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The benefit of software documentation is compromised, and in its 
depreciated form introduces problems and risks to software delivery. And 
with time, these issues are exacerbated into organizational problems or 
crisis. I provide a solution for non-trivial software to improve two 
determinants to this benefit: model precision and structural integrity. To 
improve the precision of what is being delivered, my strategy is to prevent 
model deficit by describing an ontology that identifies orthogonal 
stakeholder groups, their assigned models and the maps between models. 
To enhance the integrity of software structures, my strategy is to prohibit 
structural deficiencies by defining a metamodel that derives software 
structures from composition. The metamodel uses behavior as a 
foundational concept and capabilities as fundamental elements. My 
approach is inspired by abstract mathematics where Category Theory is 
applied to the ontology and function composition is utilized in the 
metamodel. I extend the basic metamodel with additional and updated 
elements, including novel techniques with algorithmic elements, to support 
pragmatic applications of software architecture and engineering. 

rchMind

jayson.go@archmind.io
© 2025 ArchMind Corporation. All rights reserved



Software Product Model

2

Contents
1.  Introduction 5

1.1.  Solution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7

1.2.  Limitations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8

2.  Software Product 9

2.1.  Stakeholder Groups   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

2.1.1.  Primary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

2.1.2.  Other .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

3.  Ontology 12

3.1.  Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12

3.1.1.  Conceptual Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12

3.1.2.  Logical Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .13

3.1.3.  Physical Model   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14

3.2.  Maps .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

3.2.1.  Ideation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16

3.2.2.  Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16

3.2.3.  Engineering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17

4.  Metamodel 18

4.1.  Elements   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

4.2.  Mapping .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

4.2.1.  Activity and Feature   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

4.2.2.  Component Specification   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

4.2.3.  Interface Assignment   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  22

4.3.  Composition   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22



Software Product Model

3

4.3.1.  Functional  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  23

4.3.2.  Data Type  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24

4.3.3.  State  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25

4.4.  Structure   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26

4.4.1.  Capability Graph   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26

4.4.2.  Component Graph  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26

4.4.3.  Scoping   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27

5.  Ideation Extension 29

5.1.  Process .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29

5.2.  Result  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29

5.2.1.  Event  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

5.3.  Sequence   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30

5.4.  BPMN  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30

6.  Architecture Extension 32

6.1.  Quality .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33

6.2.  Benchmark  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33

6.3.  Environment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .34

6.4.  Tier   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .34

6.5.  Distribution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .35

7.  Engineering Extension 37

7.1.  Teaming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .37

7.1.1.  Person   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

7.1.2.  Role .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

7.1.3.  Team  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

7.1.4.  Steward   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38



Software Product Model

4

7.1.5.  Organization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

7.1.6.  Delivery Attributes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

7.2.  Versioning   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .39

7.3.  Standards  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

7.3.1.  Standard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .41

7.3.2.  Prototype   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42

7.3.3.  Matching .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42

7.3.4.  Application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  43

8.  Conclusion 44



Software Product Model

5

1.  Introduction

Software documentation is an essential documentation practice that enables various 
functions in a software delivery cycle. It has come to provide its audience with highly 
technical documents. But while its adamant focus on the logical and physical aspects of 
the software system has worked sufficiently for many organizations, its benefits are 
compromised because of deficiencies in and of its models. In software documentation, 
the absence of a usable model that informs or enforces the technical models causes 
imprecision, and such technical models are yielding weak software structures due to 
impaired dependencies.

Software delivery cycles can vary from one organization to another but it generally 
includes a delivery phase consisting of various functions such as implementation, 
governance or strategic planning. These functions rely heavily on complete and coherent 
documentation artifacts to fulfill their goals. When models are deficient, these functions 
can lead to incorrect implementation, flawed governance or poorly planned strategies. 
The deficiencies are caused by a deficit in models and structurally-weak software 
structures.

Model Deficit
Software documentation has a model deficit when it lacks a complete set of models. 

Every software has stakeholders and they can be grouped based on their orthogonal 
needs, concerns or interests. To appropriately represent their stake, to describe and 
share their ideas, models are assigned to stakeholder groups. When stakeholder-group-
assigned models are not included or but exists in low utility, stakeholder representation 
is diminished which can lead to missed requirements. This is especially true when the 
missing model precedes the technical models because its absence would prevent it from 
informing or enforcing the logical or physical models.

Structural Weakness
Software documentation produces structurally-weak software structures when it is 

based on impaired dependencies. The structure of software is a graph of its software 
components and its shape is determined by its relationships. Relationships are based on 
dependencies but they can be impaired when their validity is neglected or left 
unconfirmed. It is logically insufficient to simply imply or assume a dependency is valid 
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by its mere declaration; a common practice when ubiquitous boxes and line diagrams 
are drawn. Consider the following factors of validity when declaring a dependency:

 a. The dependent component may not have all the necessary ingredients to 
use the target component’s capability

 b. The target component may not at all contain the desired capability that the 
dependent component intends to use

 c. The dependent component may not have the necessary means to 
communicate with the target component’s interface

P
hy

si
ca

l M
od

el

Model deficit

missing Technical models

Structural weakness

Lo
gi

ca
l M

od
el

valid?

Figure 1. Overview of deficiencies.  Software documentation’s precision and integrity 
are negatively affected by model deficit and weak software structures.

Model deficit and structural weakness are deficiencies in software documentation 
and they result in imprecise and weak designs. It devalues the benefits of the practice 
especially during delivery. And, time is an exacerbating factor that amplifies the design 
imprecision or lack of structural integrity. Over periods of repeated updates, caused by 
for example changing requirements, these deficiencies turn into bigger problems that 
can lead to organizational crisis. Consider that assumptions (of dependency validity) in 
a earlier designs may become regarded as facts in later designs.
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1.1.  Solution
Given the deficiencies in software documentation, I propose a solution to the model 

deficit and weak-structures problems for a specific class of software. My strategy isolates 
to a type of non-trivial software to induce the primary stakeholder groups to be 
deterministic; as being finite and final. And, my approach is inspired by mathematical 
concepts that help to support my conclusions. The solution is named the Software 
Product Model which is a top-level model for software products which consists of an 
ontology and metamodel. 

MetamodelOntology

Software Product Model

Defines models and relationships Defines elements, relationships and rules

Figure 2. Overview of the Software Product Model.  The Software Product Model 
consists of an ontology and metamodel that aims to provide a complete set of models 
and high-integrity structures.

