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CHAPTER 6

Projectiles

This chapter is the first in a series of chapters that discuss specific real-world phenomena
and systems, such as projectile motion and airplanes, with the idea of giving you a
solid understanding of their real-life behavior. This understanding will help you to
model these or similar systems accurately in your games. Instead of relying on purely
idealized formulas, I’ll present a wide variety of practical formulas and data that you
can use. I’ve chosen the examples in this and the next several chapters to illustrate
common forces and phenomena that exists in many systems, not just the ones I’ll be
discussing here. For example, while Chapter 8 on ships discusses buoyancy in detail,
buoyancy is not limited to ships; any object immersed in a fluid experiences buoyant
forces. The same applies for the topics discussed in this chapter and Chapters 7, 9,
and 10.

Once you understand what’s supposed to happen with these and similar systems, you’ll
be in a better position to interpret your simulation results to determine whether they
make sense, that is, whether they are realistic enough. You’ll also be better educated
on what factors are most important for a given system such that you can make appro-
priate simplifying assumptions to help ease your effort. Basically, when designing and
optimizing your code, you’ll know where to cut things out without sacrificing realism.
This gets into the subject of parameter tuning.

Over the next few chapters I want to give you enough of an understanding of certain
physical phenomena that you can tune your models for the desired behavior. If you are
modeling several similar objects in your simulation but want each one to behave slightly
differently, then you have to tune the forces that get applied to each object to achieve the
varying behavior. Since forces govern the behavior of objects in your simulations, I’ll
be focusing on force calculations with the intent of showing you how and why certain
forces are what they are instead of simply using the idealized formulas that I showed you
in Chapter 3. Parameter tuning isn’t just limited to tuning your model’s behavior; it also
involves dealing with numerical issues, such as numerical stability in your integration
algorithms. I’ll discuss these issues more when I show you several simulation examples
in Chapters 12 through 17.
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I’ve devoted this entire chapter to projectile motion because so many physical prob-
lems that may find their way into your games fall into this category. Further, the forces
governing projectile motion affect many other systems that aren’t necessarily projec-
tiles; for example, the drag force experienced by projectiles is similar to that experi-
enced by airplanes, cars, or any other object moving through a fluid such as air or
water.

A projectile is an object that is placed in motion by a force acting over a very short period
of time, which you know from Chapter 5 is also called an impulse. After the projectile
is set in motion by the initial impulse, during the launching phase, the projectile enters
into the projectile motion phase, in which there is no longer a thrust or propulsive force
acting on it. As you know already from the examples presented in Chapters 2 and 4,
there are other forces that act on projectiles. (For the moment I’m not talking about
self-propelled “projectiles” such as rockets, since, owing to their propulsive force, they
don’t follow what I’ll refer to as classical projectile motion until after they’ve expended
their fuel.)

In the simplest case, neglecting aerodynamic effects, the only force acting on a pro-
jectile other than the initial impulsive force is gravitation. For situations in which the
projectile is near the earth’s surface, the problem reduces to a constant acceleration
problem. Assuming that the earth’s surface is flat, that is, that its curvature is large in
comparison to the range of the projectile, the following statements describe projectile
motion:

� The trajectory is parabolic.
� The maximum range, for a given launch velocity, occurs when the launch angle

is 45◦.
� The velocity at impact is equal to the launch velocity when the launch point and

impact point are at the same level.
� The vertical component of velocity is zero at the apex of the trajectory.
� The time required to reach the apex is equal to the time required to descend from

the apex to the point of impact, assuming that the launch point and impact point
are at the same level.
� The time required to descend from the apex to the point of impact equals the time

required for an object to fall the same vertical distance when dropped straight down
from a height equal to the height of the apex.

Simple Trajectories
There are four simple classes of projectile motion problems that I’ll summarize:

� When the target and launch point are at the same level
� When the target is at a level higher than the launch point
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� When the target is at a level lower than the launch point
� When the projectile is dropped from a moving system (such as an airplane) above

the target

In the first type of problem the launch point and the target point are located on the
same horizontal plane. Referring to Figure 6-1, v0 is the initial velocity of the projectile at
the time of launch, ϕ is the launch angle, R is the range of the projectile, and h is the
height of the apex of the trajectory.

R

y
v o h

Figure 6-1. Target and Launch Point at the Same Level

To solve this type of problem, use the formulas shown in Table 6-1. Note that in these
formulas, t represents any time instant after launch and T represents the total time from
launch to impact.

