NeuralStore: Efficient In-database Deep Learning Model
Management System (Extended Version)

Paper No: 518

Abstract

With the prevalence of in-database Al-powered analytics, there
is an increasing demand for database systems to efficiently man-
age the ever-expanding number and size of deep learning models.
However, existing database systems typically store entire models as
monolithic files or apply compression techniques that overlook the
structural characteristics of deep learning models, resulting in sub-
optimal model storage overhead. This paper presents NeuralStore, a
novel in-database model management system that enables efficient
storage and utilization of deep learning models. First, NeuralStore
employs a tensor-based model storage engine to enable fine-grained
model storage within databases. In particular, we enhance the hier-
archical navigable small world (HNSW) graph to index tensors, and
only store additional deltas for tensors within a predefined simi-
larity threshold to ensure tensor-level deduplication. Second, we
propose a delta quantization algorithm that effectively compresses
delta tensors, thus achieving a superior compression ratio with
controllable model accuracy loss. Finally, we devise a compression-
aware model loading mechanism, which improves model utiliza-
tion performance by enabling direct computation on compressed
tensors. Experimental evaluations demonstrate that NeuralStore
achieves superior compression ratios and competitive model load-
ing throughput compared to state-of-the-art approaches.

CCS Concepts

« Information systems — Database management system en-
gines; Database design and models.

Keywords
In-database Analytics, Deep Learning Model, Storage Engine

ACM Reference Format:

Paper No: 518. 2026. NeuralStore: Efficient In-database Deep Learning Model
Management System (Extended Version). In Proceedings of ACM Interna-
tional Conference on Management of Data (SIGMOD °26). ACM, New York,
NY, USA, 16 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Modern database management systems (DBMSs) are increasingly
integrating artificial intelligence (AI) to support advanced data ana-
lytics [7, 15, 32, 33, 41, 43]. Such in-database Al-powered analytics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 26, Bengaluru, India

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2026/06

https://doi.org/XXXXXXX.XXXXXXX

enable users to issue complex data analytics tasks through special-
ized SQL interfaces [32, 46, 47]. DBMSs then automatically retrieve
the relevant stored data and perform Al inference to provide deeper
insights that traditional statistical operations (e.g., averages and
sums) often fail to capture. As a result, the entire Al analytic work-
flow occurs within the database, which eliminates the need to move
large amounts of data outside DBMSs, and thus facilitates efficient
and secure analytics [15, 42].

Sectors such as finance [16, 20] and e-commerce [32, 33] are
rapidly adopting in-database Al-powered analytics in their criti-
cal business workflows, and with the advancements of Al, deep
learning (DL) models have become prevalent. Consider purchase
recommendations in e-commerce as an illustrative example, where
items are recommended based on personal user profiles, includ-
ing habits, occupations, and lifestyles. As user profiles typically
contain sensitive information, such as salary and browsing his-
tory, in-database analytics is particularly suitable for handling such
recommendation tasks. To enable precise and personalized recom-
mendations, e-commerce vendors commonly deploy specialized
DL models tailored to different users, regions, or customer seg-
ments. These specialized models are often derived from fundamen-
tal pre-trained DL models [45], which may consist of dozens or
even hundreds of layers, each potentially requiring gigabytes of
storage [30, 38, 39]. Further, as user profiles continuously evolve
over time, these specialized models must be regularly updated or
fine-tuned, leading to a steadily increasing number of models. As
a result, efficient in-database DL model management (i.e., storing
and loading DL models directly within DBMSs) has become a foun-
dational capability for in-database Al-powered analytics.

Existing in-database model management approaches generally
treat each model as an isolated unit and store full-fledged mod-
els independently. For example, DBMSs such as PostgresML [7],
Oracle [6], and Azure [4] serialize each model into a BLOB and
store it directly in a dedicated model table [4, 6, 7]. Alternatively,
systems such as ModelDB [39], RAVEN [33], and Vertica-ML [15]
store file paths in the table, while placing the actual models as ex-
ternal files. Although straightforward, these methods suffer from
substantial storage overhead, as storing hundreds of models can
require terabytes of space due to redundant parameters and deep
architectures. This overhead grows rapidly with the scale and com-
plexity of DL model deployments. To mitigate storage costs, users
can manually compress models before storing them into DBMSs
using general data compression algorithms [2, 8, 26], floating-point
compression schemes [26], or specialized model compression meth-
ods [38]. However, such optimization only partially addresses the
storage issue, as they still handle each model independently, i.e.,
the overall storage cost remains proportional to the total number
and size of models [38]. This persistent linear growth in storage