Software Product Ontology. The ontology provides meaning to the software product 
by defining the required models and their relationships. It requires the conceptual, 
logical and physical models and arranges them in a chain according to their 
dependencies. Consequently, two maps are also defined by the ontology. The 
conceptual-to-logical map is named Architecture and the logical-to-physical map is 
named Engineering. With a mathematical approach, I loosely apply Category Theory by 
treating the software product as a category (Stanford University, 1996), the models as 
objects within the category and the maps, Architecture and Engineering, as the 
morphisms. Math can be regarded as the logical study of how logical things work 
(Cheng, 2018). By defining a complete set of models, the model deficit is removed and 
technical models become dependent to the conceptual model.

Software Product Metamodel.  The metamodel defines elements and attributes, and 
their elemental relationships across all models. Behavior is the foundational concept of 
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the metamodel and it is represented logically by a fundamental element called the 
Capability. Capabilities are functional, composable and stateful by emulating 
mathematical and programming concepts. It is like a mathematical function that can 
accept inputs, produce outputs or compose with other capabilities. A capability is also 
like a software program that executes in a software environment where state is able to 
be durable and persist beyond execution. Finally, the composable trait of capabilities 
allows it to derive dependencies, and from dependencies derive a structure. The 
derivation process provides dependency validity because composition is input- and 
output-aware. The metamodel also introduces a novel element that can compute or 
expand structures.

A complete set of related and enforced models, and a metamodel that can derive 
structurally strong software structures will solve the deficiencies in software 
documentation. However, in its basic form, the metamodel is not practical enough for 
any organizational need. To complete the solution, I allow the metamodel to be 
extensible with new elements, relationships or attributes. I constrain extensibility to 
only within the maps to avoid unnecessary extensions. As a result, in this paper, I also 
provide metamodel extensions to enable pragmatic applications of ideation, software 
architecture and engineering. Section 5 covers ideation extensions that enable better 
definitions of business processes. Section 6 covers the architectural extensions that 
enable quality and distributive designs, and Section 7 covers the engineering extensions 
that enable teaming, versioning and standards. 

1.2.  Limitations
The solution is limited by the lack of bespoke tooling. The Software Product Model as 

a comprehensive documentation solution partly requires computations, whereas other 
documentation practices do not. Today’s tools used for software documentation are 
optimized for drawing and diagramming. The model solution requires computation to 
derive dependencies from composition, quality benchmarks and behavioral distribution 
with tiers and capability distribution. At the general period of publication of this paper, 
there are no known tools that provide any of the necessary computational features. 
Therefore, the implementation of the Software Product Model will be inefficient until 
sufficient tooling is available.
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2.  Software Product

Software can be bi-classified as being trivial or non-trivial based on factors such as 
complexity and utility. Alternatively, the number of stakeholder groups aggregates those 
factors and can be used as a single basis for the classification. The number of 
stakeholder groups is subject to increase if the software becomes more complex because 
it may require more people or teams to support its construction or maintenance. 
Similarly, the number can also grow if the software becomes more useful because more 
people or teams may want to use, monetize or procure it. Therefore, as the number of 
stakeholder groups increase, software becomes less trivial.

A Software Product is a type of non-trivial software with exactly three stakeholder 
groups: owners, architects and engineers. The product moniker refers to software that 
provides ample value to warrant the expenditure of time, money or other resources. It 
implies that the software must have sufficient utility and complexity. The utility of the 
software indicates that it is useful to people solving a real-world problem, and its 
complexity asserts that there is sufficient interest in its design and specification. The 
software product is conceptually similar to Brooks’ (1995) definition of a programming 
product as something that is run, tested, repaired and extended.

2.1.  Stakeholder Groups
Stakeholders are people who have interests or concerns of or about software. An 

inherent stakeholder might be the developer who creates the software. A Hello World
program, for example, is a type of trivial software that only has the developer as the sole 
stakeholder. Alternatively, non-trivial software will have additional stakeholders. 
Stakeholders can be grouped according to their orthogonal needs, interests or concerns 
to construct an abstract set of stakeholders. Stakeholders are important because they 
drive the whole shape and direction of architecture (Rozanski and Woods, 2016), 
described as the map between the conceptual and logical models (Section 3.2.2).
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2.1.1.  Primary
A software product has three primary, orthogonal stakeholder groups that directly 

resemble the stakeholders discussed in Zachman’s article (Zachman, 2000) about 
software models. However, I use the term architect instead of designer, and engineer 
instead of builder to better align with the concept of maps (Section 3.2).

 Owner.  Owners provide the idea or concept of the software product according to 
some real-world problem that needs to be solved. They produce design-ready 
information.

 Software Architect.  Architects design the behavior and structure of the software 
product according to the owner’s concept. They produce engineering-ready 
information

 Software Engineer.  Engineers specify the materials needed to satisfy the 
architect’s design. They produce highly-engineered, delivery-ready information

There is an implied dependency between stakeholder groups. The architect depends 
on the owner for the concept, and the engineer depends on the architect for the design. 
Consequently, the stakeholder group dependencies also imply informational 
dependencies.

Physical Model

Logical Model

Conceptual Model

Owner

owns

owns
uses

uses

owns

various uses
from other 
stakeholders

informs, enforces

informs, enforces

Architect Engineer

Figure 3. Overview of stakeholder groups.  The models of the Software Product 
Model consists of three stakeholder-assigned models with dependencies between them.
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2.1.2.  Other
The software product can also have other stakeholder groups where their interests 

are not directed at the various functions of documentation but rather at its completed 
form. Secondary stakeholder groups are consumers of the final software product model. 
In implementation, these may be the development team consisting of developers, 
testers, planners and managers who uses the documentation to build, test, schedule and 
staff for the software product. In governance, stakeholder groups may be the governance 
board consisting of enterprise architects, board members, or facilitators who uses the 
final document to assess value, risk and alignment to standards. Finally, in planning, 
stakeholder groups may be an enterprise architecture practice consisting of organization 
leaders, enterprise architects and program managers who uses the documentation to 
rationalize capabilities and create multi-year plans. Implementation, governance and 
planning are the focal delivery functions covered in the software engineering extensions 
in Section 7.
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3.  Ontology

The Software Product Model consists of an ontology for software products. It defines 
a software product according to its models and model relationships. Given that there are 
three orthogonal stakeholder groups in a software product, it is logical to conclude that 
there must also be three models where each model is assigned to each stakeholder 
group. And because of the dependency between stakeholder groups, then there must 
also be two maps that relate one model to the other. Figure 4 provides an overview of 
the models and maps.

3.1.  Models
The ontology contains three models called the Conceptual Model, Logical Model and 

Physical Model. The models are named according to Zachman (2000) and conveys the 
intent behind each model. The conceptual, logical and physical models aggregate and 
organize information to represent the owner’s idea, the architect’s design and the 
engineer’s specifications, respectively. 