Table 6-1. Formulas: Target and Launch Point at Same Level

To Calculate: Use This Formula:

x(t) (v0 cosϕ)t

y(t) (v0 sinϕ)t−(gt 2)/2

vx (t) v0 cosϕ

vy (t) v0 sinϕ− gt

v(t)
√

v2
0 − 2gtv0 sinϕ+ g2t2

h (v2
0 sin2ϕ)/(2g)

R v0 T cosϕ

T (2v0 sinϕ)/g

Remember to keep your units consistent when applying these formulas. If you are
working in the English system, all your length and distance values should be in feet (ft),
time should be in seconds (s), speed should be in feet per second (ft/s), and acceleration
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should be in feet per second squared (ft/s2). If you are using the SI (metric) system, length
and distance values should be in meters (m), time should be in seconds (s), speed should
be in meters per second (m/s), and acceleration should be in meters per second squared
(m/s2). In the English system, g is 32.2 ft/s2; in the SI system, g is 9.8 m/s2.

In the second type of problem the launch point is located on a lower horizontal plane
than the target. Referring to Figure 6-2, the launch point’s y-coordinate is lower than
the target’s y-coordinate.

R

y
v o h
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b

Figure 6-2. Target Higher than Launch Point

For this type of problem, use the formulas shown in Table 6-2. Notice that most of these
formulas are the same as those shown in Table 6-1.

Table 6-2. Formulas Target Higher than Launch Point

To Calculate: Use This Formula:

x(t) (v0 cosϕ)t

y(t) (v0 sinϕ)t− (gt2)/2

vx (t) v0 cosϕ

vy (t) v0 sinϕ− gt

v(t)
√

v2
0 − 2gtv0 sinϕ+ g 2t2

h (v2
0 sin2ϕ)/(2g)

R v0 T cosϕ

T (v0 sinϕ )/g +
√

[2(h − b)]/g

Actually, the only formula that has changed is that for T , which has been revised to
account for the difference in elevation between the target and the launch point.

In the third type of problem the target is located on a plane lower than the launch point;
the target’s y-coordinate is lower than the launch point’s y-coordinate (see Figure 6-3).
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Figure 6-3. Target Lower than Launch Point

Table 6-3 shows the formulas to use for this type of problem. Here again, almost all of
the formulas are the same as those shown in Table 6-1.

Table 6-3. Formulas: Target Lower than Launch Point

To Calculate: Use This Formula:

x(t) (v0 cosϕ )t

y(t) (v0 sinϕ )t−(gt 2)/2

vx (t) v0 cosϕ

vy (t) v0 sinϕ− gt

v(t)
√

v 2
0 − 2gtv0 sinϕ+ g2t2

h b + (v 2
0 sin2ϕ )/(2g)

R v0 T cosϕ

T (v0 sinϕ)/g +
√

(2h)/g

As in the second type of problem, the only formula that has changed is the formula for
T , which has been revised to account for the difference in elevation between the target
and the launch point (except this time the target is lower than the launch point).

Finally, the fourth type of problem involves dropping the projectile from a moving sys-
tem, such as an airplane. In this case the initial velocity of the projectile is horizontal and
equal to the speed of the vehicle dropping it. Figure 6-4 illustrates this type of problem.

Table 6-4 shows the formulas to use to solve this type of problem. Note here that when
v0 is zero, the problem reduces to a simple free-fall problem in which the projectile
simply drops straight down.
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Figure 6-4. Projectile Dropped from a Moving System

Table 6-4. Formulas: Projectile Dropped from a
Moving System

To Calculate: Use This Formula:

x(t) v0t

y(t) h − (gt 2)/2

vx (t) v0

vy (t) −gt

v(t)
√

v2
0 + g2t2

h (gt 2)/2

R v0T

T
√

(2h)/g

These formulas are useful if you’re writing a game that does not require a more accurate
treatment of projectile motion, that is, if you don’t need or want to consider the other
forces that can act on a projectile when in motion. If you are going for more accuracy, then
you’ll have to consider these other forces and treat the problem as we did in Chapter 4’s
example.

Drag
In Chapters 3 and 4 I showed you the idealized formulas for viscous fluid dynamic drag
as well as how to implement drag in the equations of motion for a projectile. This was
illustrated in the example program discussed in Chapter 4. Recall that the drag force is a
vector just like any other force and that it acts on the line of action of the velocity vector
but in a direction opposing velocity. While those formulas work in a game simulation,
as I said before, they don’t tell the whole story. Although we can’t treat the subject of
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fluid dynamics in its entirety in this book, I do want to give you a better understanding
of drag than just the simple idealized equation presented earlier.