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

overhead presents a critical bottleneck for scalable DL model man-
agement. Addressing this challenge requires new strategies that
exploit structural similarities across models to reduce redundancy.
Storing a DL model involves two core components: 1) the model
architecture, typically represented as a computational graph that
defines the connectivity and operations of layers; and 2) a set of
layers, where each layer comprises one or more high-dimensional
floating-point tensors. As model fine-tuning is relatively common,
many DL models share similar architectures and contain identical
or highly similar tensors, particularly when fine-tuning is limited to
a subset of layers [21, 30, 38]. This observation naturally motivates
us to explore similarities and relationships across models, thus
eliminating redundancy and improving overall storage efficiency.
Given that the model’s learnable parameters (e.g., weights and
biases) in tensors constitute the majority of a model’s storage cost,
we aim to identify redundant tensors and store only incremen-
tal differences between similar tensors. However, achieving this
tensor-level deduplication requires addressing three key challenges:
First, similarities between tensors are implicit. For instance, two
models without explicit lineage may still contain similar tensors.
Consequently, effectively identifying similar layers across a large
collection of models is inherently challenging. Second, tensors typi-
cally consist of high-entropy floating-point parameters. Even if two
tensors exhibit similar structures and parameters, directly calculat-
ing their parameter-wise differences can result in a delta tensor of
identical dimensionality, yielding little to no storage savings. Thus,
generating compact delta tensors that meaningfully reduce storage
consumption is not straightforward. Third, since models are stored
as fine-grained delta tensors, retrieving a model involves recon-
structing the complete model based on these tensors. Due to the
complexity and depth of DL models, this reconstruction process can
be costly, and therefore, efficiently retrieving models is non-trivial.
In this paper, we present NeuralStore, an efficient in-database
model management system designed to reduce DL model storage
costs while streamlining model utilization. We first propose a tensor-
based storage engine that departs from traditional per-model stor-
age by identifying and storing shared tensor components across
models, significantly improving space efficiency through structured
deduplication. At its core is a high-performance tensor index built
upon the Hierarchical Navigable Small World (HNSW) graph struc-
ture. Specifically, we categorize tensors into two types: base tensors,
which store original parameters, and delta tensors, which maintain
differences relative to a corresponding base tensor. Base tensors are
stored as nodes in the HNSW-based tensor index, while delta ten-
sors are placed separately in dedicated tensor pages. When saving a
new model, we deconstruct it into individual tensors, and for each
tensor, we search the tensor index to determine whether a similar
base tensor already exists within a predefined similarity threshold.
If such a base tensor is found, we compute and store the correspond-
ing delta tensor; otherwise, unmatched tensors are stored as new
base tensors. To integrate this design seamlessly into DBMSs, we
build the tensor-based storage engine on top of modern database
architecture, with enhancements specifically designed for efficient
DL model management. In particular, we introduce a tailored index
cache that efficiently buffers portions of the HNSW-based tensor
index and extend the native page layout to support large tensors
without disrupting the existing page-based storage mechanism.

Paper No: 518

We then introduce a delta quantization algorithm that com-
presses delta tensors to achieve reduced storage overhead. Un-
like traditional quantization that operates on complete models, we
quantize delta tensors, whose parameter ranges are typically much
narrower than those of the original tensors. This mitigates the accu-
racy loss commonly associated with traditional model quantization.
Moreover, our algorithm is adaptive, dynamically selecting the bit
width for each delta tensor based on its parameter distribution,
enabling fine-grained control over the trade-off between storage
efficiency and model accuracy.

Lastly, we design a compression-aware model loading mecha-
nism that enables direct computation on compressed tensors, elim-
inating the need to fully reconstruct models before use. Unlike
traditional pipelines that first decompress models into memory, our
approach integrates the reconstruction directly into the computa-
tion graph and pipelines tensor loading with computation. This
tight integration reduces inference latency and memory overhead,
improving model loading performance in in-database settings.

In summary, we make the following contributions:

e We present NeuralStore, a novel in-database DL model man-
agement system that enables efficient tensor-level storage and
loading.

e We introduce a structured tensor-based storage engine that can
be seamlessly integrated into modern DBMSs.

e We develop an adaptive delta quantization algorithm that min-
imizes storage by dynamically adjusting the bit width for each
delta tensor.

e We design a compression-aware model loading mechanism that
supports direct computation over compressed tensors, reducing
the overall in-database Al-powered analytics latency.

e We implement NeuralStore as a pluggable PostgreSQL extension
and evaluate its performance against state-of-the-art systems.
Experiment results demonstrate substantial gains in end-to-end
Al-powered analytics performance, storage efficiency, and model
saving and loading throughput.

e We integrate NeuralStore into DuckDB, and the performance
evaluation confirms its general extensibility.

The remainder of the paper is structured as follows. Section 2
provides the relevant background and presents the problem state-
ment. Section 3 overviews the system architecture of NeuralStore.
Section 4 details the design of NeuralStore. Section 5 describes the
system implementation, and Section 6 presents the experimental
results. Section 7 reviews the related works, and finally, Section 8
concludes the paper.

