$Arenadata^{TM} Database$

Bepcuя - latest

Примечания к выпуску ADB 6

Оглавление

1	Новые функции	3				
	1.1 Основные возможности PostgreSQL	;				
	1.2 Алгоритм сжатия Zstandard	4				
	1.3 Послабления для столбцов в распределенных таблицах	4				
	1.4 Функции Ресурсных Групп	Ę				
	1.5 Доработка процедурного языка PL/pgSQL					
	1.6 Репликация данных таблицы	5				
	1.7 Доработки параллельной обработки	(
	1.8 Дополнительные модули Contrib 1.9 PXF версии 5.8.1	(
	1.10 Дополнительные функции	-				
	1.10 дополнительные функции					
2	Beta-функции	8				
3	Измененные функции	6				
4	Удаленные функции	14				
5	Ключевые отличия ADB от open-source аналога					
6	Release Notes					
U	6.1 6.19.1 arenadata31	17 17				
	6.2 6.18.2 arenadata30	18				
	6.3 6.18.0_arenadata29	18				
	6.4 6.18.0 arenadata28	19				
	6.5 6.17.5 arenadata26	19				
	6.6 6.17.2 arenadata26	19				
	6.7 6.17.1_arenadata25	20				
	6.8 6.16.3_arenadata24	21				
	6.9 6.16.2_arenadata21	21				
	6.10 6.16.1_arenadata20	22				
	6.11 6.16.0_arenadata19	22				
	6.12 6.15.0_arenadata18	23				
	6.13 6.15.0_arenadata17	$\frac{23}{23}$				
	6.14 6.15.0_arenadata16	$\frac{25}{25}$				
	6.16 6.14.0 arenadata13 b2	$\frac{24}{24}$				
	6.17 6.14.0 arenadata13	$\frac{2}{2}$				
	6.18 6.13.0_arenadata12	$\frac{2}{2}$				
		_				

 $6.19 \quad 6.12.1_ are nadata 11 \quad \dots \qquad \qquad 25$

Arenadata DB (ADB) — это сервер базы данных с массовой параллельной обработкой (MPP), который поддерживает хранилище данных следующего поколения и крупномасштабную аналитическую обработку. Благодаря автоматическому секционированию данных и выполнению параллельных запросов кластер может работать как один суперкомпьютер базы данных, работающий в десятки или сотни раз быстрее, чем традиционная база данных. ADB поддерживает SQL, параллельную обработку МарReduce и объемы данных от сотен гигабайт до сотен терабайт.

Important: Данная документация содержит информацию о выпуске Arenadata DB 6. Данный выпуск основан на версии GPBD 6. Для выбора точной версии продукта необходимо перейти к соответствующей документации.

Important: Контактная информация службы поддержки — e-mail: support@arenadata.io

Новые функции

В Arenadata DB 6 добавлено:

- Основные возможности PostgreSQL;
- Алгоритм сэсатия Zstandard;
- Послабления для столбцов в распределенных таблицах;
- Функции Ресурсных Групп;
- ullet Доработка процедурного языка PL/pgSQL;
- Репликация данных таблицы;
- Доработки параллельной обработки;
- Дополнительные модули Contrib;
- *PXF sepcuu* 5.8.1;
- Дополнительные функции.

1.1 Основные возможности PostgreSQL

Arenadata DB 6 включает в себя несколько новых функций от PostgreSQL версий 8.4-9.4.

Обработка типа данных INTERVAL улучшена в **PostgreSQL 8.4** в ключе синтаксического анализа литералов интервала в целях соответствия стандартам SQL. Это изменяет вывод для запросов, использующих литералы INTERVAL между версиями 5 и 6. Например:

```
gpadmin=# select INTERVAL '1' YEAR;
interval
-----
1 year
(1 row)
```

Так же в Arenadata DB 6 включены следующие функции и изменения из PostgreSQL:

- Поддержка пользовательских преобразований ввода-вывода (PostgreSQL 8.4);
- Поддержка привилегий на уровне столбцов (PostgreSQL 8.4);
- Таблица каталога pg_db_role_setting, обеспечивающая поддержку настройки параметров конфигурации сервера для конкретной комбинации базы данных и роли (PostgreSQL 9.0);
- Значения в столбце relkind таблицы каталога pg_class изменены, чтобы соответствовать записям в PostgreSQL 9.3;
- Поддержка метода GIN-индекса (PostgreSQL 8.3);
- Поддержка Postgres Planner для метода доступа к индексам SP-GiST (PostgreSQL 9.2). GPORCA игнорирует индексы SP-GiST;
- Поддержка Postgres Planner для агрегатов упорядоченного набора (ordered-set aggregates) и агрегатов перемещения (moving-aggregates) (PostgreSQL 9.4).
- Поддержка типа данных jsonb (PostgreSQL 9.4);
- DELETE, INSERT и UPDATE поддерживают CTE (common table expression) условие WITH (PostgreSQL 9.1);
- Поддержка правил сортировки для задания ее порядка и классификации символов для данных на уровне столбцов (PostgreSQL 9.1). Но GPORCA поддерживает правила сортировки, только когда все столбцы в запросе используют одинаковые правила сортировки. Если столбцы в запросе используют разные правила сортировки, то ADB использует Postgres Planner.

1.2 Алгоритм сжатия Zstandard

В **Arenadata DB 6** для некоторых операций с базой данных добавлена поддержка сжатия zstd (Zstandard).

1.3 Послабления для столбцов в распределенных таблицах

В предыдущих выпусках при указании ограничения UNIQUE и условия DISTRIBUTED BY в операторе CREATE TABLE условие DISTRIBUTED BY должно было быть равно или являться левым подмножеством столбцов UNIQUE. **Arenadata DB 6** ослабляет это правило, так что любое подмножество столбцов UNIQUE принимается.