It can be shown by analytical methods that the drag on an object moving through a fluid
is proportional to its speed, size, and shape and the density and viscosity of the fluid
through which it is moving. You can also come to these conclusions by drawing on your
own real-life experience. For example, when waving your hand through the air, you feel
very little resistance; however, if you put your hand out of a car window traveling at
60 mph, then you feel much greater resistance (drag force) on your hand. This is because
drag is speed dependent. When you wave your hand under water, say, in a swimming
pool, you’ll feel a greater drag force on your hand than you do when waving it in the
air. This is because water is more dense and viscous than air. As you wave your hand
under water, you’ll notice a significant difference in drag depending on the orientation
of your hand. If your hand is such that your palm is in line with the direction of motion,
that is, you are leading with your palm, then you’ll feel a greater drag force than you
would if your hand were turned 90 degrees as though you were executing a knife hand
karate chop through the water. This tells you that drag is a function of the shape of the
object. You get the idea.

To facilitate our discussion of fluid dynamic drag, let’s look at the flow around a sphere
moving through a fluid such as air or water. If the sphere is moving slowly through
the fluid, the flow pattern around the sphere would look something like that shown in
Figure 6-5.

Sl St

Figure 6-5. Flow Pattern Around a Slowly Moving Sphere

Bernoulli’s equation, which relates pressure to velocity in fluid flow, says that as the
fluid goes around the sphere and speeds up, the pressure in the fluid (locally) will
go down. The equation, presented by Daniel Bernoulli in 1738, applies to frictionless
incompressible fluid flow and looks like this∗:

P/γ + z + V2/(2g) = constant

where P is the pressure at a point in the fluid volume under consideration, γ is the
specific weight of the fluid, z is the elevation of the point under consideration, V is the
fluid velocity at that point, and g is the acceleration due to gravity. As you can see, if

∗ In a real fluid with friction, this equation will have extra terms that account for energy losses due to friction.
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the expression on the left is to remain constant, and assuming that z is constant, then if
velocity increases, pressure must decrease. Likewise, if pressure increases, then velocity
must decrease.

Referring to Figure 6-5, the pressure will be greatest at the stagnation point, Sl, and
will decrease around the leading side of the sphere and then start to increase again
around the back of the sphere. In an ideal fluid with no friction, the pressure is fully
recovered behind the sphere, and there is a trailing stagnation point, St, whose pres-
sure is equal to the pressure at the leading stagnation point. Since the pressure fore
and aft of the sphere is equal and opposite, there is no net drag force acting on the
sphere.

The pressure on the top and bottom of the sphere will be lower than that at the stagnation
points, since the fluid velocity is greater over the top and bottom. Since this is a case of
symmetric flow around the sphere, there will be no net pressure difference between the
top and bottom of the sphere.

In a real fluid there is friction, which affects the flow around the sphere such that the
pressure is never fully recovered on the aft side of the sphere. As the fluid flows around
the sphere, a thin layer sticks to the surface of the sphere due to friction. In this boundary
layer the speed of the fluid varies from zero at the sphere surface to the ideal free stream
velocity as illustrated in Figure 6-6.

Boundary layer limit
Velocity profile within boundary layer

Figure 6-6. Velocity Gradient within a Boundary Layer

This velocity gradient represents a momentum transfer from the sphere to the fluid
and gives rise to the frictional component of drag. Since a certain amount of fluid is
sticking to the sphere, you can think of this as the energy required to accelerate the fluid
and move it along with the sphere. (If the flow within this boundary layer is laminar,
then the viscous shear stress between fluid “layers” gives rise to friction drag. When the
flow is turbulent, the velocity gradient, and thus the transfer of momentum gives rise
to friction drag.)

Moving further aft along the sphere, the boundary layer grows in thickness and will not
be able to maintain its adherence to the sphere surface, and it will separate at some point.
Beyond this separation point, the flow will be turbulent, and this is called the turbulent
wake. In this region the fluid pressure is lower than that at the front of the sphere. This
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pressure differential gives rise to the pressure component of drag. Figure 6-7 shows how
the flow might look.

Figure 6-7. Flow Pattern Around a Sphere Showing Separation

For a slowly moving sphere the separation point will be approximately 80◦ from the
leading edge.

Now, if you roughen the surface of the sphere, you’ll affect the flow around it. As
you would expect, this roughened sphere will have a higher friction drag component.
However, more important, the flow will adhere to the sphere longer, and the separation
point will be pushed further back to approximately 115◦, as shown in Figure 6-8.

