
Data Structure Series 
 

 This series is actually something I started back when I was part of the 
Sweet.Oblivion staff, but then some things happened and I was no longer able to 
complete it. So now, after finally retrieving copies of the original articles, I’m going 
to make a second attempt at a series of articles that cover step-by-step the design, 
construction, and implementation of the most common data structures used in 
software development today. 
 
 I will start off the series by briefly introducing basic  pointer concepts as well 
as giving an introduction to our first data structure, linked lists. I will then begin to 
explore more advanced data structures including, but not limited to stacks, queues, 
binary trees, AVL trees, splay trees, B-trees, hashes, various types of priority queues 
(aka heaps), graphs, and quite possibly some topics regarding algorithm analysis 
and the design of several algorithms that utilize these data structures. I will also 
make an effort to explain how each structure might be used in your game 
development. 
 
 The compiler of choice for this series is Microsoft Visual C++ 6, and both C 
and C++ syntax will be used throughout. Also, since my example programs are to be 
very simple and to the point, all of the programs will be using the console application 
setup – basically an MS-DOS program. 
 
 Now that you have the general idea of this series, let me warn you that this 
series does have a chance of not being completed, but considering the general lack 
of good tutorials and documents covering this material, I’ll do my best to follow 
through with each part. I just cannot guarantee that between my personal life, work 
on GameDev.net, and other issues that may arise in the future, that I will be able to 
complete it. So with this in mind, let’s get on with the show. 



Introduction to Linked ListsIntroduction to Linked Lists  
Part 1 

 
 
Before we can begin discussing any dynamic data structure, we need to verify that 
you have a solid background on basic pointer operations. 
 
A Quick Explanation 
 
Dynamic memory is allocated from an area of memory known as the heap - a finite 
supply of memory that can be accessed by the programmer. It is possible to deplete 
all available memory from the stack or heap, since both are of some definite size 
that is machine-dependent. A program uses stack memory when a function is called, 
and this memory is released when the function exits. Allocation and deallocation of 
stack memory is therefore automatic. This is, however, not the case for heap 
memory, and the programmer must carefully manage the allocation and deallocation 
of heap memory. 
 
You could write a set of functions that can help you keep track of how much heap 
memory you have allocated and how much is being used in the program, but that is 
beyond the scope of this article and would be a good topic for another article. Such a 
system could be used in resource management. 
 
Allocating Memory 
 
To use the memory allocation functions, <STDIO.H> must be included. Requesting 
memory from the heap is accomplished through the malloc() function, which is 
defined by this prototype: 
 

void *malloc(size_t size); 
 

The malloc() function returns a generic pointer to a chunk of memory containing 
size bytes. Remember that you must typecast the generic pointer returned by 
malloc() to the type of the pointer variable that is being allocated. If the heap is 
full, and no memory is available for allocation, malloc() returns NULL. 
 
Other functions include calloc() (also used for memory allocation of an array) and 
realloc() (used to increase or decrease the size of a chunk of memory previously 
allocated). For our purposes, we will use malloc() and free(), which frees the 
memory that has been allocated for the pointer that is passed as free()'s parameter. 



Using Pointers 
 
Now let’s get into some real implementation. Pointers are declared and dereferenced 
using an asterisk; the variable itself, without the asterisk, refers to the actual 
address of the first byte of the allocated memory. Remember, pointers contain as 
their value an address to another variable. The dereferenced pointer actually points 
to the value of a variable held in memory at the address indicated by the pointer. 
The & character (the address of operator) is used to determine the address of a 
variable. 
 
Consider this fragment of code: 

int i, *ptr1, *ptr2;    // integer and 2 pointers to integers  
i = 11;     // get space for one integer and assign a value  
ptr1 = (int *)malloc(sizeof(int));  // note the typecast to integer 
*ptr1 = 43;    // Use already allocated space  
ptr2 = &i;  
printf("i, *ptr1, and *ptr2 = %d, %d, %d\n", i, *ptr1, *ptr2);  

This code outputs: 

i, *ptr1, and *ptr2 = 11, 43, 11 
 

Let’s run through the code very quickly. The first line declares one integer variable, 
and two pointers to integers. The second line assigns the value of 11 to integer 
variable i. Line three allocates memory for integer pointer ptr1. The fourth line 
assigns the value of 43 to the memory location that has been allocated by ptr1. Line 
five then sets the integer pointer ptr2’s address to the memory location occupied 
by integer variable i. The last line then prints out the values of integer variable i, and 
then the values being held in the memory locations pointed to by ptr1 and ptr2. 
 