2 Background

In this section, we provide the relevant background and formally
define the problem that NeuralStore aims to address.

2.1 In-database Al-powered Analytics

In-database Al-powered analytics enables DBMSs to handle com-
plex data analytics tasks via specialized SQL syntax [6, 32] or user-
defined functions (UDFs) 7, 43]. For example, let us consider the
click-through rate (CTR) prediction task, as shown in Figure 1. A
data analyst submits a query to estimate CTR scores, i.e., the prob-
ability of a user clicking on the product. Upon receiving the query,

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

Al Analytics Query ! U
SELECT product.id, score H &@

FROM user JOIN product Model /Ye's Load Model

Query Result

Product A (score: 0.76)

= ||| Product B (score: 0.71)

CROSS APPLY predict_ctr(: L Exist? \N,i - :
user”, product.”, model_id | 4 Re‘ge"e Data Inference ! Product C (score: 0.68)
) As score s Train / Fine-tune Model g

Product D (score: 0.90)
WHERE user.name = 'Sam’

Data Storage

Figure 1: In-database AI-powered Analytics Workflow - It
consists of three main steps: (1) data retrieval, (2) model loading,
and (3) inference.

the DBMS retrieves relevant data (e.g., product ID, user name, etc.)
from the user and product tables, loads the DL model specified by
the model ID, and performs model inference to predict CTR scores.

Since different analytics tasks often require different DL mod-
els, a model repository is typically maintained, where models are
stored as files or binary large objects (BLOBs). Each model may
have dozens or hundreds of layers and consume gigabytes of stor-
age, and therefore, repeatedly loading these large models from
disk for different tasks can introduce substantial latency. Moreover,
with ongoing data updates, models need to be frequently retrained
or fine-tuned to maintain accuracy. For instance, a CTR predic-
tion model may generate multiple updated versions over time to
reflect new user and product data, which significantly increases
storage overhead. These factors limit the scalability of in-database
Al-powered analytics and degrade the response time of analytics
queries. To address these challenges, we design NeuralStore, an
in-database model management system that reduces model storage
overhead and improves model loading efficiency.

2.2 Storage Optimizations for DL Models

Existing storage optimization techniques for DL models can be
broadly categorized into general-purpose data compression algo-
rithms and model-specific compression techniques. General com-
pression algorithms, such as ZSTD [8], can be directly applied to
serialized DL model files, and are effective at removing exact dupli-
cate patterns in the data. However, DL models rarely contain such
duplicates [30, 38], especially across layers with diverse weights.
Similarly, floating-point compression schemes such as ZFP [26] per-
form well on structured, spatially local data, but not on DL models
whose weights are typically high-dimensional, continuous, broadly
distributed, and lack spatial regularity. These characteristics limit
the effectiveness of generic compressors.

Model-specific compression techniques address the aforemen-
tioned shortcomings. In particular, ELF [38] eliminates the exponent
bits of floating-point values within the range (-1, 1) by remapping
them to the interval [1, 2), to improve compressibility. Nonetheless,
ELF operates on each model in isolation, missing opportunities to
exploit shared structure across models.

Rather than optimizing each model independently, we aim to re-
duce storage costs by leveraging inter-model similarities and shared
components. NeuralStore builds on this idea by enabling tensor-
level deduplication, identifying and reusing redundant model com-
ponents across a collection.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

2.3 Hierarchical Navigable Small World

Approximate Nearest Neighbor search (ANN) is a technique for
efficiently identifying data points in high-dimensional spaces that
are approximately closest to a given query point [14, 40]. Existing
ANN algorithms can be categorized into hashing-based [12, 22],
tree-based [35], quantization-based [24, 48], and graph-based ap-
proaches [17, 29]. Among these, the Hierarchical Navigable Small
World (HNSW) graph [29], a state-of-the-art graph-based method,
is widely adopted due to its ability to achieve high recall with
low query latency. HNSW organizes data points into a multi-layer
graph structure. Each layer forms a navigable small-world graph,
where nodes are connected to their approximate nearest neighbors.
Higher layers provide coarse-grained shortcuts, while the lower
layers enable fine-grained local search. Given a query, the search
algorithm starts from a high-level node and performs greedy search
layer by layer, descending through the hierarchy until it reaches
the bottom layer, where it refines the search to identify the approx-
imate nearest neighbor. Formally, let G = (V, E) denote the HNSW
graph, where V is the set of data points represented as vertices,
and E consists of edges between points, weighted by their pairwise
distances. Given a query point g and an entry point o9, HNSW iter-
atively traverses the graph to find the neighbor v;41 of the current
vertex v, that is closest to g. This process continues until no closer
neighbor is found, at which point the current node is returned as
the approximate nearest neighbor.

