
Data Structure Series

 This series is actually something I started back when I was part of the
Sweet.Oblivion staff, but then some things happened and I was no longer able to
complete it. So now, after finally retrieving copies of the original articles, I’m going
to make a second attempt at a series of articles that cover step-by-step the design,
construction, and implementation of the most common data structures used in
software development today.

 I will start off the series by briefly introducing basic pointer concepts as well
as giving an introduction to our first data structure, linked lists. I will then begin to
explore more advanced data structures including, but not limited to stacks, queues,
binary trees, AVL trees, splay trees, B-trees, hashes, various types of priority queues
(aka heaps), graphs, and quite possibly some topics regarding algorithm analysis
and the design of several algorithms that utilize these data structures. I will also
make an effort to explain how each structure might be used in your game
development.

 The compiler of choice for this series is Microsoft Visual C++ 6, and both C
and C++ syntax will be used throughout. Also, since my example programs are to be
very simple and to the point, all of the programs will be using the console application
setup – basically an MS-DOS program.

 Now that you have the general idea of this series, let me warn you that this
series does have a chance of not being completed, but considering the general lack
of good tutorials and documents covering this material, I’ll do my best to follow
through with each part. I just cannot guarantee that between my personal life, work
on GameDev.net, and other issues that may arise in the future, that I will be able to
complete it. So with this in mind, let’s get on with the show.

Introduction to Linked ListsIntroduction to Linked Lists
Part 1

Before we can begin discussing any dynamic data structure, we need to verify that
you have a solid background on basic pointer operations.

A Quick Explanation

Dynamic memory is allocated from an area of memory known as the heap - a finite
supply of memory that can be accessed by the programmer. It is possible to deplete
all available memory from the stack or heap, since both are of some definite size
that is machine-dependent. A program uses stack memory when a function is called,
and this memory is released when the function exits. Allocation and deallocation of
stack memory is therefore automatic. This is, however, not the case for heap
memory, and the programmer must carefully manage the allocation and deallocation
of heap memory.

You could write a set of functions that can help you keep track of how much heap
memory you have allocated and how much is being used in the program, but that is
beyond the scope of this article and would be a good topic for another article. Such a
system could be used in resource management.

Allocating Memory

To use the memory allocation functions, <STDIO.H> must be included. Requesting
memory from the heap is accomplished through the malloc() function, which is
defined by this prototype:

void *malloc(size_t size);

The malloc() function returns a generic pointer to a chunk of memory containing
size bytes. Remember that you must typecast the generic pointer returned by
malloc() to the type of the pointer variable that is being allocated. If the heap is
full, and no memory is available for allocation, malloc() returns NULL.

Other functions include calloc() (also used for memory allocation of an array) and
realloc() (used to increase or decrease the size of a chunk of memory previously
allocated). For our purposes, we will use malloc() and free(), which frees the
memory that has been allocated for the pointer that is passed as free()'s parameter.

Using Pointers

Now let’s get into some real implementation. Pointers are declared and dereferenced
using an asterisk; the variable itself, without the asterisk, refers to the actual
address of the first byte of the allocated memory. Remember, pointers contain as
their value an address to another variable. The dereferenced pointer actually points
to the value of a variable held in memory at the address indicated by the pointer.
The & character (the address of operator) is used to determine the address of a
variable.

Consider this fragment of code:

int i, *ptr1, *ptr2; // integer and 2 pointers to integers
i = 11; // get space for one integer and assign a value
ptr1 = (int *)malloc(sizeof(int)); // note the typecast to integer
*ptr1 = 43; // Use already allocated space
ptr2 = &i;
printf("i, *ptr1, and *ptr2 = %d, %d, %d\n", i, *ptr1, *ptr2);

This code outputs:

i, *ptr1, and *ptr2 = 11, 43, 11

Let’s run through the code very quickly. The first line declares one integer variable,
and two pointers to integers. The second line assigns the value of 11 to integer
variable i. Line three allocates memory for integer pointer ptr1. The fourth line
assigns the value of 43 to the memory location that has been allocated by ptr1. Line
five then sets the integer pointer ptr2’s address to the memory location occupied
by integer variable i. The last line then prints out the values of integer variable i, and
then the values being held in the memory locations pointed to by ptr1 and ptr2.