3.1.1.  Conceptual Model
The Conceptual Model is the first model in the ontology and it holds the idea or 

concept of the software product. It has two primary audiences: the owner that owns it 
and the architect that uses it. From the owner perspective, the conceptual model 
rationalizes the problem being solved. It describes a technology-agnostic solution to the 
problem that includes the activities and processes that need to produce the desired 
outcomes. Owners are responsible for the conceptual model.

Architects are users of the conceptual model. From their perspective, the conceptual 
model provides activities that describe some unit of behavior relative to the software 
product. It describes an activity as an action being performed by an actor. The model 
presents a collaborative opportunity between owner and architect that provides clarity 
to the activities, where necessary. It identifies which activities need digital enablement 
or automation. Digitally-enabled activities are described as features in the logical model. 

Key Models.  The conceptual model consists of sub-models that represent types of 
information that are important in describing a conceptual solution or idea.
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 Activity.  An Activity models an action that is performed by an Actor in the context 
of the software product.

 Action.  An Action is a label given to the execution of an activity. It is performed by 
an Actor.

 Actor.  An Actor models a self-initiated entity that performs an Action on an 
Activity. It can represent the primary or target consumer of the software product. 
Actors, while historically representative of people, describe various self-activating 
entities such as people or roles, software, sensors or time.

3.1.2.  Logical Model
The Logical Model is the intermediate model in the ontology and it provides the 

behavioral and structural design of the software product. It has two audiences: the 
architect who owns it and the engineer that uses it. From the architect perspective, the 
logical model defines the software product by its behavior and structure. It describes 
behavior at a product level called features and at a component level called capabilities. It 
also describes component structure from the composition of capabilities (Section 4.3). 
Architects are responsible for the logical model.

Engineers are the users of the logical model. From their perspective, the logical 
model provides capabilities and components. Capabilities are units of software behavior 
that require methods of interaction. Interfaces are interaction methods assigned to 
capabilities in the physical model. Components are abstract representations of software 
that require specification. Specialized components, software, are also described in the 
physical model.

Key Models.  The logical model consists of sub-models that represent types of 
information that are important in describing behavior and structure.

 Feature.  A Feature models a single behavior of the software product in the context 
of an activity. It is essentially the digitally-enabled version of an activity.

 Capability.  A Capability models a unit of behavior of a software component. It 
represents the potential work that software and the underlying machine can perform 
when invoked.
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 Component.  A Component models a container and server of a capability. It 
abstractly represents a parcel of software.

The logical model includes basic concepts of features, capabilities and components 
which are captured in the metamodel (Section 4). It also includes concepts that describe 
quality, benchmarks, tiers and distribution as metamodel extensions for architecture 
(Section 6).

3.1.3.  Physical Model
The Physical Model is the final model in the ontology and it details software 

specifications of the software product. It has at least one audience: the engineer that 
owns it. Other audiences for the physical model can vary but may include delivery-
oriented stakeholder groups such as development teams for implementation, board 
members for governance and enterprise architects for planning. From the engineer 
perspective, the physical model provides specialized components and interfaces 
assigned to capabilities. The combination of structure (from the logical model), 
specialized components and the communication protocols from interfaces is an 
engineering plan called a blueprint. A blueprint is the physical model in its final form; a 
delivery-ready model. The engineer is responsible for the physical model. 

From a delivery-stakeholder perspective, the physical model provides a variety of 
information about software. It describes software in terms of its specifications, providers 
and system. Software specifications describe build and runtime information and 
providers describe platforms and infrastructure for software. And, software systems 
describe dependencies between software including their methods of interaction. 
Delivery-oriented stakeholder groups are users of the physical model.

Key Models.  The physical model consists of sub-models that represent types of 
information that are important in delivering the software product.

 Software Component.  A Software Component models software of various types. 
It represents software that is distributable and invocable. Examples of software 
components are scripts, libraries, executables or container images.
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 Provider.  A Provider models a type of software that enables a software component 
by invocation or similar methods. It is the platform that the software component 
runs on. Providers can be hierarchically be enabled by other providers.

 Interface.  An Interface models the method of interaction with a capability. It 
represents the rules for interaction including the transfer of information or 
invocation. Examples of interfaces are user interfaces, APIs and network protocols 
such as HTTP.

The physical model includes basic concepts of software components, providers and 
interfaces which are captured in the metamodel (Section 4). It also includes practical 
concepts of teams, builds captured as metamodel extensions (Section 7).

3.2.  Maps
The dependency between stakeholder groups further defines a similar dependency 

between their assigned models. Stakeholder groups capture their information into a 
model and other stakeholder groups use such model as basis for theirs. Therefore, the 
logical model is dependent on the conceptual model, and the physical model is 
dependent on the logical model. A mapping is used to inform the next model and 
enforce coherence.

Physical ModelLogical ModelConceptual Model
depends on

maps tocreates maps to

depends on

“Architecture”“Ideation” “Engineering”

Figure 4. Overview of maps.  The models are arranged in a chain according to their 
dependencies with named maps between them. Ideation is a pseudo-map that initially 
creates the conceptual model.

The ontology contains two, model-to-model maps called Architecture and 
Engineering. The Architecture-named map relates the conceptual model to the logical 
model, and the Engineering-named map relates the logical model to the physical model. 
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They are named according to the stakeholder group responsible for its tasks. An initial, 
pseudo-map called Ideation is a creational step that does not have a preceding model.

3.2.1.  Ideation
Ideation is not a model-to-model map but is nonetheless a creational process similar 

to the architecture and engineering maps. It is the initial step that creates the conceptual 
model. Although it is not explicitly preceded by another model from which it maps from, 
it is a human-to-model map. Concepts or ideas originating from the human mind are 
more or less mapped to the conceptual model during the ideation process. It is a 
pseudo-map that translates those ideas from the owner into the conceptual model. 
Practically, many ideas are pre-recorded externally from the software product model. 
Requirements can exist in artifacts such as documents and spreadsheets or within issue-
tracking tools. So, ideation may also refer to the oft translation of other sources into the 
conceptual model. The business process extension related to this pseudo-map is covered 
in Section 5.

3.2.2.  Architecture
The first map is called Architecture and it relates the conceptual model to the logical 

model. Because the logical model is owned by the architect, so too are its tasks 
associated with this map; thus named Architecture. Architecture is an essential map that 
provides the logical model with information necessary to output software structure 
according to conceptual requirements.

Architecture maps the activities from the conceptual model to software features in 
the logical model. Not every activity requires a corresponding feature because they may 
be temporarily or permanently manual. If an activity is indeed mapped to a feature, the 
activity is deemed software-enabled. A feature is a unit of behavior of the software 
product by referring to an isolated structure of components. After engineering, the 
structure becomes a software systems, therefore, at its completion, an activity that is 
mapped to a feature is essentially represented by a bespoke software system that 
behaves according to the activity.