Это изменение также влияет на правила того, как **Arenadata DB 6** выбирает ключ распределения по умолчанию. Если параметр $gp_create_table_random_default_distribution$ выключен (по умолчанию) и условие $DISTRIBUTED\ BY$ не включено, то **ADB** выбирает ключ распределения таблицы, основываясь на следующем:

- Если указано условие *LIKE* или *INHERITS*, то ADB копирует ключ распределения из исходной или родительской таблицы;
- Если указаны ограничения *PRIMARY KEY* или *UNIQUE*, то ADB выбирает в качестве ключа распределения наибольшее подмножество из всех столбцов ключей;

• Если не указаны ни ограничения, ни условия *LIKE* или *INHERITS*, то ADB выбирает в качестве ключа распределения первый подходящий столбец (столбцы с геометрическими или пользовательскими типами данных не допускаются в качестве столбцов ключей распределения ADB).

1.4 Функции Ресурсных Групп

В ADB добавлены следующие новые функции для ресурсных групп:

- При настройке группы ресурсов больше не требуется указывать *MEMORY_LIMIT*. При указании MEMORY_LIMIT=0 база данных использует глобальный пул общей памяти группы ресурсов для обслуживания запросов, выполняющихся в группе.
- При указании MEMORY_SPILL_RATIO=0 для определения начального объема памяти оператора запроса база данных теперь использует параметр конфигурации сервера *statement mem*.
- При совместном использовании настроек групп ресурсов MEMORY_LIMIT=0 и MEMORY_SPILL_RATIO=0 эти новые возможности обеспечивают схему управления памятью, аналогичную схеме, предоставляемой очередями ресурсов базы данных ADB.

Значения по умолчанию атрибутов $MEMORY_SHARED_QUOTA$, $MEMORY_SPILL_RATIO$ и $MEMORY_LIMIT$ для групп ресурсов $admin_group$ и $default_group$ установлены для использования схемы управления памятью, подобной очереди ресурсов, поэтому при первоначальном включении групп ресурсов запросы выполняются в аналогичной предыдущей среде памяти.

Таблица1.1.: Значения по умолчанию атрибутов ресурсных групп

Resource Group	admin_group	default _ group
MEMORY_LIMIT	10	0
MEMORY_SHARED_QUOTA	80	80
MEMORY_SPILL_RATIO	0	0

1.5 Доработка процедурного языка PL/pgSQL

Процедурный язык PL/pgSQL в Arenadata DB 6 включает поддержку следующих новых функций:

- Прикрепление текста DETAIL и HINT к выдаваемым пользователю сообщениям об ошибках. Также можно указать коды SQLSTATE и SQLERRMSG для возврата ошибки, вызванной пользователем (PostgreSQL 8.4);
- Оператор RETURN QUERY EXECUTE, задающий запрос для динамического выполнения (PostgreSQL 8.4);
- Условное выполнение с использованием оператора CASE (PostgreSQL 8.4). Подробнее в документации PostgreSQL.

1.6 Репликация данных таблицы

Команда *CREATE TABLE* поддерживает *DISTRIBUTED REPLICATED* в качестве политики распределения. Если указана эта политика распределения, база данных распределяет все строки таблицы по всем экземплярам сегмента в системе **ADB**.

Important: В пользовательских запросах к реплицированным таблицам нельзя ссылаться на скрытые системные столбцы (ctid, cmin, cmax, xmin, xmax и gp segment id), поскольку они не имеют единую,

1.7 Доработки параллельной обработки

Arenadata DB 6 включает следующие усовершенствования параллельной обработки:

- Global Deadlock Detector предыдущие версии ADB препятствуют глобальной взаимоблокировке, удерживая исключительную блокировку таблиц для операций *UPDATE* и *DELETE*. Хотя эта стратегия действительно предотвращает deadlocks, это обеспечивается за счет низкой производительности при одновременных обновлениях. База данных Arenadata DB 6 включает в себя глобальный детектор взаимоблокировок это внутренний процесс, который собирает и анализирует данные ожидания в кластере ADB. Если Global Deadlock Detector определяет, что deadlock существует, он ее прерывает, отменяя один или несколько внутренних процессов. По умолчанию детектор отключен, и для обновлений таблиц проводятся исключительные блокировки на уровне таблицы. А когда детектор включен, база данных ADB проводит исключительные блокировки на уровне строк, и в таком случае одновременные обновления допускаются;
- Transaction Lock Optimization Arenadata DB 6 оптимизирует использование блокировки транзакций как при *BEGIN*, так и при *COMMIT* транзакции. Это особо выгодно при одновременных смешанных рабочих нагрузках;
- Upstream PostgreSQL Features Arenadata DB 6 включает в себя основные функции PostgreSQL, в том числе fastpath lock, сокращающие конфликты блокировок. Это выгодно для одновременных коротких запросов и смешанных рабочих нагрузок;
- Команда VACUUM пропускает страницы, которые не может заблокировать. Это уменьшает частоту появления вакуума, который "застревает" в результате ожидания блокировки блока для очистки в то время, когда другая сессия удерживает блокировку этого блока. Теперь VACUUM пропускает блоки, который не может заблокировать сразу, и пытается повторить их блокировку позже;
- Команда VACUUM перепроверяет видимость блока после удаления "мертвых" кортежей. Если все оставшиеся кортежи в блоке видимы для текущих и будущих транзакций, блок помечается как полностью видимый;
- Таблицы, являющиеся частью иерархии партиционированных таблиц, но не содержащие данных, замораживаются, поэтому их не нужно очищать отдельно, и при этом они не влияют на вычисление количества оставшихся идентификаторов транзакций даже до того, как произойдет wraparound. Эти таблицы включают корневую и промежуточную таблицы в иерархии партиций и, если они являются append-optimized, связанные с ними таблицы метаданных. Это делает ненужной операцию vacuum для корневой партиции для сокращения ее возраста и устраняет вероятно излишнюю очистку всех дочерних таблип.

1.8 Дополнительные модули Contrib

База данных Arenadata DB 6 разворачивается с дополнительными модулями PostgreSQL и GPDB:

- auto explain;
- diskquota;
- fuzzystrmatch;
- \bullet $gp_sparse_vector;$
- pageinspect;
- \bullet sslinfo.