Figure 6-8. Flow Around a Roughened Sphere

This will reduce the size of the turbulent wake and the pressure differential, thus de-
creasing the pressure drag. It’s paradoxical but true that, all other things being equal,
a slightly roughened sphere will have less total drag than a smooth one. Have you ever
wondered why golf balls have dimples? If so, there’s your answer.

The total drag on the sphere depends very much on the nature of the flow around
the sphere, that is, whether the flow is laminar or turbulent. This is best illustrated by
looking at some experimental data. Figure 6-9 shows a typical curve of the total drag
coefficient for a sphere plotted as a function of Reynold’s number.

Reynold’s number (commonly denoted Nr or Rn) is a dimensionless number that rep-
resents the speed of fluid flow around an object. It’s a little more than just a speed
measure, since Reynold’s number includes a characteristic length for the object and the
viscosity and density of the fluid. The formula for Reynold’s number is

Rn = (vL)/υ

or

Rn = (vLρ)/µ
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Figure 6-9. Total Drag Coefficient for a Smooth Sphere Versus Reynold’s Number ∗

where v is speed, L is a characteristic length of the object (diameter for a sphere), υ is
the kinematic viscosity of the fluid, ρ is the fluid mass density, and µ is the absolute
viscosity of the fluid. For Reynold’s number to work out as a dimensionless number,
velocity, length, and kinematic viscosity must have units of ft/s, ft, and ft2/s, respectively
when working in the English system. In the SI system their units must be m/s, m, and
m2/s, respectively.

This number is useful for nondimensionalizing data measured from tests on an object
of given size (such as a model) such that the data can be scaled to estimate the data for
similar objects of different size. Here, “similar” means that the objects are geometrically
similar, just different scales, and that the flow pattern around the objects is similar. For
a sphere the characteristic length is diameter, so you can use drag data obtained from
a small model sphere of a given diameter to estimate the drag for a larger sphere of a
different diameter. A more useful application of this scaling technique is estimating the
viscous drag on ship or airplane appendages on the basis of model test data obtained
from wind tunnel or tow tank experiments.

Reynold’s number is used as an indicator of the nature of fluid flow. A low Reynold’s
number generally indicates laminar flow, while a high Reynold’s number generally in-
dicates turbulent flow. Somewhere in between, there is a transition range where the
flow makes the transition from laminar to turbulent flow. For carefully controlled ex-
periments, this transition (critical) Reynold’s number can consistently be determined.
However, in general the ambient flow field around an object, that is, whether it has
low or high turbulence, will affect when this transition occurs. Further, the transition
Reynold’s number is specific to the type of problem being investigated, for example,

∗ The curve shown here is intended to show the trend of Cd versus Rn for a smooth sphere. For more accurate
drag coefficient data for spheres and other shapes, refer to any college-level fluid mechanics text, such as Fluid
Mechanics with Engineering Applications by Daugherty, Franzini, and Finemore.
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whether you’re looking at flow within pipes, the flow around a ship, or the flow around
an airplane, and so on.

The total drag coefficient, Cd, is calculated by measuring the total resistance, Rt, from
tests and using the following formula:

Cd = Rt/(0.5ρv2 A)

where A is a characteristic area that depends on the object being studied. For a sphere, A
is typically the projected frontal area of the sphere, which is equal to the area of a circle of
diameter equal to that of the sphere. By comparison, for ship hulls, A is typically taken
as the underwater surface area of the hull. If you work out the units on the righthand
side of this equation, you’ll see that the drag coefficient is nondimensional, that is, it
has no units.

Given the total drag coefficient, you can estimate the total resistance (drag) using the
following formula:

Rt = (0.5ρv2 A)Cd

This is a better equation to use than the ones given in Chapter 3, assuming that you have
sufficient information available, namely, the total drag coefficient, density, velocity, and
area. Note the dependence of total resistance on velocity squared. To get Rt in units of
pounds (lb), you must have velocity in ft/s, area in ft2, and density in slug/ft3 (remember,
Cd is dimensionless). In the SI system you’ll get Rt in newtons (N) if you have velocity
in m/s, area in m, and density in kg/m3.

Turning back now to Figure 6-9, you can make a couple of observations. First you can see
that the total drag coefficient decreases as Reynold’s number increases. This is due to the
formation of the separation point and its subsequent move aft on the sphere as Reynold’s
number increases and the relative reduction in pressure drag as discussed previously.
At a Reynold’s number of approximately 250,000 there is a dramatic reduction in drag.
This is a result of the flow becoming fully turbulent with a corresponding reduction in
pressure drag.

