluate to False and so
the loop will not be executed. Therefore,

the best-case time complexity is O(n).
• In the worst case, the values of the original

list are in reverse order (in this case
ordered high to low). Therefore, to order a

list of n items, you need to move

every item_to_insert you examine to the
very front of the list:

You will make one comparison to move the
second item to the front of the list
You will make two comparisons to move the third
item to the front of the list
...

You will make n−1 comparisons to move the nth

item to the front of the list

The total number of comparisons you will make

is 1+2+3+...+n−1. This evaluates to 2n(n−1)=2n2−n.

However, in Big O notation, you express this time

complexity as O(n2) because the less dominant

terms (e.g. n) and the constants (e.g. 21) become

insignificant as the size of the input grows.

• The average case, requires a good
understanding of statistics, but it will clearly be
more efficient than the worst case. However,
in Big O notation, this will also be expressed

as O(n2) because the less dominant terms

(e.g. n) and the constants (e.g. 21) become

insignificant as the size of the input grows.

Insertion sort time complexity
Space complexity

The insertion sort is very efficient in terms of
memory requirement, as the sorting is done in
the same space as the original data (i.e.
the items array in the pseudocode). The only extra
space that is needed is to hold a copy of the item

https://adacomputerscience.org/concepts/complex_big_o#classification
https://adacomputerscience.org/concepts/complex_big_o
https://adacomputerscience.org/concepts/complex_big_o

to be being inserted, to free up space for any
other items to be moved so that the value can be
inserted into the correct place.

Therefore, the space complexity of the algorithm

is O(1).

▪

Comparison of insertion sort with other sorting

algorithms

Insertion sort is similar to selection sort; the primary
difference is that the ith iteration in insertion sort gives
the sorted subarray from the i elements input to it,
whereas, in selection sort, the ith iteration gives
the i smallest elements in the entire array.

Although bubble sort has the same time complexity,
i.e., O(n2), it is far less efficient than both insertion and
selection sort. While some divide-and-conquer
algorithms, such as Quick sort and merge sort
outperform insertion sort for larger arrays, non-
recursive sorting methods such as insertion sort or
selection sort are often quicker for small arrays.

 Advantages of Insertion Sort:

▪ Simple and easy to understand and implement.

▪ Efficient for small data sets or nearly sorted

data.

▪ In-place sorting algorithm, meaning it doesn't

require extra memory.

▪ Stable sorting algorithm, meaning it maintains

the relative order of equal elements in the

input array.

 limitations of Insertion Sort:

1. Inefficient for large datasets: Insertion sort has a time

complexity of O(n^2), making it less efficient for large

datasets.

2. Slow performance: Insertion sort is slower compared

to other sorting algorithms like Quick Sort, Merge Sort,

and Heap Sort.

3. Not suitable for real-time data: Insertion sort is not

suitable for real-time data as it can take a long time to

sort large amounts of data.

4. Not efficient for reverse-sorted data: Insertion sort

performs poorly on reverse-sorted data, with a time

complexity of O(n^2).

5. Not a stable sort: Insertion sort is not a stable sort,

meaning that equal elements may not keep their

original order.

6. Not efficient for data with many duplicates: Insertion

sort can be slow when dealing with data that has many

duplicate elements.

7. Not suitable for parallel processing: Insertion sort is

not suitable for parallel processing as it is a sequential

algorithm.

8. Not efficient for data with varying sizes: Insertion sort

can be slow when dealing with data that has varying

sizes.

Overall, while Insertion Sort is simple to implement and

understand, its limitations make it less suitable for

large-scale data sorting and real-world application.

real-world scenarios where Insertion Sort can be

helpful:

▪ Sorting a small list of numbers.

▪ Organizing cards in a card game.

▪ Sorting a list of students by their grades.

▪ Maintaining a sorted list of stock prices or

exchange rates for real-time trading

applications.

Result and Discussion:

 Insertion sort is a simple sorting algorithm that works

by dividing the input into a sorted and an unsorted

region. Each subsequent element from the unsorted

region is inserted into the sorted region in its correct

position.

Result:

▪ Insertion sort has a time complexity of O(n^2)

in the worst case, making it less efficient for

large datasets.

▪ It has a best-case time complexity of O(n) when

the input is already sorted.

▪ Insertion sort has a space complexity of O(1)

since it only requires a single additional

memory space for the temporary variable.

Discussion:

▪ Insertion sort is simple to implement and

understand, making it a good choice for small

datasets or educational purposes.

▪ It is a stable sorting algorithm, meaning that the

order of equal elements is preserved.

▪ Insertion sort is adaptive, meaning that it

performs well on partially sorted data.

▪ However, its poor performance on large

datasets makes it less suitable for real-world

applications.

▪ Insertion sort can be improved by using

techniques like binary insertion sort or shell

sort.

Overall, insertion sort is a basic sorting algorithm that is

easy to understand and implement but has limitations

in terms of efficiency for large datasets.

Conclusion:

Insertion Sort in Ada: A Simple yet Effective Sorting

Algorithm

Insertion Sort is a straightforward and intuitive sorting

algorithm that has been implemented in various

programming languages, including Ada. The algorithm's

simplicity and ease of understanding make it an

excellent choice for small datasets and educational

purposes.

Key Takeaways:

 Insertion Sort has a time complexity of O(n^2), making

it less efficient for large datasets.

The algorithm is simple to implement and understand,

making it a great choice for beginners.

 Insertion Sort is a stable sorting algorithm, preserving

the order of equal elements.

It is not suitable for real-time data, large datasets, or

parallel processing.

Ada Implementation:

The Ada implementation of Insertion Sort is concise and

efficient, utilizing the language's strong typing and

control structures. The algorithm's simplicity translates

well to Ada's syntax, making it easy to read and

maintain.

Future Improvements:

While Insertion Sort is not the most efficient sorting

algorithm, it can be improved by:

Using binary insertion sort to reduce the number of

comparisons.

Implementing a hybrid sorting algorithm that combines

Insertion Sort with other algorithms for larger datasets.

In conclusion, Insertion Sort in Ada is a simple yet

effective sorting algorithm that is well-suited for small

datasets and educational purposes. Its limitations make

it less suitable for large-scale data sorting, but its

simplicity and ease of understanding make it a great

choice for beginners.

References:

 [1] Lipschutz, Data Structures With C. McGraw-Hill Ed-

ucation (India) Pvt

Limited, 2011.

[Online]Available:

http://books.google.co.in/books?id=YJQIOLgFnnYC

[2] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H.

Cormen, Introduction

to algorithms. The MIT press, 2001.

[3] Tiwari, T.; Singh, S.; Srivastava, R.; Kumar, N., "A bi-

partitioned

insertion algorithm for sorting," Computer Science and

Information

Technology, 2009. ICCSIT 2009. 2nd IEEE International

Conference

[4] Encode.su

[5] Geeks For Geeks website

[6] Wikipedia.org

[7]Meta AI

[8]C.hatGpt

	Best-case scenario
	Worst-case scenario
	Insertion sort – complexity
	Time complexity
	How the time complexity is calculated
	Best, average, and worst-case time complexity

	Space complexity

	Comparison of insertion sort with other sorting algorithms