1.9 РХГ версии 5.8.1

Arenadata DB 6 включает PXF 5.8.1, который вводит следующие новые и измененные функции:

- Коннектор PXF S3 теперь поддерживает доступ к данным CSV и Parquet на S3 с помощью сервиса Amazon S3 Select;
- РХГ объединяет новые и обновленные библиотеки, чтобы обеспечить поддержку Java 11;
- В РХГ добавлена поддержка типа timestamptz при записи данных Parquet во внешний источник данных;
- PXF теперь предоставляет команду сброса локального экземпляра PXF-сервера или всех экземпляров PXF-сервера в кластере в неинициализированное состояние;
- ullet РХF больше не поддерживает уточнение DELIMITER в CREATE EXTERNAL TABLE команды LOCATION URI.

1.10 Дополнительные функции

Arenadata DB 6 также включает следующие функции, отличные от версии 5:

- Recursive WITH Queries (Common Table Expressions) больше не считаются бета-функцией и теперь включены по умолчанию;
- VACUUM обновлен для упрощения пропуска страниц, которые нельзя заблокировать. Это изменение должно значительно снизить частоту "застревания" операции VACUUM во время ожидания завершения других сессий;
- Appendoptimized alias для опции хранения appendonly-таблицы;
- Новые gp_toolkit-представления $gp_resgroup_status_per_host$ и $gp_resgroup_status_per_segment$ отображают CPU группы ресурсов и использование памяти для каждого хоста и/или сегмента;
- Новое представление $gp_stat_replication$ содержит статистику репликации, когда включено зеркалирование мастера или сегмента. Представление $pg_stat_replication$ содержит только статистику репликации мастера;
- Программы gpfdists и psql в пакете Client and Loader Tools для Windows поддерживают шифрование OpenSSL;
- Arenadata DB 6 включает некоторые улучшения производительности PostgreSQL 9.6.
- Утилита gpload совместима с базой данных ADB 5.х.

Beta-функции

Поскольку база данных **ADB** основана на open-source аналоге, она включает в себя несколько экспериментальных функций, позволяющих заинтересованным разработчикам экспериментировать с их использованием в системах разработки. Обратная связь помогает стимулировать разработку данных функций, и они могут поддерживаться в будущих версиях продукта.

Important: Бета-функции не поддерживаются для развертывания в продуктивной среде

В Arenadata DB 6 входят следующие экспериментальные функции:

- API-интерфейс плагина хранения для утилит **gpbackup** и **gprestore**. Партнеры, клиенты и разработчики OSS могут совместно использовать плагины при помощи **gpbackup** и **gprestore**;
- Коннекторы Platform Extension (PXF) для записи Parquet-данных.

Измененные функции

В Arenadata DB 6 изменены следующие функции:

- Рабочие характеристики базы данных **ADB** при больших нагрузках изменились по сравнению с предыдущими версиями. В частности, можно заметить увеличение операций ввода-вывода на первичных сегментах из-за изменений, связанных с WAL-репликацией и другими функциями. Всем клиентам рекомендуется выполнять нагрузочное тестирование с использованием реальных данных, чтобы убедиться, что новая конфигурация кластера **ADB** 6.0 отвечает их требованиям к производительности.
- Утилиты **gpbackup** и **gprestore** больше не устанавливаются с **Arenadata DB 6**, но они доступны отдельно и могут быть обновлены независимо от инсталляции базы данных.
- ADB 6 использует новый алгоритм согласованного хеширования jump consistent hash для распределения данных по сегментам ADB. Алгоритм гарантирует, что после добавления новых сегментов в кластер ADB 6 необходимо перемещать только те строки, которые хешируются в новый сегмент. Хэширование базы данных имеет характеристики производительности, схожие с предыдущими релизами системы, но должно обеспечивать более быстрое расширение базы данных. Важно обратить внимание, что новый алгоритм является более вычислительно интенсивным по сравнению с предыдущим, поэтому производительность СОРУ может несколько снизиться в системах, где производительность ограничена процессором.
- Хеш-функции предыдущей версии **ADB** представлены как классы нестандартных хеш-операторов с именем cdbhash_*_ops. Классы нестандартных операторов используются при обновлении базы данных **ADB** предыдущих версий. Унаследованные классы операторов совместимы друг с другом, но при смешении устаревших классов операторов с новыми, запросы требуют Redistribute Motions.

Параметр конфигурации сервера gp_use_legacy_hashops фиксирует — используются ли устаревшие хеш-функции или функции по умолчанию при создании таблиц, с указанным столбцом распределения

Системная таблица gp_distribution_policy теперь содержит больше информации о таблицах ADB и политике распределения табличных данных по сегментам, включая класс операторов хеш-функций распределения.

- Утилита gpcheck не включена в базу данных Arenadata DB 6.
- Изменился формат входного файла для утилит **gpmovemirrors**, **gpaddmirrors**, **gprecoverseg** и **gpexpand**. В качестве разделителя вместо использования символа двоеточия : новый формат файла использует символ вертикальной черты |. Например, в предыдущих выпусках строка во входном файле **gpexpand** выглядит:

sdw5:sdw5-1:50011:/gpdata/primary/gp9:11:9:p

Обновленный формат файла:

sdw5|sdw5-1|50011|/gpdata/primary/gp9|11|9|p

Кроме того, **gpaddmirrors** удаляет префикс зеркала из строк входного файла. Например, строка из предыдущей версии:

```
mirror0=0:sdw1:sdw1-1:52001:53001:54001:/gpdata/mir1/gp0
```

Обновленный формат:

0=0|sdw1|sdw1-1|52001|53001|54001|/gpdata/mir1/gp0

- **ADB** использует прямую диспетчеризацию для целевых запросов с *IS NULL* аналогично запросам, которые фильтруются по столбцу (столбцам) ключа распределения таблицы.
- Опция **gpinitsystem** для указания каталога данных резервного мастера изменена с -F на -S. Опция -S больше не определяет spread тип зеркалирования. Для указания конфигурации зеркалирования введена новая опция **gpinitsystem**: --mirror-mode={group|spread}.
- Значение по умолчанию параметра конфигурации сервера log_rotation_size изменилось с 0 до 1 ГБ. Это меняет поведение по умолчанию ротации журнала, так что новый лог-файл открывается только тогда, когда в текущий файл записано более 1 ГБ или когда он открыт в течение 24 часов.
- Утилита gpssh-exkeys теперь требует настроенного доступа по SSH без пароля с мастер-хоста ко всем остальным хостам в кластере. После запуска утилиты доступ по SSH без пароля устанавливается с каждого хоста на любой другой хост.
- Изменено поведение smart shutdown в **gpstop**. Ранее при запуске **gpstop** -М **smart** (или просто **gpstop**) утилита осуществляла выход, выводя сообщение об активных клиентских подключениях. Теперь **gpstop** ожидает завершения текущих подключений, прежде чем завершить выключение. Если какие-либо соединения остаются открытыми после истечения времени ожидания или прерываются с помощью CTRL-C утилита выводит список открытых соединений и запрос о том, продолжать ли ожидание завершения соединения или выполнить незамедлительное отключение. Период ожидания по умолчанию составляет $120 \ cexynd$ и может быть изменен с помощью опции -t timeout_seconds.
- В системных представлениях $pg_stat_activity$ и $pg_stat_replication$ столбец procpid переименован в pid, чтобы соответствовать связанному изменению в PostgreSQL 9.2.
- В системной таблице **pg_proc** столбец *proiswin* переименован в *proiswindow* и перемещен в таблицу, чтобы соответствовать одноименной системной таблице в **PostgreSQL 8.4**.
- Запросы, использующие SELECT DISTINCT и UNION/INTERSECT/EXCEPT, больше не обязаны возвращать отсортированную информацию. Ранее эти запросы всегда удаляли повторяющиеся строки с помощью обработки Sort/Unique. Теперь они реализуют хеширование с целью соответствия поведению, введенному в PostgreSQL 8.4, и этот метод не осуществляет сортировку. В случае если приложение требует отсортированного вывода для таких запросов, необходимо явно использовать условие ORDER BY в самих запросах. Важно обратить внимание, что SELECT DISTINCT ON не использует хеширование, поэтому его поведение не отличается от предыдущих версий.
- В схеме **gp_toolkit** представление **gp_resgroup_config** больше не содержит столбцы proposed_concurrency, proposed_memory_shared_quota и proposed_memory_spill_ratio.
- В системной таблице **pg resgroupcapability** столбец *proposed* удален.
- В системной таблице **pg_database** столбец *datconfig* удален. Теперь для отслеживания параметров конфигурации сервера для каждой базы данных и для каждой роли **ADB** использует системную таблицу **pg_db_role_setting** (**PostgreSQL 9.0**).
- В системной таблице **pg_aggregate** столбец *aggordered* удален и добавлено несколько новых столбцов для поддержки агрегатов ordered-set и moving-aggregates с помощью **Postgres Planner** (**PostgreSQL**

- **9.4**). Сигнатуры команд $ALTER/CREATE/DROP\ AGGREGATE\ SQL$ также обновлены, чтобы отразить изменения каталога **pg aggregate**.
- В системной таблице **pg_authid** столбец *rolconfig* удален. Теперь для отслеживания параметров конфигурации сервера для каждой базы данных и для каждой роли **ADB** использует системную таблицу **pg_db_role_setting** (**PostgreSQL 9.0**).
- При создании и изменении таблицы, имеющей столбец распределения, теперь можно указать хеш-функцию, используемую для распределения данных между экземплярами сегментов.
- Arenadata DB 6 удаляет опцию *RECHECK* из ALTER OPERATOR FAMILY и CREATE OPERATOR CLASS DDL (**PostgreSQL 8.4**). Теперь **ADB** на лету во время выполнения определяет, является ли оператор индекса "lossy".
- Таблицы operator-related системного каталога изменены для поддержки операторов семейств, совместимости и типов (сортировка или поиск).
- Записи таблиц системного каталога для функций HyperLogLog (HLL), агрегатов и типов переименованы с использованием префикса gp_. Переименование функций HLL предотвращает конфликты имен с внешними расширениями базы данных, использующими HLL. Любой пользовательский код, написанный с использованием встроенных функций HLL базы данных ADB, должен быть обновлен на имена с префиксом.
- "Устаревший оптимизатор" предыдущих выпусков **ADB** теперь упоминается как *Postgres planner* как в коде, так и в документации.
- Уровни изоляции транзакций в **Arenadata DB 6** изменены в соответствии с уровнями изоляции транзакций **PostgreSQL**, начиная с введения режима serializable snapshot isolation (SSI) в **PostgreSQL 9.1**. Новый режим SSI, который не реализован в **ADB**, обеспечивает истинную сериализуемость путем мониторинга одновременных транзакций и отката транзакций, которые могут привести к аномалии сериализации. Существующий режим изоляции моментальных снимков snapshot isolation (SI) гарантирует, что транзакции работают с одним согласованным снимком базы данных, но не гарантирует согласованного результата при выполнении набора одновременных транзакций в любой заданной последовательности.

Arenadata DB 6 теперь позволяет использовать ключевые слова REPEATABLE READ с SQL-выражениями, такими как BEGIN и SET TRANSACTION. Транзакция SERIALIZABLE в PostgreSQL версии 9.1 и выше использует новый режим SSI. В ADB 6 транзакция SERIALIZABLE возвращается к REPEATABLE READ, используя режим SI. Далее в таблице показано соответствие стандарту SQL для каждого уровня изоляции транзакций в Arenadata DB 6 и PostgreSQL 9.1.