If you have trouble understanding that, be sure to read over it several times, or look
through a C/C++ book or tutorial on pointers. You need to have a solid
understanding of pointers before moving on from this point in the series.

The Linked List

Now that you understand basic pointer concepts, you may be asking yourself, “What
is this linked list thing?” Well, a linked list is a dynamic data structure consisting of
records (called nodes) that hold data and are “'linked” to each other by a method
determined by the programmer. The most common linking method is through
pointers (addresses), such that each record contains the address of the next node in
the list in addition to the record’s regular data. The first node in the list, called the
head, is used as the list’s key identifier. You must always keep track of the head of
the list. Why? Because it is the starting point that will be used later to retrieve the
information that you have stored in the list. Lose the head, and you have lost the
entry point to the entire list, particularly in our implementation here of the singly
linked list. A list expands and shrinks (hence dynamic data structure) as data is
added and deleted, allowing the list to accommodate an arbitrary number of
elements. Compare this concept to the allocation of an array, which remains the
same size during its lifetime. Figure 1.1 shows a visual example of a singly linked
list, which we will be discussing throughout this article.

A linked list is a linear data structure. All operations on the list must begin by
accessing the first node on the list, then the second node, then the third node, etc.
Compared to arrays, this sequential access can be a significant performance
drawback. Arrays can be accessed randomly – ever hear of the binary search
algorithm? A linked list node can only be accessed after all preceding nodes have
been accessed; this results in slower searching algorithms. There are, however, ways
around this by manipulating and modifying the structure of the basic linked list that
has been described here. We will explore these in a later part of the series.

The main advantage of linked lists is their dynamic nature. A list can grow to be
quite big with dynamic allocation. New nodes can be added in between existing
nodes with a few simple pointer manipulations, and deletions may be performed with
a call to free() and some pointer redirection.

Some of the operations that we will be covering on the basic linked list include:

• List initialization
• Search
• Create a new node
• Node insertion
• Node deletion
• List traversal

Linked List Node Design

Now we will discuss the design of the node that can be used in your linked list
implementations. The data placed inside a node is dependent upon the application of
the list. For instance, let’s say that you would like to use a linked list to keep track of
the enemy ships that are currently alive and flying around in your space shooter.
There are several ways to represent enemy ships with your nodes, but for the sake
of simplicity, we will let each node hold the x and y coordinate of the ship on the
screen.

In this example, we will create a struct to package the data.

typedef struct node
{
 int x, y; // x and y coordinate
 struct node *next; // pointer (“link”) to the next node
} node_t;

There we have our basic node structure with the type defined as node_t. Note that
you specify struct node *next; because it is a pointer to an incomplete type. The
following code demonstrates how we can use this type to declare our variables.

node_t nodeRec; // a single node

node_t *head; // head node of a linked list

typedef node_t *node_ptr; // create a node pointer type

node_ptr head; // head node of a linked list

The first declaration, node_t nodeRec, declares a variable of the node structure.
You can’t really use this for your linked lists.

The second declaration, node_t *head, is what we’re looking for. This declares a
node pointer that we will use for the head of the linked list.

The third and fourth declarations are fairly self-explanatory. They create a new
pointer type that allows for better code readability, and then declare the head of the
linked list using this new pointer type.

Also keep in mind that the second and fourth lines are equivalent.

In Figure 1.2, you can see the visual representation of a single node. We will use this
representation throughout the series for all the nodes in all the data structures we
explore. The node has a data area, where all the node’s information is stored, as well
as a link area, where the links to other nodes are defined.

When designing nodes, keep in mind that nodes have a data portion and a link
portion. You can put any type of data that you want in the data portion, including
pointers, structs, classes, or the more common ordinal types. However, for the link
portion of the node, you must only create variables that will be used as links to other
nodes. Here in the basic design of the linked list node, we created a single link that
links to the next node in the list. In future articles, we will expand on this idea and
add more links for more complex data structures.

