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Introduction

Thermal multispectral imagery is imperative for a plethora of en-

vironmental applications. Unfortunately, there are no publicly-

available datasets of thermal multispectral images with a high spa-

tial resolution that would enable the development of algorithms

and systems in this field. To tackle this issue, we designed a

narrow-band (monochromatic) thermal image generator, condi-

tioned on a wide-band (panchromatic) input image. We further

augmented the model with physically modeled prior information

to improve the model’s training stability and increase its output’s

fidelity. Our contributions are:

Introduction of a novel thermal aerial images dataset with

unpaired images of different spectral bands.

Application of UI2I between different thermal image

modalities;

Development and utilization of an analytic-physical-UI2I

translation model;

Thermal Aerial Multispectral Dataset

The data for training our model was collected using a lightweight

airplane, 2000 meters above ground. The plane conducted sev-

eral flights, each with some IR filter (monochromatic) or without

(panchromatic).

Due to the nature of flight conditions, data collected for each

channel is inherently unpaired to the others, which led us toward

developing an UI2I solution.

Physical background

Blackbody Radiation: electromagnetic emission of an ideal

opaque object due to its temperature, described by the

Stephan-Boltzmann equation:
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Thermal image intensity depends on the both the object’s

temperature (Tobj) and the camera’s intrinsic temperature

(Tint). Nugent et al. [1] suggested 3rd order polynomials for

the dependency in the ambient temperature:
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Method

Physical UI2I model

We rely on Nugent et al.’s theorem to calibrate 2 physical
polynomial transformations:
Transformation of panchromatic intensities to object temperatures:
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Transformation of object temperatures to monochromatic intensities.
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The two transformations are cascaded to get a complete

panchromatic to monochromatic UI2I model.

PETIT

Our physical UI2I model is fused with a deep generative

adversarial network (GAN) generator, who’s architecture is

based on those of CycleGAN [3] and CUT [2].
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The physical estimator is used to produce a raw

approximation of the desired output, leaving the deep

estimator with the task of predicting the finer residual

details.

Quantitative Results

Configuration FID

Backbone Int Phys Caption Mean Std

CycleGan

7 7 Baseline 51.05 9.82

7 3 35.54 3.72

3 7 50.17 8.89

3 3 PETIT 33.8 1.23

CUT

7 7 Baseline 38.43 1.52

7 3 29.85 0.99

3 7 48.88 1.46

3 3 PETIT 27.35 1.01

Qualitative Results

In accordance with the quantitative results, the monochromatic

outputs produced by PETIT seem to be of superior quality com-

pared to all other configurations. Generally speaking, PETIT’s out-

puts incur less spurious artifacts and exhibit stronger fidelity to

real monochromatic modality.

(a) Pan (input) (b) CycleGAN (c) CUT (d) PETIT (e) Mono (ref)

Conclusions

Physical modeling is beneficial for thermal UI2I translation.

PETIT beats deep SOTA UI2I models both quantitatively (by

≈ 50%!) and qualitatively.

Fidelity of generated monochromatic images is good enough

for synthesizing an artificial multispectral dataset.
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