If you have trouble understanding that, be sure to read over it several times, or look 
through a C/C++ book or tutorial on pointers. You need to have a solid 
understanding of pointers before moving on from this point in the series.  
 



The Linked List 
 
Now that you understand basic pointer concepts, you may be asking yourself, “What 
is this linked list thing?” Well, a linked list is a dynamic data structure consisting of 
records (called nodes) that hold data and are “'linked” to each other by a method 
determined by the programmer.  The most common linking method is through 
pointers (addresses), such that each record contains the address of the next node in 
the list in addition to the record’s regular data. The first node in the list, called the 
head, is used as the list’s key identifier. You must always keep track of the head of 
the list. Why? Because it is the starting point that will be used later to retrieve the 
information that you have stored in the list. Lose the head, and you have lost the 
entry point to the entire list, particularly in our implementation here of the singly 
linked list. A list expands and shrinks (hence dynamic data structure) as data is 
added and deleted, allowing the list to accommodate an arbitrary number of 
elements. Compare this concept to the allocation of an array, which remains the 
same size during its lifetime. Figure 1.1 shows a visual example of a singly linked 
list, which we will be discussing throughout this article. 
 
 

 
 

A linked list is a linear data structure. All operations on the list must begin by 
accessing the first node on the list, then the second node, then the third node, etc. 
Compared to arrays, this sequential access can be a significant performance 
drawback. Arrays can be accessed randomly – ever hear of the binary search 
algorithm? A linked list node can only be accessed after all preceding nodes have 
been accessed; this results in slower searching algorithms. There are, however, ways 
around this by manipulating and modifying the structure of the basic linked list that 
has been described here. We will explore these in a later part of the series. 
 
The main advantage of linked lists is their dynamic nature. A list can grow to be 
quite big with dynamic allocation. New nodes can be added in between existing 
nodes with a few simple pointer manipulations, and deletions may be performed with 
a call to free() and some pointer redirection. 
 
Some of the operations that we will be covering on the basic linked list include: 

• List initialization 
• Search 
• Create a new node 
• Node insertion 
• Node deletion 
• List traversal 

 



Linked List Node Design 
 
Now we will discuss the design of the node that can be used in your linked list 
implementations. The data placed inside a node is dependent upon the application of 
the list. For instance, let’s say that you would like to use a linked list to keep track of 
the enemy ships that are currently alive and flying around in your space shooter. 
There are several ways to represent enemy ships with your nodes, but for the sake 
of simplicity, we will let each node hold the x and y coordinate of the ship on the 
screen. 
 
In this example, we will create a struct to package the data. 
 

typedef struct node 
{ 
 int x, y;  // x and y coordinate 
 struct node *next; // pointer (“link”) to the next node 
} node_t; 
 

There we have our basic node structure with the type defined as node_t. Note that 
you specify struct node *next; because it is a pointer to an incomplete type. The 
following code demonstrates how we can use this type to declare our variables. 
 

node_t  nodeRec;  // a single node 
 
node_t  *head;  // head node of a linked list 
 
typedef node_t  *node_ptr; // create a node pointer type 
 
node_ptr  head;  // head node of a linked list 
 

The first declaration, node_t nodeRec, declares a variable of the node structure. 
You can’t really use this for your linked lists. 
 
The second declaration, node_t *head, is what we’re looking for. This declares a 
node pointer that we will use for the head of the linked list. 
 
The third and fourth declarations are fairly self-explanatory. They create a new 
pointer type that allows for better code readability, and then declare the head of the 
linked list using this new pointer type. 
 
Also keep in mind that the second and fourth lines are equivalent. 
 
In Figure 1.2, you can see the visual representation of a single node. We will use this 
representation throughout the series for all the nodes in all the data structures we 
explore. The node has a data area, where all the node’s information is stored, as well 
as a link area, where the links to other nodes are defined. 
 

 



When designing nodes, keep in mind that nodes have a data portion and a link 
portion. You can put any type of data that you want in the data portion, including 
pointers, structs, classes, or the more common ordinal types. However, for the link 
portion of the node, you must only create variables that will be used as links to other 
nodes. Here in the basic design of the linked list node, we created a single link that 
links to the next node in the list. In future articles, we will expand on this idea and 
add more links for more complex data structures. 
 
In the meantime however, we need to discuss some of the basic operations that you 
can perform on linked lists. 
 