In the meantime however, we need to discuss some of the basic operations that you
can perform on linked lists.

Node Allocation

List nodes are created on demand. When data needs to be inserted, a new list node
must be allocated to hold it. The malloc() function presented earlier is the basis for
this allocation. The statement

newPtr = (node_ptr)malloc(sizeof(node_t));

or

newPtr = (node_t*)malloc(sizeof(node_t));

allocates our new node. Assuming that malloc() does not return NULL, we may now
begin to assign the data portion of our node with values. Here’s a quick example,
using the coordinate node defined earlier:

newPtr->x = 10;

Now that we have the basis for allocating nodes, we create a function that will
encapsulate all of the node allocation functionality into one block of code.

node_t* Allocate()
{
 node_t *newNode; // our new node

 // request memory for our node
 newNode = (node_t*)malloc(sizeof(node_t));

 // error checking
 if (newNode == NULL)
 printf("Error: Unable to allocate new node.\n");
 else
 newNode->next = NULL; // allocation succeeded, set the next
link to NULL

 return newNode;
}

There we have our basic node allocation function. We use this function like so:

node_t *myNode;
myNode = Allocate();

Despite the fact that the function Allocate() prints out an error message if the
pointer is NULL, we should still verify that myNode is not NULL before trying to use
it. Should this be the case, you may now use the data portion of the node and fill it
with values.

Initialization

Initialization of a linked list is very quick and easy. We simply assign the value of
NULL to the head of the list. This function only needs to be called once, and some of
you may choose to not even bother. However, for the sake of this article, we will use
it.

void Initialize(node_t **ptr)
{
 *ptr = NULL;
}

Using the definition of head given earlier, you would call this function as

Initialize(&head);

Node Insertion – Unsorted

We will now cover how to insert freshly allocated nodes into a linked list. Let’s take a
step back for a moment and consider insertion into an array. When using an array,
you would typically add data to the end of the array, unless the data was sorted, in
which case you would insert the data using some other method. We could do the
same for an unsorted linked list, but this would require finding the last node because
only the next to last node “knows” where the last node is located in memory.
However, the head of the linked list points to the first node in the list, so a new node
can be inserted at the front of the list without any extra work. You can see the steps
of inserting three nodes into a linked list in Figure 1.3.

And now the code:

void InsertFront(node_t **head, node_t newRecord)
{
 node_t* newNode; // pointer to a new node
 newNode = Allocate();

 if (newNode == NULL)
 {
 printf("Error: Not enough memory to allocate node.\n");
 return;
 }

 // fill the node with data
 newNode->id = newRecord.id;

 // insert at the front of the list
 newNode->next = *head;

 // move the head of the list to the new node
 *head = newNode;
}

To try to sum up this function in English: a new node is allocated and its data is
filled; the new node’s next field is set to point to the head node; the head is then
reset to point to the new node. This function also works if the list is empty (*head =
NULL) since we want the list to be NULL-terminated.

Linked List Traversal

In order to access each node in the list for data processing, we need to create a
function that will traverse the list. There are several different uses for list traversal,
including printing, searching, data manipulation, etc. Regardless of the use, you
must traverse your list in order to really do anything useful with this data structure.

In this example, we will create a function called DisplayList that will display the x
and y coordinates of every “enemy” in our list.

void DisplayList(node_t *head)
{
 node_t *current; // our current node (position)

 // begin at the head of the list
 current = head;

 // loop until done
 while (current != NULL)
 {
 printf("ID = %d\n", current->id);
 current = current->next;
 }
}

Figure 1.4 shows the visualization for list traversal. As you can see, we move the
current pointer through each node of the list until it reaches the NULL link at the
end.

Searching

Searching a linked list is very much like the traversal algorithm just described. The
only real difference is that as you go to each node in the list, you compare the data
in the node to the “key” data that you are searching for. In this example, I will show
you the algorithm using an entire node record as the “key”, but keep in mind that
this is not the only way to accomplish the search. I leave the other avenues of
exploration to you.

First, let’s see how to search the linked list visually by looking at Figure 1.5.