In the Cannon2 example in Chapter 4, I implemented the ideal formula for air drag
on the projectile. In that case I used a constant value of drag coefficient that was
arbitrarily defined. As I said earlier, it would be better to use the formula presented in
this chapter for total drag along with the total drag coefficient data shown in Figure 6-9
to estimate the drag on the projectile. While this is more “accurate,” it does complicate
matters for you. Specifically, the drag coefficient is now a function of Reynold’s number,
which is a function of velocity. You’ll have to set up a table of drag coefficients versus
Reynold’s number and interpolate this table given Reynold’s number calculated at
each time step. As an alternative, you can fit the drag coefficient data to a curve to
derive a formula that you can use instead; however, the drag coefficient data may
be such that you’ll have to use a piecewise approach and derive curve fits for each
segment of the drag coefficient curve. The sphere data presented herein is one such
case. The data do not lend themselves nicely to a single polynomial curve fit over
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the full range of Reynold’s number. In such cases you’ll end up with a handful of
formulas for drag coefficient with each formula valid over a limited range of Reynold’s
numbers.

While the Cannon2 example does have its limitations, it is useful to see the effects of drag
on the trajectory of the projectile. The obvious effect is that the trajectory is no longer
parabolic. You can see that the trajectory appears to drop off much more sharply when
the projectile is making its descent after reaching its apex height.

Trajectory

Figure 6-10. Cannon2 Example, Trajectories

Another important effect of drag on trajectory (this applies to objects in free fall as well)
is the fact that drag will limit the maximum vertical velocity attainable. This limit is
the so-called terminal velocity. Take an object in free fall for a moment. As the object
accelerates toward the earth at the gravitation acceleration, its velocity increases. As
velocity increases, so does drag, since drag is a function of velocity. At some speed the
drag force retarding the object’s motion will increase to a point at which it is equal to
the gravitational force that’s pulling the object toward the earth. In the absence of any
other forces that may affect motion, the net acceleration on the object is zero, and it
continues its descent at the constant terminal velocity.

Let me illustrate this further. Go back to the formula I derived for the y-component
(vertical component) of velocity for the projectile modeled in the Cannon2 example. Here
it is again so that you don’t have to flip back to Chapter 4:

vy2 = (1/Cd)e(−Cd/m)t(Cdvy1 + mg) − (mg)/Cd

It isn’t obvious from looking at this equation, but the velocity component, vy2, asymp-
totes to some constant value as time increases. To help visualize this, I’ve plotted this
equation as shown in Figure 6-11.

As you can see, over time the velocity reaches a maximum absolute value of about
−107.25 speed units. The negative velocities indicate that the velocity is in the negative
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Figure 6-11. Terminal Velocity

y-direction, that is, the object is falling toward the earth in this case. (For this calculation
I arbitrarily assumed a mass of 100, a drag coefficient of 30, and an initial velocity of zero.)

Assuming an initial velocity of zero and equating the formula for total resistance shown
earlier to the weight of an object, you can derive the following formula for terminal
velocity for an object in free fall:

vt =
√

(2mg)/(Cdρ A)

The trick in applying this formula is in determining the right value for the drag co-
efficient. Just for fun, let’s assume a drag coefficient of 0.5 and calculate the terminal
velocity for several different objects. This exercise will allow you to see the influence of
the object’s size on terminal velocity. Table 6-5 gives the terminal velocities for various
objects in free fall using an air density of 2.37 ×10−3 slug/ft3 (air at standard atmo-
spheric pressure at 60◦F). Using this equation with density in slug/ft3 means that m
must be in slugs, g in ft/s2, and A in ft to get the terminal speed in ft/s. I went ahead
and converted from ft/s to miles per hour (mph) to present the results in Table 6-5. The
weight of each object shown in this table is simply its mass, m, times g.

Table 6-5. Terminal Velocities for Various Objects

Terminal
Object Weight (lb) Area (ft2) Velocity (mph)

Skydiver in free fall 180 9 125

Skydiver with open parachute 180 226 25

Baseball (2.88-in. diameter) 0.32 0.045 75

Golf ball (1.65-in. diameter) 0.10 0.015 72

Raindrop (0.16-in. diameter) 7.5 × 10−5 1.39 × 10−4 20
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Although I’ve talked mostly about spheres in this section, the discussions on fluid flow
generally apply to any object moving through a fluid. Of course, the more complex
the object’s geometry, the harder it is to analyze the drag forces on it. Other factors such
as surface condition and whether or not the object is at the interface between two fluids
(such a ship in the ocean) further complicate the analysis. In practice, scale model tests
are particularly useful. In the bibliography I give several sources where you can find
more practical drag data for objects other than spheres.