Уровень изоляции транзакции	Arenadata DB 6	PostgreSQL 9.1	
READ UNCOMMITTED	READ COMMITTED	READ COMMITTED	
READ COMMITTED	READ COMMITTED	READ COMMITTED	
REPEATABLE READ	REPEATABLE READ (SI)	REPEATABLE READ (SI)	
SERIALIZABLE	Возвращается к REPEATABLE	SERIALIZABLE (SSI)	
	READ (SI)		

Таблица3.1.: Соответствие уровня транзакций стандарту SQL

• Команда CREATE TABLESPACE изменена:

- Команде больше не требуется файловое пространство, создаваемое с помощью утилиты **gpfilespace**;
- Условие FILESPACE удалено;
- Условие WITH добавлено, чтобы позволить указывать расположение табличного пространства для конкретного экземпляра сегмента.
- Команда ALTER SEQUENCE SQL содержит новые условия START [WITH] start и OWNER TO new_owner (PostgreSQL 8.4). Условие START устанавливает начальное значение, которое будет использоваться

- будущими командами ALTER SEQUENCE RESTART, но не изменяет текущее значение последовательности. Условие $OWNER\ TO$ меняет владельца последовательности.
- Команда ALTER TABLE SQL содержит условие SET WITH OIDS для добавления системного столбца oid в таблицу (PostgreSQL 8.4). Важно обратить внимание, что использование oids с таблицами базы данных ADB настоятельно не рекомендуется.
- Команда CREATE DATABASE SQL содержит новые параметры *LC_COLLATE* и *LC_CTYPE* для указания порядка сортировки и классификации символов для новой базы данных.
- Команда CREATE FUNCTION SQL содержит новое ключевое слово WINDOW, которое указывает, что функция является не простой, а оконной (PostgreSQL 8.4).
- Указание имени индекса в команде CREATE INDEX SQL теперь необязательно. База данных **ADB** создает имя индекса по умолчанию из имени таблицы и индексированных столбцов.
- В команде CREATE TABLE парсер базы данных **ADB** позволяет размещать запятые между условиями SUBPARTITION TEMPLATE и SUBPARTITION BY, а также между последовательными условиями SUBPARTITION BY. Но эти недокументированные запятые являются устаревшими и генерируют предупреждение об устаревании.
- Для создания протокола теперь необходимы привилегии суперпользователя.
- Команда CREATE TYPE SQL содержит новое условие LIKE=type, которое копирует представление нового типа (INTERNALLENGTH, PASSEDBYVALUE, ALIGNMENT и STORAGE) из существующего (PostgreSQL 8.4).
- Команда GRANT SQL содержит новый синтаксис для предоставления прав на truncate, обертки сторонних данных и сторонние серверы (PostgreSQL 8.4).
- Команда LOCK SQL содержит опциональное ключевое слово *ONLY* (**PostgreSQL 8.4**). Если оно указано, таблица блокируется, но без блокировки наследуемых от нее таблиц.
- Использование выражения *LOCK table* вне транзакции вызывает ошибку. В более ранних выпусках **ADB** выражение выполняется, хотя оно полезно только при выполнении внутри транзакции.
- Команды SELECT и VALUES SQL поддерживают синтаксис SQL 2008 OFFSET и FETCH (PostgreSQL 8.4). Эти условия предоставляют альтернативный синтаксис для ограничения возвращаемых запросом результатов.
- Условие *FROM* может быть опущено в команде **SELECT**, но **ADB** больше не допускает такие запросы и ссылается на таблицы базы данных.
- Ключевые слова ROWS и $RANGE\ SQL$ изменились с зарезервированных на незарезервированные и могут использоваться без кавычек в качестве имен таблиц или столбцов.
- В **Arenadata DB 6** запрос к внешней таблице с наследуемыми таблицами по умолчанию выполняется рекурсирсивно. Для того, чтобы ограничить запрос родительской таблицей, необходимо в запрос включить ключевое слово *ONLY*.
- Значение по умолчанию для параметра конфигурации сервера optimizer_force_multistage_agg изменилось с true на false. Теперь GPORCA по умолчанию выбирает между одноэтапным или двухэтапным планом агрегирования для скалярных агрегатов, содержащих оператор distinct, основываясь на стоимости.
- Команда TRUNCATE SQL имеет опциональное ключевое слово *ONLY* (**PostgreSQL 8.4**). Если оно указано, к таблице применяется операция truncate, не затрагивая наследованные ею таблицы.
- Утилита командной строки **createb** содержит новые опции -1(--locale), --lc-collate и --lc-ctype для указания языкового стандарта и классификации символов для базы данных (**PostgreSQL 8.4**).
- Утилиты **pg_dump**, **pg_dumpall** и **pg_restore** содержат новую опцию --role=rolename, которая указывает утилите выполнять SET ROLE rolename после подключения к базе данных и перед запуском дампа или операции восстановления (**PostgreSQL 8.4**).

- Утилиты командной строки **pg_dump** и **pg_dumpall** содержат новую опцию --lock-wait-timeout=timeout (**PostgreSQL 8.4**). Если она задана, то в случае, когда утилита не может получить блокировку общей таблицы в течение указанного количества миллисекунд, дамп завершается ошибкой вместо бесконечного ожидания.
- Параметры командной строки -d и -D удалены из утилит **pg_dump** и **pg_dumpall**. Соответствующие им длинные версии --inserts и --column-inserts по-прежнему поддерживаются. Добавлена новая опция --binary-upgrade для in-place утилит обновления.
- Добавлена опция -w (--no-password) в утилиты pg dump, pg dumpall и pg restore.
- Удалена опция -D из утилиты gpexpand. Схема расширения создается в базе данных postgres.
- Утилита **gpstate** содержит новую опцию -х, которая отображает детали текущего расширения системы. При этом **gpstate** -s и **gpstate** без указания параметров также сообщают, если выполняется расширение системы.
- Утилита **pg_restore** содержит новую опцию -j (--number-of-jobs). Этот параметр позволяет сократить время восстановления большой базы данных за счет одновременного выполнения таких задач, как загрузка данных, создание индексов и создание ограничений.
- Утилита **vacuumdb** содержит новую опцию -F (--freeze) для фиксации информации о транзакциях строк.
- ullet $ALTER\ DATABASE\$ включает условие SET TABLESPACE для изменения табличного пространства по умолчанию.
- *CREATE DATABASE* включает опции **COLLATE** и **CTYPE** для установки порядка сортировки и классификации символов новой базы данных.
- В схеме **gp_toolkit** представления **gp_workfile_*** изменились благодаря улучшениям рабочего файла **Arenadata DB 6**.
- Параметр конфигурации сервера **gp_workfile_compress_algorithm** изменен на **gp_workfile_compression**. При включенном сжатии рабочего файла **ADB** использует компрессию **Zstandard**.
- Функции совместимости с **Oracle** теперь доступны в **ADB** в виде расширения, основанного на проекте **PostgreSQL** orafce по ссылке https://github.com/orafce/orafce. Теперь для установки функций совместимости в базе данных вместо выполнения SQL-скрипта выполняется команда SQL CREATE EXTENSION orafce. Расширение *orafce* базы данных **Arenadata DB** 6 основано на выпуске **orafce** 3.7.
- В качестве ключа распределения **ADB 6** поддерживает указание столбца таблицы типа данных *citext*.
- Arenadata DB 6 предоставляет единый пакет *Client and Loader Tools*, который можно загрузить и установить в клиентской системе. Предыдущие выпуски **ADB** предоставляют отдельные пакеты клиента и загрузчика.
- Arenadata DB 6 включает в себя модули *contrib* как для PostgreSQL-sourced, так и для GPDB-sourced. Большинство из этих модулей теперь упакованы как расширения, которые регистрируются с помощью команды CREATE EXTENSION name.
- В режиме высокой доступности (High Availability, НА) базы данных **ADB** основной сегмент находится в согласованном состоянии со своим зеркалом с помощью синхронной потоковой репликации на основе журнала предзаписи (Write-Ahead Logging, WAL). Представление **gp_stat_replication** содержит статистику репликации при включенном зеркалировании мастера или сегмента. В предыдущих выпусках зеркалирование сегментов использовало физическую схему репликации файлов.
- В таблице **gp_segment_configuration** удален порт **replication_port**. При этом для отображения каталога данных экземпляра сегмента добавлен столбец **datadir**. Значения столбца **mode** теперь **s** (синхронизированы) или **n** (не синхронизированы). Для определения состояния синхронизации необходимо использовать представление **gp stat replication**.