Node Allocation 
 
List nodes are created on demand. When data needs to be inserted, a new list node 
must be allocated to hold it. The malloc() function presented earlier is the basis for 
this allocation. The statement 
 

newPtr = (node_ptr)malloc(sizeof(node_t)); 
 

or 
 

newPtr = (node_t*)malloc(sizeof(node_t)); 

 
allocates our new node. Assuming that malloc() does not return NULL, we may now 
begin to assign the data portion of our node with values. Here’s a quick example, 
using the coordinate node defined earlier: 
 

newPtr->x = 10; 

 
Now that we have the basis for allocating nodes, we create a function that will 
encapsulate all of the node allocation functionality into one block of code. 
 

node_t* Allocate() 
{ 
 node_t *newNode;  // our new node 
 
 // request memory for our node 
 newNode = (node_t*)malloc(sizeof(node_t)); 
 
 // error checking 
 if (newNode == NULL) 
  printf("Error: Unable to allocate new node.\n"); 
 else 
  newNode->next = NULL; // allocation succeeded, set the next 
link to NULL 
 
 return newNode; 
} 

 

There we have our basic node allocation function. We use this function like so: 
 

node_t *myNode; 
myNode = Allocate(); 
 

Despite the fact that the function Allocate() prints out an error message if the 
pointer is NULL, we should still verify that myNode is not NULL before trying to use 
it. Should this be the case, you may now use the data portion of the node and fill it 
with values. 



Initialization 
 
Initialization of a linked list is very quick and easy. We simply assign the value of 
NULL to the head of the list. This function only needs to be called once, and some of 
you may choose to not even bother. However, for the sake of this article, we will use 
it. 
 

void Initialize(node_t **ptr) 
{ 
 *ptr = NULL; 
} 

  

Using the definition of head given earlier, you would call this function as 
 

Initialize(&head); 

 
 

Node Insertion – Unsorted 
 
We will now cover how to insert freshly allocated nodes into a linked list. Let’s take a 
step back for a moment and consider insertion into an array. When using an array, 
you would typically add data to the end of the array, unless the data was sorted, in 
which case you would insert the data using some other method. We could do the 
same for an unsorted linked list, but this would require finding the last node because 
only the next to last node “knows” where the last node is located in memory. 
However, the head of the linked list points to the first node in the list, so a new node 
can be inserted at the front of the list without any extra work. You can see the steps 
of inserting three nodes into a linked list in Figure 1.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
And now the code: 
 

void InsertFront(node_t **head, node_t newRecord) 
{ 
 node_t*  newNode;  // pointer to a new node 
 newNode = Allocate(); 
 
 if (newNode == NULL) 
 { 
  printf("Error: Not enough memory to allocate node.\n"); 
  return; 
 } 
 
 // fill the node with data 
 newNode->id = newRecord.id; 
 
 // insert at the front of the list 
 newNode->next = *head; 
 
 // move the head of the list to the new node 
 *head = newNode;  
} 

 
To try to sum up this function in English: a new node is allocated and its data is 
filled; the new node’s next field is set to point to the head node; the head is then 
reset to point to the new node. This function also works if the list is empty (*head = 
NULL) since we want the list to be NULL-terminated. 
 



Linked List Traversal 
 
In order to access each node in the list for data processing, we need to create a 
function that will traverse the list. There are several different uses for list traversal, 
including printing, searching, data manipulation, etc. Regardless of the use, you 
must traverse your list in order to really do anything useful with this data structure. 
 
In this example, we will create a function called DisplayList that will display the x 
and y coordinates of every “enemy” in our list. 
 

void DisplayList(node_t *head) 
{ 
 node_t *current;  // our current node (position) 
 
 // begin at the head of the list 
 current = head; 
 
 // loop until done 
 while (current != NULL) 
 { 
  printf("ID = %d\n", current->id); 
  current = current->next; 
 } 
} 

 
 
Figure 1.4 shows the visualization for list traversal. As you can see, we move the 
current pointer through each node of the list until it reaches the NULL link at the 
end. 
 

 
 
 
 



Searching 
 
Searching a linked list is very much like the traversal algorithm just described. The 
only real difference is that as you go to each node in the list, you compare the data 
in the node to the “key” data that you are searching for. In this example, I will show 
you the algorithm using an entire node record as the “key”, but keep in mind that 
this is not the only way to accomplish the search. I leave the other avenues of 
exploration to you. 
 
First, let’s see how to search the linked list visually by looking at Figure 1.5.  
 