Magnus Effect
The Magnus effect (also known as the Robbins effect) is quite an interesting phenomenon.
You know from the previous section that an object moving through a fluid encounters
drag. What would happen if that object were spinning as it moved through the fluid. For
example, consider the sphere that I talked about earlier and assume that while moving
through a fluid such as air or water, it spins about an axis passing through its center of
mass. What happens when the sphere spins is the interesting part: it actually generates
lift! That’s right—lift. From everyday experience, most people usually associate lift
with a winglike shape such as an airplane wing or a hydrofoil. It is far less well known
that cylinders and spheres can produce lift as well—that is, as long as they are spinning.
I’ll use the moving sphere to explain what’s happening here.

From the previous section on drag, you know that for a fast-moving sphere there will be
some point on the sphere where the flow separates, creating a turbulent wake behind
the sphere. Recall that the pressure acting on the sphere within this turbulent wake is
lower than the pressure acting on the leading surface of the sphere, and this pressure
differential gives rise to the pressure drag component. When the sphere is spinning, say,
clockwise about a horizontal axis passing through its center as shown in Figure 6-12,
the fluid passing over the top of the sphere will be sped up, while the fluid passing
under the sphere will be retarded.

Spin

No Spin

Figure 6-12. Spinning Sphere
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Remember, because of friction, there is a thin boundary layer of fluid that attaches to the
sphere’s surface. At the sphere’s surface the velocity of the fluid in the boundary layer is
zero relative to the sphere. The velocity increases within the boundary layer as you move
farther away from the sphere’s surface. In the case of the spinning sphere there is now
a difference in fluid pressure above and below the sphere due to the increase in velocity
above the sphere and the decrease in velocity below the sphere. Further, the separation
point on the top side of the sphere will be pushed farther back along the sphere. The
result is an asymmetric flow pattern around the sphere with a net lift force (due to the
pressure differential) perpendicular to the direction of flow. If the surface of the sphere is
roughened a little, not only will frictional drag increase, but this lift effect will increase
as well.

Don’t let the term “lift” confuse you into thinking that this force always acts to lift, or
elevate, the sphere. The effect of this lift force on the sphere’s trajectory is very much
tied to the axis of rotation about which the sphere is spinning as related to the direction
in which the sphere is traveling, that is, its angular velocity.

The magnitude of the Magnus force is proportional to the speed of travel, the rate of
spin, density of fluid, the size of the object, and the nature of the fluid flow. This force is
not easy to calculate analytically, and as with many problems in fluid dynamics you must
rely on experimental data to accurately estimate this force for a specific object under
specific conditions. There are, however, some analytical techniques that will allow you
approximate the Magnus force. Without going into the theoretical details, you can apply
the Kutta-Joukouski theroem to estimate the lift force on rotating objects such as cylinders
and spheres. The Kutta-Joukouski theorem is based on a frictionless idealization of fluid
flow involving the concept of circulation around the object (such as a vortex around
the object). You can find the details of this theory in any fluid dynamics text (I give
some references in the bibliography), so I won’t go into the details here. However, I will
give you some results.

For a spinning circular cylinder moving through a fluid you can use this formula to
estimate the Magnus lift force:

FL = 2πρLvr 2ω

where v is speed of travel, L is the length of the cylinder, r is its radius, and ω is its
angular velocity in radians per second (rad/s). If you have spin, n, in revolutions per
second (rps), then ω = 2πn. If you have spin, n, in revolutions per minute (rpm), then
ω = (2πn)/60.

For a spinning sphere moving through a fluid you can use this formula:

FL = (2π2ρvr 4ω)/(2r )

where r is the radius of the sphere. Consistent units for these equations would yield lift
force in pounds in the English system or newtons in the SI system. In the English system
density, speed, length, and radius have units of slugs/ft3, ft/s, and ft, respectively. In the SI
system the appropriate units are for these quantities are kg/m3, m/s, and m, respectively.

Magnus Effect 115



P1: FCH/FYX P2: FCH

PX012-06 PX012.cls October 27, 2001 13:36

Keep in mind that these formulas only approximate the Magnus force; they’ll get you
in the ballpark, but they are not exact and could be off by up to 50% depending on
the situation. These formulas assume that there is no slip between the fluid and the
rotating surface of the object, there is no friction, surface roughness is not taken into
account, and there is no boundary layer.

At any rate, these equations will allow you to approximate the Magnus effect for flying
objects in your games, where you’ll be able to model the relative differences between
objects of different size that may be traveling at different speeds with different spin rates.
You’ll get the look right. If numerical accuracy is what you’re looking for, then you’ll
have to turn to experimental data for your specific problem.