As you can see, searching is in fact almost the same as traversing the list. In the
code, the only real difference is an extra conditional statement for comparing the key
node data with the current node’s data that will force the traversal loop to exit
should the statement be true. Take a look at the function Find, which returns a
pointer to a node. If Find returns NULL, then no matches were found.

Keep in mind that this is a linear search, and that the linear search tends to be slow.
This is the only way we can search this particular data structure because of the
nature of the links. You can do more advanced searches on linked lists by adding
more links and changing the nature of the linked list overall. We will get into that in
a later article. In the meantime, here’s the Find code:

node_t *Find(node_t *head, node_t keyRecord)
{
 node_t *current;
 bool found;

 current = head;
 found = false;

 while ((current != NULL) && (!found))
 {
 if (current->id == keyRecord.id)
 found = true;
 else
 current = current->next;
 }

 return current;
}

Node Deletion

We’re getting close to the end now, as it’s time to talk about node deletion. Node
deletion is a little bit different compared to the other linked list functions in that you
must think of all the special cases that may come up. If you don’t think of every
special case, you might end up with severe memory leaks, crashes, or in the not-so-
bad case, just a program that refuses to delete the desired node.

For all of the dynamic data structures we discuss in this series, we will need to go
through and determine all the cases that will come up when deleting nodes for the
data structure we discuss. So let’s begin by determining the cases involved in
deleting nodes from a linked list.

To start off, let’s discuss the simplest case: deletion of a node in the middle of the
list. Let’s say we already know what data we want to delete, and we put it in a key
node. The first thing we need to do is find the pointer to that node. To accomplish
that, we use the Find function that we just created and call the found node current.
The next thing we need to do is find the node that links to the node that was just
found, which we will call previous. From here, we can now bypass the link to the
current node by changing the previous node’s link to point to the current node’s
link. This will “skip” the current node in the linked list chain, but we have not lost
this memory since we still have the current pointer. Now that the linked list is
intact, we can free the memory used by the current pointer. Take a look at Figure
1.6 to see how this is done.

Now we need to think about another potentially hazardous case of node deletion: the
desired node is the first node in the list, but not the only node. In a case like this, all
we need to do is set current to the head node, and then move the head pointer to
the next node in the list. From there, we just free the current node pointer. Take a
look at Figure 1.7 for a better idea.

That’s it. There are no more cases for deletion in a singly linked list. You do,
however, need to put a verification that the desired node was in fact found, or you
could run into some access violation problems.

Here is our delete function:

void DeleteNode(node_t **head, node_t keyRecord)
{
 node_t *delNode; // node to delete
 node_t *previous; // node before the deleted node

 // find our node to delete
 delNode = Find(*head, keyRecord);

 // if desired record is not in the list, exit the function
 if (delNode == NULL)
 {
 printf("Record not found.\n");
 return;
 }

 if (delNode == *head)
 {
 // first node in the list, but not the only node
 // move the head to the second node in the list
 *head = delNode->next;
 free((void*)delNode);
 }
 else
 {
 // any other case
 previous = *head;

 // search through the list for the node before our deleted node
 while (previous->next != delNode)
 {
 previous = previous->next;
 }

 // link the previous node to the node after our deleted node
 previous->next = delNode->next;

 if (delNode != NULL)

 {
 free((void*)delNode);// free the memory
 delNode = NULL;
 }
 }
}

End Of File

That concludes our “brief” introduction to the singly linked list. This particular data
structure forms the basis for all of the data structures that we are going to discuss
throughout the rest of the series.

Now that we’ve gone through the important functions involving linked lists, next time
we will discuss some of the abstract data types that can be derived and implemented
using the base singly linked list. I will also briefly cover some derivations of singly
linked lists such as circular linked lists, doubly linked lists, and a few other methods
that you might want to experiment with on your own.

Be sure to download the example code to get a good idea of how the linked lists are
used. The program is very simple and just performs all of the functions on a list of
integers.

If you have any questions, suggestions, or comments, please email me at
kevin@gamedev.net.

Special thanks to Anne.