While mapping an activity to a feature leads to a software structure, the intended 
behavior of the feature is not the only factor for the structure. Quality is also a 
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determinant for structure that defines a minimum performance metric for the activity 
and feature. Unlike a feature where the structure itself is direct proof of its existence, the 
existence of quality is proven by quantitative or qualitative aspects about the structure. 
That, to achieve a given quality, the structure must be modified while maintaining the 
intended desired behavior. The metamodel is extended to include quality and 
benchmarks (Section 6.1).

3.2.3.  Engineering
The second and final map is called Engineering and it relates the logical model to the 

physical model. Similarly to Architecture, because the physical model is owned by the 
engineer, so too are its tasks. Engineering is also an important map because it provides 
capabilities, components and structure necessary for the engineering tasks.

Engineering maps each component in the logical model to a fully-specified software 
component in the physical model. A software component is a type of distributable 
software that can be programmed or configured to satisfy the intended behavior of the 
capability. Thus, a software component is also a container and servicer of capabilities.

Each software component is coupled to a provider that enables or activates it during 
engineering. A software component and provider share a common integration method 
that allow for activation. Providers are hierarchical where one provider can be the 
provider to another. 

Engineering also maps capabilities to one or more interfaces. An interface describes 
the method of interaction with the capability. Some interfaces describe a user interface 
that further describes some user-to-machine interaction, while other interfaces describe 
a protocol that define connectivity and data structure rules. 

At a basic level, engineering is the specialization of components (a.k.a. software), 
providers and interfaces. The component specifications required are determined by the 
intended usage of the documentation which can vary from one organization to another. 
In delivery, implementation may require build information such as language and 
runtime, or teaming information such people and their roles. For strategic planning, 
which employ various reporting methods, may require lifecycle status (e.g., invest, 
maintain, retire) or application portfolio information.
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4.  Metamodel

The Software Product Model consists of a metamodel for software products. It is an 
expression of the ontology and of its models in a schematic form. It contains elemental 
forms of the concepts from the conceptual, logical and physical models.

4.1.  Elements
The metamodel consists of related elements that represent concepts from the 

conceptual, logical and physical models described by the ontology (Section 3).

 Activity.  The Activity element describes an action performed in the context of the 
software product. It is performed by an Actor, optionally produces a Result and can 
be sequenced with other activities as a Process. The activity represents a conceptual 
model.

 Actor.  The Actor element describes a real-world concept or object. It is a self-
initiated element that is a catalyst of behavior. Historically, actors represented 
people evidenced by the human stick figure shape chosen by UML (x, x). Beyond 
people, actors can also be software, sensors, time or Events. An actor can be 
represented by a Capability. The actor represents a conceptual model.

 Capability.  The Capability is a fundamental element in the metamodel that 
describes a unit of behavior in software. It accepts input and produces output of a set 
of named Types and optionally persist its output in its serving Component. The 
output of a capability, or the capability itself, can be used as input to another 
capability; a process called composition (Section 4.3). A capability is made available 
by a set of Interfaces. A set of capabilities, usually in composition, are captured as a 
Feature. A capability can represent an Actor. The capability represents a logical 
model.

 Component.  The Component element describes a type of distributable software 
such as scripts, libraries, executables or container images. It serves a set of 
Capabilities. The component represents a logical model.
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 Feature.  The Feature element is the digital enablement of an Activity and it 
consists of a set of capabilities. It describes a unit of software product behavior which 
it aggregates from its capabilities. The feature represents a logical model.

 Interface.  The Interface element describes a method of interaction with a 
Capability. An interface can expose a capability in to a variety of mediums including 
peripherals, screens or software. Software interfaces are governed by a protocol that 
provides connectivity and data structure rules. The interface represents a physical 
model.

 Provider.  The Provider element describes a type of (software) Component that 
enables another a component. Because it itself is also a component, then it is also 

Actor

Activity

Feature

Capability

Component

Interface

Data Type

Provider

exposes

uses

enables

enables

performs

represents

enables

hascomposes 
with

serves

Figure 5. Overview of elements.  The metamodel consists of related elements that 
represent concepts from the span of models.
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enabled by another provider. Thus, providers are naturally hierarchical. The 
provider represents a physical model.

 Data Type.  The Data Type element refers to a class of information and describes 
data that is used as input or output of a Capability. A type can be defined as scalar or 
complex where a complex type consists of typed properties. The data type represents 
a logical model.

4.2.  Mapping
The ontology defines two maps, conceptual-to-logical (Architecture) and logical-to-

physical (Engineering), which have to be accounted for in the metamodel. The transition 
from conceptual to logical elements is creational, and from logical to physical is both 
creational and attributional. Specifically, to transition from conceptual to logical 
requires the creation of a Feature, and from logical to physical requires the creation of 
Interfaces and attribution to the Component.

4.2.1.  Activity and Feature
An activity is digitally-enabled when it is related to a feature. An activity in the 

conceptual model is the relationship between an actor and the activity. And, a feature in 
the logical model is a set of capabilities. Mapping is accomplished by representing each 
actor and activity as a capability in the feature.

In this mapping, both actor and activity become related capabilities. The actor-
based-capability has a dependency to the activity-based-capability and forms an initial 
but loose composition (Section 4.3). The root capability is one that was mapped from 
the actor, and it is valid because actors are self-initiated. Inversely, a composition of 
capabilities where the root capability is not from an actor is a composition that is forever 
inert, and thus, provides little or no value. Instead, when an actor activates, it signals the 
activation of the composition.
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4.2.2.  Component Specification
A component in the logical model is an abstraction of software where details are not 

yet revealed or known, whereas, the same component in the physical model is a 
specialized component with software specifications. Specification is achieved by 
component attribution, the addition of software-related properties to the component. 
The revelation of software properties (attributes) to the component enables further 
specification of its provider.

Attributes:
- Software attribute 1
- Software attribute 2
…
- Software attribute n

Physical modelLogical model

maps with

Figure 6. Specialization of a component.  Component attribution or specification 
accepts attributes to specify software-related properties. A specialized component is also 
called software.

Component Provider
serves

Component

performs

enables

has

maps to

Conceptual model Logical model

depends

Figure 7. Creation of a feature.  A feature is created from an activity by creating two 
capabilities that represent the actor and activity.

Capabilityactor Capabilityactivity

FeatureActor

Activity
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4.2.3.  Interface Assignment
Capabilities in the logical model are related to a set of interfaces in the physical 

model. An interface describes a method of interaction with the capability. Two common 
types of interfaces are the user interface and the communication protocol. A user 
interface is a type of interface that enables for a person-to-software interaction. A 
protocol is an abstraction of type of interface that provides software-to-software 
communication. Familiar examples of protocol subtypes are TCP, UDP, HTTP and 
Kafka.