Удаленные функции

В Arenadata DB 6 больше не используется:

- Утилита **gpseginstall**. Необходимо установить RPM программного обеспечения **Arenadata DB** на каждом хосте сегмента.
- Утилита **gptransfer**. Необходимо использовать **gpcopy** для всех функций, которые предоставляла **gptransfer**.
- Системная таблица **gp_fault_strategy**. Теперь для определения включенного зеркалирования база данных **ADB** использует системную таблицу **gp segment configuration**.
- Утилиты управления **gpcrondump**, **gpdbrestore** и **gpmfr**. Теперь для резервного копирования и восстановления базы данных используется **gpbackup** и **gprestore**.
- Veritas NetBackup.
- Прямой ввод-вывод для обхода буферизации памяти в кэше файловой системы для резервного копирования.
- Протокол внешних таблиц **gphdfs external table protocol** для доступа к системе **Hadoop**. Теперь для доступа к **Hadoop** используется платформа расширения **Platform Extension Framework** (**PXF**).
- SSLv3.
- Следующие параметры конфигурации сервера:
 - gp analyze relative error
 - gp backup directIO
 - gp_backup_directIO_read_chunk_mb
 - gp connections per thread
 - gp enable sequential window plans
 - gp idf deduplicate
 - gp snmp community
 - gp snmp monitor address
 - gp snmp use inform or trap
 - gp workfile checksumming
- Недокументированная функция **gp_cancel_query()** и параметры конфигурации **gp cancel query print log** и **gp cancel query delay time**.

- Функция string_agg(expression), объединяющая текстовые значения в строку. Функция string agg(expression, delimiter) по-прежнему поддерживается.
- Больше не поддерживается возможность настройки системы базы данных для запуска триггеров SNMP (Simple Network Management Protocol) или отправки уведомлений по электронной почте системным администраторам при возникновении определенных событий в базе данных. Теперь для обнаружения и реагирования на происходящие в **ADB** события используются оповещения Command Center.
- Утилита **gpfilespace**. Команде CREATE TABLESPACE больше не требуется файловое пространство, созданное утилитой.
- В **Arenadata DB 6** больше не выполняется автоматическое преобразование текста из устаревшего формата временных меток **YYYYMMDDHH24MISS**. Формат не может быть однозначно проанализирован в предыдущих выпусках базы данных. Формат не поддерживается в **PostgreSQL 9.4**. Например, эта команда возвращает ошибку в базе данных **ADB 6** (в предыдущих версиях возвращается метка времени):

```
# select to_timestamp('20190905140000');
```

В версии **ADB** 6 метка времени возвращается по такой команде:

```
# select to_timestamp('20190905140000','YYYYYMMDDHH24MISS');
```

В **Arenadata DB 6** больше не поддерживаются следующие функции:

• Параметр конфигурации сервера **gp_ignore_error_table** устарел и будет удален в следующем мажорном выпуске.

При удалении этого параметра из **ADB 6** база данных возвращает ошибку, если команда **CREATE EXTERNAL TABLE** или **COPY** содержит условие из **ADB 4** INTO ERROR TABLE. Поэтому рекомендуется устанавливать значение данного параметра **true** во избежание ошибки базы данных при запуске приложений, выполняющих указанные команды.

- Specifying в качестве имени оператора в команде CREATE OPERATOR.
- API таблицы external table C API. Вместо данного API рекомендуется использовать новый Foreign Data Wrapper API.

Ключевые отличия ADB от open-source аналога

ADB 6 имеет ряд ключевых отличий от open-source аналога:

- Установка продукта с помощью **ADCM**;
- Интеграция с бандлом мониторинга **ADCM**;
- Поддержка расширенного двустороннего обращения к источникам и приемникам данных через **JDBC**;
- Поддержка коннектора для Clickhouse (в enterprise версии).