Similar to the drag data shown in the previous section, experimental lift data are gener-
ally presented in terms of lift coefficient. Using an equation similar to the drag equation,
you can calculate the lift force with the following equation:

FL = (0.5ρv2 A)CL

As usual, it’s not as simple as this equation makes it appear. The trick is in determining
the lift coefficient, CL, which is a function of surface conditions, Reynold’s number,
velocity, and spin rate. Further, experiments show that the drag coefficient is also affected
by spin.

For example, consider a golf ball struck perfectly (I wish) such that the ball spins about
a horizontal axis perpendicular to its direction of travel while in flight. In this case the
Magnus force will tend to lift the ball higher in the air, increasing its flight time and
range. For a golf ball struck such that it initial velocity is 190 ft/s with a takeoff angle of
10 degrees the increase in range due to Magnus lift is on the order of 65 yards; thus, it’s
clear that this effect is significant. In fact, over the long history of the game of golf there
has been an attempt to maximize this effect. In the late 1800s, when golf balls were still
made with smooth surfaces, people observed that used balls with roughened surfaces
flew even better than smooth balls. This observation prompted people to start making
balls with rough surfaces so as to maximize the Magnus lift effect. The dimples that
you see on modern golf balls are the result of many decades of experience and research
and are thought to be optimum.

Typically, a golf ball takes off from the club with an initial velocity on the order of
250 ft/s, with a backspin on the order of 60 revolutions per second (rps). For these
initial conditions the corresponding Magnus lift coefficient is within the range from 0.1
to 0.35. Depending on the spin rate, this lift coefficient can be as high as 0.45, and the
lift force acting on the ball can be as much as 50% of the ball’s weight.

If the golf ball is struck with a less than perfect stroke, the Magnus lift force may work
against you. For example, if your swing is such that the ball leaves the club head spinning
about an axis that is not horizontal, then the ball’s trajectory will curve, resulting in a
slice or a draw. If you top the ball such that the upper surface of the ball is spinning away
from you, then the ball will tend to curve downward much more rapidly, significantly
reducing the range of your shot.
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As another example, consider a baseball that is pitched such that it is spinning with
topspin about a horizontal axis perpendicular to its direction of travel. Here, the Magnus
force will tend to cause the ball to curve in a downward direction, making it drop more
rapidly than it would without spin. If the pitcher spins the ball such that the axis of
rotation is not horizontal, then the ball will curve out of the vertical plane. Another
trick that pitchers use is to give the ball backspin, making it appear (to the batter) to
actually rise. This rising fast ball does not actually rise, but because of the Magnus lift
force, it falls much less rapidly than it would without spin.

For a typical pitched speed and spin rate of 148 ft/s and 30 rps, respectively, the lift
force can be up to 33% of the ball’s weight. For a typical curve ball the lift coefficient
is within the range of 0.1 to 0.2, and for fly balls it can be up to 0.4.

These are only two examples, however; you need not look far to find other examples
of the Magnus force in action. Think about the behavior of cricket balls, soccer balls,
tennis balls, or Ping-Pong balls when they spin in flight. Bullets fired from a gun with
a rifling barrel also spin and are affected by this Magnus force. There have even been
sailboats built with tall vertical rotating cylindrical “sails” that use the Magnus force
for propulsion. I’ve also seen technical articles describing a propeller with spinning
cylindrical blades instead of airfoil-type blades.

To further illustrate the Magnus effect, I have prepared a simple program that simulates
a ball being thrown with varying amounts of backspin (or topspin). This example is
based on the cannon example, so here again, the code should look familiar to you.
In this example I’ve neglected drag, so the only forces that the ball will see are due to
gravity and the Magnus effect. I did this to isolate the lift-generating effect of spin and
to keep the equations of motion clearer.

Since most of the code for this example is identical, or very similar, to that in the previous
cannon examples, I won’t repeat it here. I will, however, show you the global variables
used in this simulation along with a revised DoSimulation function that takes care of the
equations of motion:

//-------------------------------------------------------------------------------//
// Global variables required for this simulation
//-------------------------------------------------------------------------------//
TVector V1; // Initial Velocity (given), m/s
TVector V2; // Velocity vector at time t, m/s
double m; // Projectile mass (given), kg
TVector s1; // Initial position (given), m
TVector s2; // The projectile’s position (displacement) vector, m
double time; // The time from the instant the projectile