The assignment of an interface to a capability has implications to the component 
assigned to that capability. That by assigning an interface to a capability, the component 
bears the responsibility of exposing the interface type. Additionally, a component may 
explicitly prescribe a set of available interfaces which leads to the ability for interface 
verification. That, if the difference between the set of available of interfaces and the set 
of capability interfaces is the empty set, then the capability is valid (and supportable). 

4.3.  Composition
Software behavior is divisible into smaller behaviors and performed for various 

practical reasons. It is not sufficient for behavior to just be decomposable because as 
when its broken into smaller parts they must be put back together. Therefore, behavior 
must also be composable. That, decomposition and composition is an essential pairing. 
Several reasons may drive the practice of decomposition and composition.

 Complexity.  The complexity of software behavior may warrant its decomposition 
into smaller, simpler behaviors. That, when a [behavior] grows it becomes unwieldy 
(Evans, 2003).

 Utility.  A sub-behavior may be identified as being useful to other behaviors that 
warrants its isolation to become reusable.

 Organization.  The teams of people collectively chartered to deliver the software 
product may warrant its inherent decomposition to reflect their communication 
structures, as a reinterpretation of Conway’s Law (Conway, 1968).

The Capability is the element in the metamodel that describes a unit of (software) 
behavior and it is composable. The composition of capabilities uses a combination of 



Software Product Model

23Metamodel

two methods, functional composition and statefulness, that together achieves the 
representation of behavior composition in software. Because capabilities represent a 
unit of behavior, then their composition essentially represent an aggregate of behaviors. 
The aggregation of behavior is a unit of software product’s behavior which is 
represented by a Feature.

4.3.1.  Functional
The functional aspect of a capability draws from its functional composition ability 

and its emulation of a function. In mathematics, function composition is the process of 
applying one function to another to create a new function (Judson, 2012). This is 
popularly expressed with the following example:

The definition of creating new a function from composed functions is important to 
note but is, however, less useful in the context of capability composition because of its 
destructive nature. By creating a new function, it abstracts (hides) the constituent 
functions and if the concept is applied to capabilities, then it would also hide the 
capabilities. The preservation of capabilities is important for deriving structures 
(Section 4.4).

Functional composition can be regarded in a non-destructive way. Alternatively, 
function composition can be defined as the usage of the range of the first function as the 
domain to the second function. That is, the output of one function can be used as the 
input to another (Khan Academy). This definition is useful in two ways. First, it 
preserves the functions and secondly, it formalizes the use of variables.

Given functions f and g
Then g o f → h
where h is a new function that applies f to g

Figure 8. Composition with abstraction.  The composition of two functions is when 
one function is applied to the other to create a new function. The constituent functions 
are abstracted (hidden) away.
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The concept of function composition is applied to capabilities where a capability is 
defined like a function where it can receive input and produce an output. A capability is 
attributed with input and output properties. However, mathematical functions differ 
from software capabilities in terms of (data) types and state.

4.3.2.  Data Type
Unlike mathematical functions where function range and domain are homogenous, 

software capabilities often accept and produce data of varying types. Therefore, type 
validation, or at least type awareness, is necessary with capability composition where it 
may be otherwise implicit with functional composition in mathematics.

In the metamodel, there is less concern for instances of data because those values are 
irrelevant to design. Instead, there is greater interest for types of data, referred to as 
Data Type in the metamodel. Type validation is the foundational concept that 
guarantees structural strength.

A capability is attributed with input and output properties where each property is a 
set of named types. A named type is similar to a variable but its ability to carry an 
instance of that type is ignored.

{ output 1, output 2, … output n }

{ input 1, input 2, …, input n }

Figure 9. Notation of a capability.  A capability can be visually depicted with a 
rounded rectangle, input oriented top-left and output oriented bottom-right.

Capability

Given functions f(x) → y and g(y) → z
Then g o f = g(f(x)) → z

Figure 10. Overview of function-preserved composition.  The composition of two 
functions can be defined as the output (variables) of one function is utilized as the input 
to another..
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{ base, exponent }

{ base }

{ base, exponent }

{ base }

{ power }

Figure 11. Example of compositional state.  An example of an exponentiation 
feature that initially persists the initial input called “base” and is later retrieved, from 
state, in the Exponentiate capability.

User
{ base }

{ exponent }

Input Base

Exponentiate

Unlike functions, a capability has an environment provided by the Component that 
serves it. This environment augments how input is retrieved or output is produced 
because of the environment’s ability to persist state. When a capability executes, it 
retrieves its input from two locations, the parent capability or its component.

 Capability State.  A capability can retrieve its input from the implicit state created 
by the capability it may have been composed with. This is similar to the implicit state 
of function composition.

{ n1, n2, n3 } { sum }

{ n1, n2 }

{ n1, n2 }

Figure 12. Composition of a capability.  A capability can be composed with another 
capability, its composition is type- and state-aware.

User Add

4.3.3.  State
The stateful aspect of a capability draws from its emulation of a software program. 

Programs have the ability to persist state to its environment and beyond its execution. 
Unlike mathematical functions where state is implicit in the way it is input or output, a 
capability differs in how it retrieves input or produces output.
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4.4.2.  Component Graph
The graph of capabilities is used to derive a graph of components which is the 

required graph to produce a software structure. Component graphs are different than 

G = (C, D) where:
G is the graph of capabilities,
C is the set of capabilities,
D is the ordered set of dependencies, where 
each element is a distinct pair of capabilities

Figure 13. Definition of a capability graph.  The graph of capabilities expressed in a 
mathematical notation.

Component State.  A capability can retrieve its input from any state provided by 
its component.

Similarly, a capability is attributed with a property that indicates whether its output 
is persisted to its component.

4.4.  Structure
The goal of the logical model in the ontology is to produce a software structure, 

therefore, the logical elements of the metamodel must also satisfy that goal. However, 
structures are not directly defined as they are in traditional or current documentation 
practices. Instead structures are derived from capabilities. A structure is a graph of 
component and their dependencies.

4.4.1.  Capability Graph
The derivation of structure utilizes the composition of capabilities. In composition, 

the output of one capability is used as the input to another. The capability whose output 
is used as input is called the source (capability) while the related capability utilizing the 
output is called the receiver (capability). A dependency type of relationship is implied 
between source and receiver. A directed graph can be constructed using a pair of a set of 
capabilities and a set of dependencies, where each dependency is a pair of distinct 
capabilities. The definition is the same used in graph theory (Bang-Jensen et al., 2007).
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4.4.3.  Scoping
Structures are inherently scoped at a feature level because the basis of structure are 

the compositions described by the feature. Feature-scoped structures are helpful in 
understanding participating capabilities or components for the given feature because it 
removes the noise (non-participating components). This is generally helpful when 
collaborating with stakeholders at this level.

