Enhancing Lightweight and Production Efficiency of Commercial Vehicles with New Generation Structural Adhesives and Modular Composite Components

Dr. Claudio Di Fratta
Corporate Marketfield Engineer, Sika Services AG
LIGHTWEIGHT TRENDS IN COMMERCIAL VEHICLES

- Introduction of lightweight solutions and modular design for large parts
- New hybrid/mixed material design approaches
- More efficient production of commercial and special vehicles
- Improved passenger safety and vehicle structural integrity
TRADITIONAL BUS BUILDING

Conventional BIW design with several metal segments joined by welding or bolts

24 h production with 3 shifts and several workers on the line

Large and heavy panels that add additional weight

Sources: JCB, Van Hool, Ashok Leyland, Yutong
INNOVATING IN BUS BUILDING

Structurally Bonded Integral Composite Sandwich Roof for Buses and Coaches

- New lightweight solution must show **OEM approved performances**
- Innovation must provide advantages both in **design phase** and in **production**

Heavy metal roof design with separate insulation and exterior/interior claddings

Pre-assembled sandwich module directly bonded on bus/coach walls
Approved Engineering Performance
- Weight reduction of more than 500 Kg
- Enhanced stiffness for all load cases
- Better stress distribution (no concentration)
- Properties stability from -40 °C to 100 °C
- Additional modules and mixed material design

Proven Advantages in Production
- Bus roof ready in 2 hours
- Fewer workers required for assembly
- Less and faster production steps
- Easier adhesive application: compressibility, low viscosity, non-sag, no VOC and no smell
- Suitable for automatization
HOW DO WE ACHIEVE THAT?

INNOVATIVE STRUCTURAL BONDING + SANDWICH PANELS
NEW GENERATION STRUCTURAL ADHESIVES
SIKA PATENTED INNOVATIONS

SikaPower®
1C and 2C Epoxy Adhesives

SikaForce®
2C Polyurethane Adhesives

Sikaflex®
1C Polyurethane and STP Adhesives

Strength, Modulus

Curing by Design & Powerflex Technologies

- Structural elasticity
- Stability over temperature
- Enhanced curing behaviour

Strength = $10 \div 20$ MPa
E-modulus = $20 \div 800$ MPa
Elongation = $100 \div 400$ %
NEW GENERATION STRUCTURAL ADHESIVES
SIKA PATENTED INNOVATIONS

CURING BY DESIGN
SNAP CURE TECHNOLOGY

© Copyright Sika Services AG 2019 - All rights reserved
CURING BY DESIGN TECHNOLOGY
FIELD APPLICATION

- With standard adhesive technology:
 - Need for 6 people to apply adhesive at same time!
 - Waiting time for next assembly steps: 8-12 h
CURING BY DESIGN TECHNOLOGY
FIELD APPLICATION

- **With Curing by Design technology:**
 - Only 1-2 people can complete the job using cartridges or a pumping system
 - Waiting time for next assembly steps: 2 h
POWERFLEX TECHNOLOGY

Dynamic Mechanical Analysis

- **Tg < -40 °C**
- Standard adhesive used in Commercial Transportation
 - too brittle
 - too soft
- **Powerflex Technology**
 - still flexible
 - still stiff

Storage Modulus [MPa]

Temperature [°C]

New Technology

Standard Technology

Service Temperature Range
POWERFLEX TECHNOLOGY
ADVANTAGES FOR DESIGNERS AND MANUFACTURERS

- Risk of substrate, coating or adhesive failure if the joint is too rigid or brittle
- Risk for structural integrity if the joint is too weak to transfer loads

- New SikaForce® adhesives based on Powerflex technology allow designing with smaller reduction factors
- Stable properties over temperature enable more precise and reliable FEM simulations of the joints
TECHNICAL SUPPORT FOR MANUFACTURERS
MATERIAL DATA AND MODELLING

- Providing more than datasheets values to support advance material modelling

- TAST: Thick Adherent Shear Test

- BJTT: Butt Joint Tensile Test

- DCB: Double cantilever

- Unidirectional, Planar and Biaxial tests

INTEGRAL SANDWICH PANEL TECHNOLOGY
DESIGN OF V-NOTCHED ROOF PROFILES

- Load carrying skins made of aluminium
- Pre-painted skins
- Integrated interfaces as cant-rails for structural bonding in hybrid design
- Interior skin with end decor and customized coil coatings
- Tested low-density thermal insulating core material meeting fire requirements for bus and rail application

Integral design with freedom to accommodate additional top loads such as battery compartments, ACU climate systems, baggage compartments, etc.
INTEGRAL SANDWICH PANEL TECHNOLOGY
STRUCTURAL, LIGHTWEIGHT, STIFF MODULAR ELEMENTS

- Integral Roofs

- Intermediate Floors

- Structural Low Floor Chassis
 (with heating option)
Reduced weight thanks to design with fewer components and lighter materials.

<table>
<thead>
<tr>
<th>Performance of Roofs under Heavy Load (CNG, Batteries and ACU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 m busses (engine weight is not included)</td>
</tr>
<tr>
<td>High Loads Equip.</td>
</tr>
<tr>
<td>Batteries/ Tank</td>
</tr>
<tr>
<td>ACU</td>
</tr>
<tr>
<td>Equipments</td>
</tr>
<tr>
<td>Passengers</td>
</tr>
<tr>
<td>Standing</td>
</tr>
<tr>
<td>Sitting</td>
</tr>
<tr>
<td>Gross mass of vehicle loads</td>
</tr>
<tr>
<td>Tare mass & Weight reduction</td>
</tr>
<tr>
<td>LOW ENTRY BUS</td>
</tr>
<tr>
<td>6’471 kg</td>
</tr>
<tr>
<td>6’674 kg</td>
</tr>
<tr>
<td>12’975 kg</td>
</tr>
<tr>
<td>12’976 kg</td>
</tr>
<tr>
<td>- 203 kg</td>
</tr>
<tr>
<td>- 562 kg</td>
</tr>
</tbody>
</table>
INTEGRAL SANDWICH PANEL TECHNOLOGY
EXPERIENCE IN DESIGN AND PROCESS

Series production tram sandwich roof ➔ Development: battery & fuel cell buses

- Although lighter, the **stiffness is increased** due to better stress distribution using adhesive joints and sandwich structures

- Increased stiffness brings **better roll-over performance** and **safer vehicles**
To show proof of structural crashworthiness (ECE R66), manufacturers can run either full-size tests or FEM simulations of whole large passenger vehicles.

Sources: Bonluck Bus, MAN Truck & Bus AG, Advanced Structures India
Validation: FEM simulations including non-linear material behavior for each component and adhesive

Technical support for segment testing
CONCLUSIONS

- Innovative **structural adhesives** and **customizable sandwich components** enables to maximize reduction of vehicle weight and structural performance

- Sika and 3A Composites developed **modular lightweight solutions** and support technological implementation at manufacturers

- Proven feasibility in production with **higher efficiency** and **fewer costs**

- Compliancy to **standards** and specific needs in **commercial transportation**
THANK YOU FOR YOUR ATTENTION

Dr. CLAUDIO DI FRATTA
SIKA SERVICES AG
difratta.claudio@ch.sika.com

SIEGMUND VON MANITIUS
3A COMPOSITES MOBILITY AG
siegmund.vonmanitius@3acomposites.com