 
 

As you can see, searching is in fact almost the same as traversing the list. In the 
code, the only real difference is an extra conditional statement for comparing the key 
node data with the current node’s data that will force the traversal loop to exit 
should the statement be true. Take a look at the function Find, which returns a 
pointer to a node. If Find returns NULL, then no matches were found.  
 
Keep in mind that this is a linear search, and that the linear search tends to be slow. 
This is the only way we can search this particular data structure because of the 
nature of the links. You can do more advanced searches on linked lists by adding 
more links and changing the nature of the linked list overall. We will get into that in 
a later article. In the meantime, here’s the Find code: 
 

node_t *Find(node_t *head, node_t keyRecord) 
{ 
 node_t *current; 
 bool found; 
 
 current = head; 
 found = false; 
 
 while ((current != NULL) && (!found)) 
 { 
  if (current->id == keyRecord.id) 
   found = true; 
  else 
   current = current->next; 
 } 
 
 return current; 
} 

 



Node Deletion 
 
We’re getting close to the end now, as it’s time to talk about node deletion. Node 
deletion is a little bit different compared to the other linked list functions in that you 
must think of all the special cases that may come up. If you don’t think of every 
special case, you might end up with severe memory leaks, crashes, or in the not-so-
bad case, just a program that refuses to delete the desired node. 
 
For all of the dynamic data structures we discuss in this series, we will need to go 
through and determine all the cases that will come up when deleting nodes for the 
data structure we discuss. So let’s begin by determining the cases involved in 
deleting nodes from a linked list. 
 
To start off, let’s discuss the simplest case: deletion of a node in the middle of the 
list. Let’s say we already know what data we want to delete, and we put it in a key 
node. The first thing we need to do is find the pointer to that node. To accomplish 
that, we use the Find function that we just created and call the found node current. 
The next thing we need to do is find the node that links to the node that was just 
found, which we will call previous. From here, we can now bypass the link to the 
current node by changing the previous node’s link to point to the current node’s 
link. This will “skip” the current node in the linked list chain, but we have not lost 
this memory since we still have the current pointer. Now that the linked list is 
intact, we can free the memory used by the current pointer. Take a look at Figure 
1.6 to see how this is done. 
 

 
 

Now we need to think about another potentially hazardous case of node deletion: the 
desired node is the first node in the list, but not the only node. In a case like this, all 
we need to do is set current to the head node, and then move the head pointer to 
the next node in the list. From there, we just free the current node pointer. Take a 
look at Figure 1.7 for a  better idea. 
 



 
 

That’s it. There are no more cases for deletion in a singly linked list. You do, 
however, need to put a verification that the desired node was in fact found, or you 
could run into some access violation problems. 
 
Here is our delete function: 
 

void DeleteNode(node_t **head, node_t keyRecord) 
{ 
 node_t *delNode;  // node to delete 
 node_t *previous;  // node before the deleted node 
   
 // find our node to delete 
 delNode = Find(*head, keyRecord); 
 
 // if desired record is not in the list, exit the function 
 if (delNode == NULL) 
 { 
  printf("Record not found.\n"); 
  return; 
 } 
 
 if (delNode == *head) 
 { 
  // first node in the list, but not the only node 
  // move the head to the second node in the list 
  *head = delNode->next; 
  free((void*)delNode); 
 } 
 else 
 { 
  // any other case 
  previous = *head; 
 
  // search through the list for the node before our deleted node 
  while (previous->next != delNode) 
  { 
   previous = previous->next; 
  } 
 
  // link the previous node to the node after our deleted node 
  previous->next = delNode->next; 
 
  if (delNode != NULL) 



  { 
   free((void*)delNode);// free the memory 
   delNode = NULL;  
  } 
 } 
} 

 

 
End Of File 
 
That concludes our “brief” introduction to the singly linked list. This particular data 
structure forms the basis for all of the data structures that we are going to discuss 
throughout the rest of the series. 
 
Now that we’ve gone through the important functions involving linked lists, next time 
we will discuss some of the abstract data types that can be derived and implemented 
using the base singly linked list. I will also briefly cover some derivations of singly 
linked lists such as circular linked lists, doubly linked lists, and a few other methods 
that you might want to experiment with on your own. 
 
Be sure to download the example code to get a good idea of how the linked lists are 
used. The program is very simple and just performs all of the functions on a list of 
integers. 
 
If you have any questions, suggestions, or comments, please email me at 
kevin@gamedev.net. 
 
 
Special thanks to Anne. 