A structure scoped at higher levels is also helpful because it provides the audience 
with a broader view. It is beneficial to view the structure of a business process or other 
related features because it provides a precise focus on relevant behavioral or structural 
elements. It is also useful to look at the structure at the software product level because of 
its complete view of all elements. Governance, for example, is a beneficiary of a 
software-product-scoped structure. 

Figure 14. Derivation of a component graph.  A component graph is a digraph with 
loops allowed. It is derived from a capability graph.

blue
C21

Capability

Component

C32

C43, C54

redC2blueC1actor C1actorC3blue

C4red

C5red

Capability graph Component graph

the capability graph they are derived from because multiple capability dependency 
edges will reduce to a single component dependency edge. And unlike capability graphs 
where the edges are comprised of distinct capability pairs, component graph edges do 
not have to be distinct. Therefore, the component graph is a directed graph that allows 
for loops.
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To scope a structure, a binary, non-disjoint union operation is performed. It is an 
operation described as part of graph theory (Nguyen et al., 2023) that adds two graphs 
together. By taking the set of given features, determined by the desired scope and their 
associated capability graphs, then performing a augmented binary union of the graphs, a 
new graph is created that consists of all vertices and edges. 

Augmented Binary Union
Edge fidelity cannot be compromised during a union and must preserve their 

lineage. In the context of scoping structures, the feature is the source for each capability 
graph, and therefore must be preserved. The binary union of two graphs must be 
augmented to produce a new graph that provides lineage of each edge. Each edge in the 
union must provide a set of sources (features) that they originated from.

The importance of edge fidelity is a result from the importance of descriptive edges, 
that is, the ability to rationalize the existence of an edge has value. In features, the edges 
represent the compositional dependency between two capabilities. The descriptive form 
of the edge is by its inputs. With the union of features, the descriptive form of the edge 
adds the source of the edge; the feature in this context.

Figure 15. Overview of scoping.  A the graph of capabilities, in this example, from 
three features, form a scope and union to form a larger composition. The edges in the 
union is are sourced edges which describe their source features.
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5.  Ideation Extension

The metamodel is extended to support definitions during ideation that generally 
center around describing business processes. In the base metamodel, an activity defines 
a single action taken by an actor. In the updated metamodel, activities can be connected 
to form a process. It also introduces the (business) event as a type of actor.  

Actor

Activity

Event

Process Result
produces

type of

produces

has

has type of

Figure 16. Summary of ideation extension.  The metamodel is extended to enable 
the definition of business processes and events.

5.1.  Process
The Process element describes a complex business- or product-oriented activity. At a 

lower order, it consists of related activities and generally in a sequence. Higher-order 
processes can consists of a heterogenous set of activities and other processes, thus, a 
process can be hierarchical.

5.2.  Result
The Result element describes information (state) produced by a completed activity 

or process. An activity or process can yield zero or more results. A result represents 
either the state itself or an event that occurred in conjunction with the state. As a 
stateful element, a result can hold named and typed data as attributes. 

5.2.1.  Event
The Event element is a type of Result and it describes a named occurrence relative to 
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some information. An event is also a type of actor which enables it to be a performer of 
an action.

5.3.  Sequence
An activity or process can be sequenced when the source element produces a result. 

However, there are constraints based on the result. When the result is an event, it can 
only be sequenced with an activity with the same event. When the result is state, it can 
only be sequenced with an activity with a non-event actor.

A sequence represents a transfer of state. When the result is a state type, all of its 
data (attributes) are transferred to the actor of the target activity. When the result is an 
event, the state is implicitly transferred because the event is the actor of the target 
activity. State transfer in the conceptual model is not a technical occurrence and cannot 
be logically validated. Instead, it must be rationalized by the owner.

Account
Opened
Event

Account
Opened
Event

Account

AOE

A

Customer

Customer

Ops

Account 
Opening

Account 
Opening

Individual activities As a process

Customer
Notification

Account 
Approval

Customer 
Notification

Account 
Approval

Figure 17. Example of state transfer.  Activities can be sequenced into a process 
where state can be transferred as state or an event to downstream activities.

5.4.  BPMN
The extension for ideation is intended to represent currently accepted techniques of 

modeling a business at a conceptual level. The BPMN (Business Process Model and 
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Notation) standard is a graphical approach to modeling a business using various shapes 
and connectors (Object Management Group, 2013). While the ideation metamodel is a 
structural definition of business, it can be further extended for alignment to BPMN to 
enable similar visualization. 

BPMN enables conditional sequencing of activities using the Gateway shape. 
Conceptual elements that seem to represent logic, such as a gateway, does not materially 
affect the technical models. Such elements aid in conveying a business process but does 
not translate to the logical model. Only activities and actors (including events) are 
mapped to the logical model. While the ideation extension omits additional elements 
that may align to BPMN, it does not prevent such additions to alignment.
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6.  Architecture Extension

The metamodel is extended to support the definition of quality and additional 
behavioral distributions. In the base metamodel, activities and features are solely 
focused on behavior sans quality. Additionally, structure is based on only one type of 
behavioral distribution with capability composition. The metamodel is updated to 
support the specification of quality and their benchmarks. It is also updated to support 
the definition of tiering and scaling, two behavioral distributions that optimize 
structural outcomes. The architecture extension adds a novel software modeling 
technique with dynamic elements and environment. An algorithmic element, such the 
benchmark, tier and distribution elements, is a type of dynamic element that can 
compute new elements or attributes. An environment provides context to the software 
product especially during execution.

requires

computes

distributes to

assigned to

computes with

computes with

distributes with

predicate of

has elemental equivalence

Figure 18. Summary of architecture extensions.  The metamodel is extended to 
enable the definition of quality and behavioral distributions tiering and scaling. It also 
includes algorithmic elements for quality benchmarks, tiered and scaled distribution.
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6.1.  Quality
The Quality element describes a performance requirement that its associated activity 

is expected to minimally perform. An activity can have zero or more qualities. It is a 
conceptual or high-level description of the quality. With the updated metamodel, 
activities gain quality requirements along with behavioral requirements. Structure plays 
an important role in satisfying both behavioral and quality requirements.

A quality element consists of a conceptual description of the quality and a set of 
Benchmarks. Each benchmark is computed to indicate whether their quality metric is 
satisfied. 

6.2.  Benchmark
The Benchmark element is an algorithmic element that computes a quality metric. It 

has a dual relationship. It is associated with a quality as one of its metrics, and it 
computes the feature that it is associated with the activity that is associated with the 
quality that it is associated with.