Release Notes

6.1 6.19.1 arenadata31

6.1.1 Features and Improvements

- Sync with upstream 6.19.1
- Hidden servername in https group adcc service
- Added ADB Loader tools for RHEL 8
- Added ability to deploy maintenance scripts for several databases
- Enabled back log_lock_waits GUC
- Built docker-compose rpm package 1.29.2
- Added Delete PXF Action
- Moved "disable firewall" option on cluster level from ADB service
- ADCC Release 3.3.0:
 - Added support data audit
 - Bumped log4j2 dependencies
 - Added support background jobs history
 - Added support virtual memory for process
 - Added support for the service load ratio
 - Changed sort order for metrics with NULLS LAST in Query Monitor/History
 - Added new system endpoints
 - Reworked top menu

6.1.2 Fixes

- Wrong column binding is used to extract values from SharedScan node
- [gptkh] Distributed table test2 tmp 3054 looks at itself
- [gptkh] Error in parsing settings for Distributed tables
- Coordinator doesn't use quote escaping for GUCs values when restore on QE

• sshd option 'MaxStartups' must be added before 'Match'

6.1.3 Known Issues and Workarounds

Issue

Gradual memory leak on mirror segments: issue # 13067

Workaround

Increase monitoring for memory consumption in a cluster, and if possible restart cluster during the maintenance. Issue will be patched in next release.

6.2 6.18.2 arenadata30

6.2.1 Features and Improvements

- Sync with upstream 6.18.2
- [6X backport] Implement archive mode always
- [6X backport] Zero fill pages skipped by a force WAL switch
- Added kafka connector 1.0.4
- Added plcontainer 2.1.5
- ADCC Release 3.2.5:
 - Added supporting https in ADCC ssl
 - Added new parameter maxMessageKbSize to adcc-agent config file
 - Fixed agent stops processing query metrics due to RejectedExecutionException

6.2.2 Fixes

• [power] Fixed unexpected subplans order leads to subselect gp test fails

6.3 6.18.0 arenadata29

6.3.1 Fixes

- Fixed when accessing from AO table Index returns the wrong result
- kafka-fdw: fixed garbage in output at least for format text
- gpbackup: fixed when it handles empty tables set for an incremental data backup properly
- gpbackup: fixed when it hangs forever when interrupted
- ADCC Release 3.2.4:
 - Added message size check
 - Fixed re-sending of incorrect messages
 - Added settings maxMessageKbSize to agent.properties
 - Fixed getting system metrics from clickhouse

6.4 6.18.0 arenadata28

6.4.1 Features and Improvements

- Sync with upstream 6.18.0
- gpbackup: added explicit order of tables by pg_class.relpages during gpbackup
- PXF: added support for partitioning query for Sybase
- ADCC Release 3.2.2:
 - adcc-extension: added database and username to plan message
 - adcc-extension: disabling lock polling to avoid sending huge locks snapshots to agents
 - Added support for multi clusters
 - Added system metrics: CPU, RAM, IO
 - Added actualization for hanging queries
 - Added Clickhouse Database for saving draft system metrics
 - Added dynamically adding columns to history and monitoring forms
 - Added information about background processes on the system status information page

6.4.2 Fixes

- Fixed unexpected SIGSEGV error on Reindex operation
- madlib on ppc64le arch included into build
- Fixed when gpbackup may dump partitioned table's data twice
- \bullet Fixed Not enough memory reserved for the statement when calling the function multiple times for CTE SELECT statement in PL/pgSQL function on table with lot of partitions

6.5 6.17.5 arenadata26

6.5.1 Features and Improvements

- Sync with upstream 6.17.5
- ADB Bundle: added Delete action for Monitoring Clients
- ADB Bundle: added Ready to upgrade status for bundle upgrade

6.5.2 Fixes

• Fixed low CPU performance on Power with new added CGLAGS build options

6.6 6.17.2 arenadata 26

6.6.1 Features and Improvements

- Sync with upstream 6.17.2
- Sync with pxf release-5.16.3
- Sync with gpbackup 1.21.0 release

- Sync with gpbackup-s3-plugin 1.7.0 release
- Added build for Power8 LE platform (ppc64le arch)
- ADCC Release 3.1.3

6.6.2 Known Issues and Workarounds

Issue

madlib on Power8 (ppc64le arch) breaks gpdb build

Workaround

No workaround. madlib is not included into Power8 (ppc64le arch) build.

6.7 6.17.1 arenadata25

6.7.1 Features and Improvements

- Sync with upstream 6.17.1
- Implement ZSTD compression support for gpbackup
- adcc-extension: send schema name in Node message
- ADB Bundle: external database connection for ADCC Database
- ADCC Release 3.1.0:
 - Time-based Retention Policy
 - Fine-grained access to multiple databases for Advanced users
 - Show extended information about error in ADCC
 - Add info on ADCC/ADB versions and docs from ADCC web interface
 - Add scaling to plan modal window
 - Add column search filters and sorting for ADCC pages Query Monitor/History
 - ADCC UI updates

6.7.2 Fixes

- Security Patch for cve-2020-25695 (sandbox escape)
- kafka-fdw: fixed when segments fails after SELECT operation from KafkaToADB external table with batch size more than 40000 <msg_count> * 40 bytes
- Fixed when Postgres optimizer produces bad plan for replicated table with index
- adcc-extension: fixed when expected segment distributed transaction context was 'Segment Prepared'
- adcc-extension: fixed when there is no possibility to differ QueryStatus for slices that executed on master
- [Power] fixed bogus compiller error during pg upgrade compilation

6.8 6.16.3 arenadata24

6.8.1 Features and Improvements

- Sync with upstream 6.16.3
- [6X backport] Detect POLLHUP/POLLRDHUP while running queries
- adcc-extension: Retrieve and send error text
- ADB Bundle: Define adjustable parameters for ADCC
- ADCC Release 3.0.3:
 - New UI Backend Server
 - Query Details and Monitoring: canceling and terminate
 - Query Details: Locks and Blocks
 - Support displaying information for the ADCC agent
 - Query plan details are truncated
 - Support LDAP authentication

6.8.2 Fixes

- ERROR: header checksum does not match
- [6X] Restrict execution for multilevel correlated queries
- adcc-extension: view with security barrier

6.8.3 Known Issues and Workarounds

Issue

kafka-fdw of versions 0.11-0.12 (they were ported since $6.15.0_arenadata17$) is known to have a bug when batch size exceeds 40000 - $msg_count>*$ 40 bytes. SELECT operation from KafkaToADB external causes SEGFAULT. The fix on the issue is expected in a next ADB release.

