STRUCTURAL OPTIMIZATION OF MECHANICAL SYSTEMS
PROJECT DESCRIPTION

Subject
• Topology Optimization with Parametrization of Hardpoint Positions (joint positions)

Tasks
• Develop a simplified FE-model of the wheel suspension system (Abaqus)
 • Validate with respect to force signals
• Propose concept load cases for optimization
• Optimize the system model w.r.t. stiffness and weight (Tosca)
• Prestudy for TO with parametrization of hardpoint positions
 • Simpler Two-link problem
Two main loops

- **System phase**
 - Tuning of hardpoint positions (joint positions)

- **Component phase**
 - Analysis
 - Testing
 - Optimization (Topology, Shape, Size)

Optimizations today

- **Component level**
 - Predetermined Boundary Conditions
 - Narrow solution space

Optimizations in the future

- **System phase**
 - Broaden the solution space
 - Include hardpoint positions within the optimization
SYSTEM COMPONENTS AND HARDPOINT POSITIONS

1) Knuckle
2) Upper Control Arm (UCA)
3) Lower Control Arm (LCA)
4) Toelink
5) Subframe
6) Leaf spring

• Hardpoints for linkages
BOUNDARY CONDITIONS AND EXTERNAL LOADS

Boundary Conditions

• Similar to a chassis rig
 • Inner bodies of bushings are fixed
 • Elastic bushings enables relative movement

External Loads

• Knuckles
• Dampers
 • Quasi-static analysis - No velocity
 • Damping characteristics has no effect
STRENGTH EVENTS – BIP (RLD)
STRENGTH EVENTS – DOC (RLD)
STRENGTH EVENTS – SAC (RLD)
• Apply outer loads
• Read forces in other hardpoints
 • Compare with RLD
• Global reference frame
• Overall good correlation
Wheel Suspension System

- Linkages as design volumes
- Given parameters on suspension system

Simple two-component model

- Try different optimization setups
- Parametrization of hardpoint
Introduce an outer parametric loop

- Parameters (hardpoint positions)
 - Follows a DOE
- Save results for the current configuration
 - Optimized Geometry
 - Performance measurement (objective function)

What do we get?

- A structural optimization process
 - Target system weight at an early stage

Diagram:

1. **DOE (Design Of Experiments)**
 - for each set of parameter values p_i in DOE
2. Parametrized FE-model
 - Including concept load cases
3. Topology Optimization
4. Save optimized objective function f_i
5. Compare f_i for different p_i
 - Data and ideas for concept decisions

Note:

- **Parametrization + Non-Parametric Optimization**
- **Topology Optimization**
- **Parametrized FE-model**
- **DOE (Design Of Experiments)**
MINIMIZE SYSTEM MASS (RIGID BUSHINGS)

Minimize mass (Rigid bushings)

100mm

$\Delta \leq 1\text{mm}$

System weight

Mass [kg]

Hardpoint position [mm]
MINIMIZE SYSTEM MASS (ELASTIC BUSHINGS)

Minimize mass (Elastic bushings)

\[\Delta \leq 10\text{mm} \]

Minimize mass (Elastic bushings)

100\text{mm}
MINIMIZE STRAIN ENERGY (ELASTIC BUSHINGS)

Minimize strain energy
Mass: 1.35 kg
(Elastic bushings)

Strain energy

[Graph showing strain energy vs. hardpoint position]
Minimize Mass
+ Suitable for performance measurement
- Not as nice geometrical results
- Not as numerically stable

Minimize Strain Energy
+ Better geometrical results
+ Numerically stable
- Not very easy to understand and communicate
Optimization Strategies – What to Use

Parametrization of hardpoint position

- Minimize Mass
 - The goal is to save weight and fulfill system requirements

For given hardpoint positions

- Minimize Strain Energy
 - If needed, to refine topology
 - Iterate with mass constraints
OPTIMIZATION WHEEL SUSPENSION SYSTEM

• Minimize Strain Energy
• Mass Constraint: $M^{\text{OPT}} \leq M^{\text{REF}}$
• Displacement Constraints
 • Knuckle (HP9)
• Load Cases – based on peak loads
 • BIP
 • DOC
 • SAC
• Symmetry Constraint
WHEEL SUSPENSION SYSTEM - MINIMIZE STRAIN ENERGY

- Result of Strain energy [Nm]

<table>
<thead>
<tr>
<th>Opt system</th>
<th>Ref model</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIP</td>
<td>186</td>
<td>187</td>
</tr>
<tr>
<td>DOC</td>
<td>233</td>
<td>283</td>
</tr>
<tr>
<td>SAC</td>
<td>408</td>
<td>411</td>
</tr>
<tr>
<td>Sum</td>
<td>827</td>
<td>881</td>
</tr>
</tbody>
</table>
Mass Distribution

- **Mass [kg]**

<table>
<thead>
<tr>
<th></th>
<th>Opt system</th>
<th>Ref model</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA</td>
<td>5.55</td>
<td>5.22</td>
<td>6.4%</td>
</tr>
<tr>
<td>UCA</td>
<td>0.73</td>
<td>1.19</td>
<td>-38.7%</td>
</tr>
<tr>
<td>Toelink</td>
<td>0.66</td>
<td>0.59</td>
<td>13.0%</td>
</tr>
<tr>
<td>Sum</td>
<td>6.95</td>
<td>7.00</td>
<td>-0.8%</td>
</tr>
</tbody>
</table>
ITERATE MASS CONSTRAINT

- Iterate mass constraint until displacement constraints are no longer fulfilled
- Displacement Constraints
 - BIP – Longitudinal
 - DOC – Vertical
 - SAC – Lateral
- Only for illustrative purposes

<table>
<thead>
<tr>
<th>Strain energy [Nm]</th>
<th>0.9(\bar{M}_{\text{Ref}})</th>
<th>0.8(\bar{M}_{\text{Ref}})</th>
<th>0.7(\bar{M}_{\text{Ref}})</th>
<th>0.6(\bar{M}_{\text{Ref}})</th>
<th>0.5(\bar{M}_{\text{Ref}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.2%</td>
<td>1.9%</td>
<td>7.4%</td>
<td>25.2%</td>
<td>121.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacements constraints [mm]</th>
<th>Ok</th>
<th>Ok</th>
<th>Ok</th>
<th>Ok</th>
<th>Not Ok</th>
</tr>
</thead>
</table>
ITERATE MASS CONSTRAINT

<table>
<thead>
<tr>
<th>Strain energy [Nm]</th>
<th>$0.9\bar{M}_{\text{Ref}}$</th>
<th>$0.8\bar{M}_{\text{Ref}}$</th>
<th>$0.7\bar{M}_{\text{Ref}}$</th>
<th>$0.6\bar{M}_{\text{Ref}}$</th>
<th>$0.5\bar{M}_{\text{Ref}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.2%</td>
<td>1.9%</td>
<td>7.4%</td>
<td>25.2%</td>
<td>121.7%</td>
</tr>
</tbody>
</table>

| Displacements constraints [mm] | Ok | Ok | Ok | Ok | Not Ok |

21
PROPOSED METHOD

Proposal
- System phase
- Topology Optimization with Parametrization of Hardpoint Positions
 - Broader solution space
 - Mass distribution between components

Further work
- Correlation with respect to displacements

Embrace the Future
- Efficient system level optimizations
 - Increased performance of products
 - Reduced costs of development
THANK YOU!