A benchmark is a predicate. It is an algorithm that produces a binary, boolean value 
that indicates whether the quality metric it represents is satisfied. During computation, 
the benchmark algorithm uses two inputs, an environment and a feature. 

The quality of a feature can be assessed quantitatively or qualitatively. Consequently, 
benchmark algorithms can be classified similarly. A class of benchmark algorithms can 
inspect, transform or aggregate attributes from any element in the feature. For example, 
if the quality metric is for latency, the algorithm may return a sum of all capability’s 
interface latency, or if the quality metric is for availability, it may return the product of 
all component’s availability. Another class of benchmark algorithms can inspect the 
quality of the structure of the feature by asserting facts about elements. For example, if 
the quality metric is security, it may assert the presence of a token and its origin. 
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6.3.  Environment
The Environment element describes a software product context. It consists of 

attributes that generalize the execution or operational trait of the software product. An 
environment is a novel element that supports the algorithmic benchmark, tier set and 
distribution elements. It provides information that is necessary for quality-related 
computations. Generally, an empty environment indicates normal operation whereas its 
attributes may indicate abnormalities. For example, it may indicate hight network 
latencies or a disaster status.

6.4.  Tier
The Tier element describes a computing space contained within a process boundary. 

It is the computing space for a software component and its capabilities. Tiers are used 
for describing a component’s computing space and the distribution of a capability. 
Computing spaces or process boundaries are necessary for information locality which is 
one approach to information sharing. In the updated metamodel, there are two types of 

Figure 19. Example of a benchmark.  A given activity and feature with a standard-
availability requirement. The quality requirement is assigned a benchmark that 
computes the product of each capability’s component’s availability. In this example, the 
benchmark would compute false because a 99.7% availability is less than 99.%.

benchmark.std_availability: .999 ≤ ∏ component.availability
i=Cactor

C3

Cactor C1 C2 C3

availability: 0.999 availability: 0.999 availability: 0.999

Feature

quality: { std_availability }

activityactor

Activity
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tiers: a single tier assigned to a component, or a tier set that is assigned to a component. 

A single tier is assigned to a component to describe its computing space. In this 
context, a tier is a scalar-value attribute to a component. It is a logical fact about the 
component and a declaration of its logical location. 

An ordered set of tiers is assigned to a capability to describe its distribution. The 
ordered set of tiers is a union of two other sets: an ordered set of proxy tiers and a 
single-element set of a target tier, in order. In this context, the tier set is an algorithmic 
element that replicates and composes the capability. A tier set is regarded as a feature-
preserving, structure-altering algorithm and is used as an optimization technique in a 
documentation practice that avoids definition duplicity. The algorithm accepts a 
capability as a sole input.

Tier validation is necessary because it is possible for a mismatch to occur. 
Component are assigned to capabilities including expanded capabilities. Therefore, it is 
possible for the tier of a component to not match the tier of a capability-tier. A valid 
component assignment is where the capability and component tier match.

Figure 20. Example of tiering.  A defined composition with a specified ordered set of 
tiers is expanded into their base capabilities and tiers.

user user

Defined composition Expanded composition

save saveclient saveweb savestore

tiers: { client, web, store } tier: web tier: storetier: client

proxy capabilities and tiers target capability 
and tier

6.5.  Distribution
The Distribution element is an algorithmic element that describes a homogenous 

distribution of a capability-tier. It is used to provide the capability with extra computing 
resources. The additional resources enable the capability to meet scalability or reliability 
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quality requirements. The distribution element accepts a tiered capability and an 
environment to produce a set of ordered partitions where each partition represents a 
percentage of distribution. It is an algorithmic element that replicates the tiered 
capability per size of the distribution set; specifically, the original capability-tier is 
replaced with an expanded set. Each new capability gains a partition attribute.

Figure 21. Example of scaling.  A defined composition with a specified ordered set of 
tiers and a distribution for the web tier is expanded into their base capabilities and tiers. 
The final expansion includes replicas of the capability at the web tier.

user user

user

Defined composition Expanded composition

Expanded composition
with scaled capabilities

save saveclient

saveclient

saveweb

saveweb

saveweb

savestore

savestore

tiers: { client, web, store }
distributions: { web: [0.5, 0.5]

tier: web
distributions: [ 0.5, 0.5 ]

tier: web
distribution: 0.5

tier: web
distribution: 0.5

tier: store

tier: store

tier: client

tier: client
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7.  Engineering Extension 

The metamodel is extended to support the definitions of teams, versions and 
standards. The extension also enables post-engineering functions such as governance. 
In the base metamodel, elements are unaware of resources such as time or people. They 
do not have time-dimension definitions nor assigned stewards that oversee or make 
decisions about them. In the updated metamodel, software products become version-
aware to support major, minor and optional changes. Also, the elements in the updated 
metamodel, such as the software product, feature and components, gain the ability to be 
assigned a person of a specific role from a specific team. The updated metamodel also 
gains the element, standard, that provides a standard model to technical models. 

7.1.  Teaming
Teaming includes Person, Role and Team elements that combine together to form a 

Steward element. A Team is a part of an Organization, and organizations can be 
hierarchically structured.

Person

element

Team

RoleSteward

any of:
- Software Product
- Standard
- Feature
- Capability
- Component
- Interface

any of:
- owner
- collaborator
- viewer

Delivery Attributes:
- Delivery Attr 1
- Delivery Attr 2
…
- Delivery Attr n

any of:
- owner
- architect
- engineer

Person x Role x Team

Organization
has has

assigned to
has

Figure 22. Generalization of teaming.  The metamodel with steward assignment. A 
steward is the cross of a Person, Role and Team. Organizations are hierarchical.
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7.1.1.  Person
The Person element represents a real-world person that belongs to one or more 

stakeholder groups; usually an owner, architect or engineer. They have the ability to 
view, create, modify or remove elements according to their Role and the type of element 
they are assigned to. A person is an attribute on a Steward.

7.1.2.  Role
The Role element represents an abstraction of allowable permissions where such 

permissions usually center around the ability to view, create, modify or remove 
elements. Generally, an owner can perform all permissions including deletion. 
Generally, a collaborator has the same permissions as the owner excluding destructive 
permissions such as deletion. And generally, a viewer only has the permission to view. A 
role is an attribute on a Steward.

7.1.3.  Team
The Team element represents a group of people (Persons) with the same charter. The 

team element is an attribute on a Steward. 

7.1.4.  Steward
The Steward element represents a person that is assigned to an element with a 

specific role and from a specific team. The intersection of person, role and team is 
necessary because a person can have multiple roles and belong to multiple teams. 

7.1.5.  Organization
The Organization element describes a group of teams or organizations with the same 

charter. Organizations are hierarchical.