// is launched, s
double tInc; // The time increment to use when stepping

// through the simulation, s
double g; // acceleration due to gravity (given), m/sˆ2
double spin; // spin in rpm (given)
double omega; // spin in radians per second
double radius; // radius of projectile (given), m

#define PI 3.14159f
#define RHO 1.225f // kg/mˆ3
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//-------------------------------------------------------------------------------//
int DoSimulation(void)
//-------------------------------------------------------------------------------//
{

double C = PI * RHO * RHO * radius * radius * radius * omega;
double t;

// step to the next time in the simulation
time+=tInc;
t = time;

// Calc. V2:
V2.i = 1.0f/(1.0f-(t/m)*(t/m)*C*C) * (V1.i + C * V1.j * (t/m) -

C * g * (t*t)/m);
V2.j = V1.j + (t/m)*C*V2.i - g*t;

// Calc. S2:
s2.i = s1.i + V1.i * t + (1.0f/2.0f) * (C/m * V2.j) * (t*t);
s2.j = s1.j + V1.j * t + (1.0f/2.0f) * ( ((C*V2.i) - m*g)/m ) * (t*t);

// Check for collision with ground (xz-plane)
if(s2.j <= 0)

return 2;

// Cut off the simulation if it’s taking too long
// This is so the program does not get stuck in the while loop
if(time>60)

return 3;

return 0;
}

The heart of this simulation are lines that calculate v2 and s2, the instantaneous velocity
and position of the projectile, respectively. The equations of motion here come from the
2D kinetic equations of motion including gravity, as discussed in Chapter 4, combined
with the following formula (shown earlier) for estimating the Magnus lift on a spinning
sphere:

FL = (2π2ρvr 4ω)/(2r )

You can see the effect of spin on the projectile’s trajectory by providing the sample
program with different values for spin in revolutions per minute. The program converts
this to radians per second and stores this value in the variable omega. A positive spin
value indicates bottom spin such that the bottom of the sphere is spinning away from
you; a negative spin indicates topspin, in which the top of the ball spins away from
you. Bottom spin generates a positive lift force that will tend to extend the range of the
projectile; topspin generates negative lift that will force the projectile toward the ground,
shortening its range. (Note that this example assumes that the spin axis is horizontal
and perpendicular to the plane of the screen.) Figure 6-13 illustrates this behavior.

Variable Mass
Earlier in this book I mentioned that some problems in dynamics involve variable
mass. We’ll look at variable mass here, since it applies to self-propelled projectiles such
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Figure 6-13. Magnus Effect Sample Program

as rockets. When a rocket is producing thrust to accelerate itself, it loses mass (fuel) at
some rate. When all of the fuel is consumed (burnout), the rocket no longer produces
thrust and has reached its maximum speed. After burnout you can treat the trajectory
of the rocket just as you would a non-self-propelled projectile, as discussed earlier.
However, while the rocket is producing thrust, you need to consider its mass change,
since this will affect its motion.

In cases in which the mass change of the object under consideration is such that the
mass being expelled or taken in has zero absolute velocity, like a ship consuming fuel,
for example, you can set up the equations of motion as you normally would, where the
sum of the forces equals the rate of change in momentum. However, in this case mass
will be a function of time, and your equations of motion will look like this:

∑
F = ma = d/dt(mv) = m(dv/dt) + (dm/dt)v

You can proceed to solve them just as you would normally but keeping in mind the time
dependence of mass.

A rocket, on the other hand, expels mass at some nonzero velocity, and you can’t use
the above approach to properly account for its mass change. In this case you need to
consider the relative velocity between the expelled mass and the rocket itself. The linear
equation of motion now looks like this:

∑
F = m dv/dt + dm/dt u

where u is the relative velocity between the expelled mass and the object (the rocket, in
this case).

For a rocket traveling straight up, neglecting air resistance and the pressure at the exhaust
nozzle, the only force acting on the rocket is due to gravity. But the rocket is expelling
mass (burning fuel). How it expels this mass is not important here, since the forces
involved there are internal to the rocket; we need only consider the external forces. Let
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the fuel burn rate be −m′. The equation of motion (in the vertical direction) for the
rocket is as follows:

∑
F = m dv/dt + dm/dt u

−mg = m dv/dt − m′u

If you rearrange this so that it looks as though there’s only an ma term on the right of
the equation, you get

m′u − mg = m dv/dt = ma

Here you can see that the thrust that propels the rocket into the air is equal to m′u. Since
the fuel burn rate is constant, the mass of the rocket at any instant in time is equal to

m = m0 − m′t

where m0 is the initial mass and the burn rate, m′, is in the form mass per unit time.
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