Workaround

Do not use batch size larger than $40000 - (msg_count) * 40$ bytes if you read more that one message (when reading just one message no any limits exist).

6.9 6.16.2 arenadata21

6.9.1 Features and Improvements

- Sync with upstream 6.16.2
- PXF: remove tuple count check for jdbc INSERT
- [6X Backport] Shrink to zero relation's segment files on truncate and delete
- ADCC: Add jvm arguments for logging

6.9.2 Fixes

• Fixed gpbackup failure when foreign tables are present in a backuping database: gpbackup tries to acquire lock on foreign table

Important: For installing or upgrading to 6.16.2 arenadata21 use ADCM version 2021.05.26.12 or higher

6.10 6.16.1 arenadata20

6.10.1 Features and Improvements

- \bullet Sync with upstream 6.16.1
- ADCC Release 2.1.1
- [6X Backport] ORCA fails with SIGSEGV on queries to view under table with dropped columns
- [6X backport] elog function ignore multibyte encoding when truncate long messages
- ADB Bundle: Set netcat timeout for send metrics to monitoring in Altlinux
- Kafka-ADB Connector: Allow user to set custom librdkafka options

6.10.2 Fixes

- Fixed when PartitionSelector mechanism doesn't return tuples in case of type mismatch
- Fixed adcc-extension: unknown node with id==5 for subplan in values
- Fixed adcc-extension: lost locally planed mark for node status messages for query with custom aggregate
- Fixed wrong CCNTs for plans dispatched after InitPlans were executed
- Removed redundant Gpmon Incr Rows Out() calls from internal sort functions
- Fixed invalid variable specified in segment directory path check in ADCM

6.10.3 Known Issues and Workarounds

Issue

gpbackup utility of versions 1.20.1-1.20.4 is known to have a bug when foreign tables are present in a backuping database. Backup fails with error SQLSTATE 42809. The fix on the issue is expected in a next ADB release.

Workaround

Replace current gpbackup with version 1.20.0 which included in ADB 6.13.0 arenadata12.

6.11 6.16.0 arenadata19

6.11.1 Features and Improvements

- Sync with upstream 6.16.0
- Implement diskquota extension update
- Add gp enable gpperfmon=on parameter on master and segment server for ADCC

6.12 6.15.0 arenadata18

6.12.1 Features and Improvements

- [6X backport gpdb PR 11625] pg rewind: avoid removing log files
- Add \$PXF CONF and \$PXF HOME env variable on PXF hosts
- Kafka-ADB Connector: Implement signal handlers to interrupt consuming
- Port ADB to Alt Linux 8.2

6.12.2 Fixes

- Fixed invalid values in prodata access attribute of pg proc relation after cluster initialization/upgrade
- Fixed when Kafka-ADB Connector do not consider partitions empty when a query for their watermark offsets fails on timeout
- [6X Backport] ORCA produces incorrect plan for NOT IN clause

6.13 6.15.0 arenadata17

6.13.1 Features and Improvements

• Implement Arenadata Command Center 2.0

6.13.2 Fixes

• Broken URL in ADB bundle service description

$6.14\ 6.15.0_arenadata16$

6.14.1 Features and Improvements

- Sync with upstream 6.15.0
- Implement switchover from master to standby via ADCM

6.14.2 Fixes

- Kafka-ADB-connector: issue with converting AVRO dates before UNIX epoch to GPDB representation
- Kafka-ADB-connector: issue with GPDB representation of AVRO double number that has more than 6 digits after radix point
- Kafka-ADB-connector: issue with wrong interpretation for AVRO timestamps that below zero

6.15 6.14.1 arenadata14

6.15.1 Features and Improvements

- Sync with upstream 6.14.1
- Add link to main page in ADCC logo

6.15.2 Fixes

- Fix resource group waiting queue corruption
- \bullet pg_aocsseg inconsistency after column addition rollback
- Remove online loading of static resources from the ADCC web interface
- Cluster failed after single segment-host lost due to FTS misbehavior
- Multiline text in CSV output from gplogfilter is incorrect

6.16 6.14.0 arenadata13 b2

6.16.1 Features and Improvements

• Fixup incorrect links in repos of b1 release

6.17 6.14.0 arenadata13

Sync only release

6.17.1 Features and Improvements

• Sync with upstream 6.14.1

6.18 6.13.0_arenadata12

6.18.1 Features and Improvements

- Tkhemali-connector: Avoid intermediate conversion to byte array
- Remove obsolete batching options in ADQM Connector (sinse we are using TEXT now)
- Sync with upstream 6.13.0 codebase
- Bump to latest version of additional components
- Reduce noise in logs about gpstate
- Support auxilliary relations that belongs to AO table to be income to pgstattupe extension to exactly estimate bloat of these relations

6.18.2 Fixes

- GPDB fails after activation developer gucs of PostgreSQL
- Orca optimizer builds inefficient query plan
- Column-wise statistics target parameter doesn't apply to partitioning tables
- Error gpactivatestandby when run it too fast after power off master
- Mistake in the parsing of decimal part for time logical types
- Scale is applied incorrectly for decimal values what has a length less than precision

6.19 6.12.1 arenadata11

6.19.1 New Features

- Sync code base with upstream GPDB 6.12.1
- Add ofset function to Kafka (ADS) connector
- Add rest committed function to Kafka (ADS) connector
- Implement 'text' format for kafka connector
- Provide JVM OPTS setting for PXF
- Support AVRO logical types in Kafka-ADB connector
- Switch to new way of postgis installation
- $\bullet \ \, Kafka-ADB: \ \, Use \ \, rd_kafka_query_watermark_offsets \ \, to \ \, validate \ \, partition-offset \ \, pairs$

6.19.2 Fixes

- ADCC disk space usage troubles in case of coredumps
- gprestore ERROR: missing data for column
- "The limit of distributed transactions has been reached" error on secondary
- WindowFunc with winref 1 assigned to WindowAgg with winref 2 (nodeWindowAgg.c:2264)
- Wrong behavior with grouping function
- Exclusive lock on any partitioned table locks the pg partitions view.
- Server locks kadb.offsets table