7.1.6.  Delivery Attributes
A Team can be specified with delivery attributes that indicate resource utilization 

metrics for delivering an element. This paper omits specificity for these attributes due to 
team or organizational variance in how it measures resources. Teams or organizations 
can consider attributes such as story-points per element type or time-based durations. 
They can also consider dynamic attributes such as algorithmic ones that can perform 
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calculations given an element or complexity.   

7.2.  Versioning
From a metamodel perspective, versioning is achieved by inserting a Software 

Product Version element where the Software Product is. This is a drastic change because 
it moves any relationships between the Software Product and its elements to the 
Software Product Version. For brevity, the Software Product Version is aliased and 
referred to as Version.

A Version, in effect, is a snapshot of the software product. It includes every element 
in the metamodel that spans from the conceptual model to the physical model. 
Versioning is a key function of a software engineering discipline because it provides an 
account and a plan for a software product. Versioning enables backwards-accounting by 
providing a historical set of versions including inception. Historical views on a software 
product may provide additional context to its current state. It also enables planning of 
future versions of the software product.

Versioning for future forms of the software product includes three types of versions. 

has

parented by

has

Figure 23. Summary of versioning updates.  The metamodel is updated with a new 
Software Product Version element that captures a snapshot of the Software Product.

Software Product

element

any element previously parented 
by the Software Product

Software Product 
Version
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The metamodel is updated with a version attribute at the software product level.

 Strategic.  A Strategic version is a desired future definition of the software product 
on an extended timeline. While a formal definition is not possible because of the 
differences in organizations, a strategic version can be described as a version where 
multiple tactical versions can precede it. Generally, a strategic version is a multi-year 
outlook of the software product.

 Tactical.  A Tactical version is a definition of the software product that immediately 
follows the current version. A tactical version is a definition that intends to conform 
to a strategic version. Generally, a tactical version is the result of an iterative delivery 
cycle such as a sprint in Scrum or predetermined, iterative release.

 Optional.  An Optional version is a definition of the software product that branches 
from a current or tactical version and precedes a tactical version. An optional version 
provides a choice for the next tactical version. In practice, an optional version is used 
when there are two or more choices.

The minimal schema for a software product version partially follows semantic 
versioning (Preston-Werner) by using the concept of major and minor monikers for 
strategic and tactical versioning. However, semantic versioning uses a linear versioning 
approach and does naturally support the branching aspect of optional versioning. For 
branching, a letter suffix is used.

Figure 24. Example of versioning.  Versioning describes strategic (v1 and v2) and 
tactical versions (v1.1 and v1.2), as well as options (v1.2a, v1.2b and v1.3b) that precede a 
tactical version. Option v1.2b was chosen and promoted to v1.2.

v1.1v1

Strategic versions

Tactical versions

Optional versionsv2

v1.2v1.2a

v1.2b

v1.3c
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7.3.  Standards
The metamodel is updated to enable standards-enabled engineering practices. There 

are two types of standards: non-technical and technical standards. They are an abstract 
model established by a team, usually one with sufficient, direct or delegated, authority. 
Standards model parts of a software product. For non-technical standards, the model 
provides universal concepts to be followed and often exists as principles to be adhered 
to. Non-technical standards are not in scope in this paper. For technical standards, the 
model provides logical or physical elements or attributes that other technical models 
follow, and utilizes pattern matching to localize the standard within the compared 
model. 

7.3.1.  Standard
A Standard is an element that models a technical pattern to scaffold, modify or 

measure other technical models. Ontologically, a standard consists of a logical model 
and/or physical model. A standard is similar to the feature element because the feature 
is the root element in the logical model. Therefore, like a feature, a standard consists of 
capabilities, components, etc. The updated metamodel for standards also adds a 

Figure 25. Overview of standard elements.  The metamodel is extended with a 
Standard element that provides abstraction to other elements using prototypes.

Type

Standard

has

has

Capabilityprototype

ComponentprototypeProviderprototype

Interfaceprototype
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pseudo-element called a Prototype that abstracts any element such as a capability. 

7.3.2.  Prototype
The Prototype element is a pseudo-element that serves as a surrogate for another 

element of the same type. In the metamodel, capabilities, components, providers and 
interfaces can be substituted with a prototype. A prototype is used to abstract a standard 
model such that the standard model can be matched with a target model. Matched 
standards can be applied to scaffold (construct), modify or measure the target model. A 
prototype element can only be associated within a standard context.

7.3.3.  Matching
Standards contain patterns, and pattern matching yields zero or more locations 

within a target model that a standard model matches. Localization is a general concept 
that describes where a pattern matches. Its final implementation can vary across 
different implementations or optimizations of the software product model. It is omitted 
in the interest of keeping to the core concept rather than its mechanism.

Figure 26. Example of pattern matching.  An example of a standard describing an 
HTTP interface between client and web tiers, and its matching location on a target 
model.
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7.3.4.  Application
Standard application is an algorithmic utilization of a standard and its matching 

pattern locations in a target model. A standard can be used to scaffold, modify or score a 
target model.

 a. Scaffolding.  A standard can be applied to scaffold a new target model 
where prototypes must be replaced with actual elements. Standards scaffolding is 
useful during architecture or engineering phases of a software product because it 
increase efficiencies in design or specification.

 b. Modification.  A standard can be applied to modify an existing, target 
model where non-pattern-matching standard attributes are added or updated to 
their corresponding elements in the target model. Standards modification is useful 
when standards undergo change where target models may require recent versions of 
a standard.

 c. Scoring.  A standard can be applied to score an existing, target model 
where various scoring algorithms produce a value that indicates the distance 
between the standard and target model. In most cases, scoring algorithms will 
measure the alignment or deviation the target model has relative to the standard, 
therefore, a score of zero indicates 100% alignment. Standards scoring is useful 
during delivery, especially in governance, where an alignment score may optimize an 
approval process.
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8.  Conclusion

The Software Product Model provides both fundamental and novel strategies to 
solving the deficiencies in software documentation. Its complete, end-to-end modeling 
approach that integrates a highly utilized conceptual model with the technical models 
will yield precise models. Its use of behavioral composition with capabilities to derive 
software structures will produce strong software structures. I combine these approaches 
into an ontology for software products and a software metamodel that expresses the 
ontology into a tangible, schematic form.

In this paper, I introduced novel ideas. I intersected mathematics and software 
delivery with category theory and function composition. And, I introduced dynamic 
elements that can derive structure from composition, compute quality benchmarks or 
replicate capabilities across tiers. Due to is novelty, tooling is still nascent. My hope is 
for this paper to shed light on a comprehensive and precise approach to documentation 
and grow a community around it.
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