In NeuralStore, we leverage HNSW to index base tensors effi-
ciently. This allows us to identify previously stored base tensors
that are most similar to a given input tensor.

2.4 Post-training Model Quantization

Quantization is designed to reduce the computational and mem-
ory costs of DL models [18, 19, 25]. It maps a model’s weights
and activations to lower-precision formats (e.g., from Float32 to
Int8). In general, quantization techniques can be classified into
quantization-aware training (QAT) [13, 23] and post-training quan-
tization (PTQ) [27, 31, 44]. QAT integrates quantization opera-
tions during model training, while PTQ is performed after model
training. In PTQ, a Float32 tensor 0 = {x1, x2, ..., xn }, where x; €
[Xmin, Xmax] is quantized to a tensor of b-bit integers q1,q2, . . ., qn
using a scale factor s = W and a zero-point offset z. Each
value is quantized as q; = round (W) +2z. While PTQ is simple
and efficient, it inevitably introduces precision loss, especially when
the dynamic range of X is wide or the bit width b is small.

Unlike traditional use cases of PTQ, we leverage PTQ in the con-
text of model management. We observe that delta tensors, i.e., the
differences between similar tensors across models, typically exhibit
smaller value ranges than the original tensors. As a result, applying
PTQ to delta tensors can help mitigate the accuracy degradation
typically associated with quantizing full tensors. To further reduce
precision loss, NeuralStore dynamically adjusts the quantization
bit width b for each delta tensor, based on its value distribution
and a user-defined accuracy tolerance. This enables fine-grained
compression while preserving model performance.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

2.5 Problem Definition

Modern DBMSs increasingly support Al-powered analytics by in-
corporating DL models. In this context, in-database model man-
agement refers to the capability of DBMSs to store and utilize DL
models efficiently. A well-designed system must achieve the follow-
ing three objectives: (1) Storage consumption: Minimize the total
storage required to maintain a collection of models, especially as
the number and size of models grow. (2) Model accuracy: Preserve
the predictive performance of models, particularly when storage-
saving techniques (e.g., quantization or compression) are applied.
(3) Query efficiency: Ensure high-throughput model loading and
low-latency inference to support analytical workloads.

However, these objectives are often in tension with one another.

For example, aggressive compression may reduce storage overhead,
but at the cost of increased precision loss or additional decoding
overhead during inference. Similarly, techniques that improve load-
ing efficiency may require storing uncompressed or partially com-
pressed models, thereby increasing storage consumption. Given
these trade-offs, it is typically infeasible to optimize all three objec-
tives simultaneously [43, 50]. In this work, we focus on minimizing
storage consumption, which becomes increasingly critical as the
number and size of models grow, while maintaining acceptable
model accuracy and reasonable query efficiency. In particular, we
ensure that the accuracy degradation caused by our approach re-
mains within a user-defined tolerance, and the model is efficient
for retrieval and inference. We now formally define the problem
addressed by NeuralStore.
Problem definition. Let M = {Mj, My, ..., My} denote a set of
n DL models, where each model M; consists of a set of L; layers,
ie, M; = {1, 42 ...,41,} Each layer ¢ ; contains a set of K; j
learnable tensors: £;; = {0(1) GA(ZA) Q(K”)} R Q(k) € Rd(k),
where d (K) refers to the dimensionality of the k-th learnable tensor
in layer Jj of model M;. Given a precision loss tolerance p (e.g.,
a relative or absolute error bound), the goal of NeuralStore is to
jointly minimize the total storage cost and query latency of the
DL model collection, while ensuring that the compression-induced
accuracy loss remains within acceptable bounds. Formally, let S(M)
denote the total storage cost of the model collection M, and T(M)
denote the total query latency (e.g., model loading and inference
time). The optimization objective can be defined as:

min «a-S(M)+p-T(M),

subject to VM; € M, Error(M;) < p. @

Here, @ and f are user-defined weights that balance the im-
portance of storage efficiency and query performance. Error(M;)
represents the quantifiable accuracy degradation introduced by
compressing model M;, such as layer-wise tensor deviation or loss
in downstream prediction accuracy.

3 System Overview

In this section, we describe the system architecture of NeuralStore.
As shown in Figure 2, NeuralStore comprises three core compo-
nents, namely the model compressor, the model loader, and the
storage layer. Upon receiving users’ Save model requests, the model
compressor is invoked to reduce the model size using our delta

Paper No: 518

Model Loader

Index Storage

HNSW Indexes

v

Load Model

Delta Tensor Storage

Quantized Delta

\2

[

Meta Storage

T

Save Model

Figure 2: System Architecture of NeuralStore — The system
supports two main workflows: (1) model saving (red), where models
are compressed before being stored, and (2) model loading (blue),
where models are retrieved by the model loader.

quantization algorithm. The compressed tensor, updated ANN in-
dexes, and model architecture are then serialized and stored in
the storage layer. During model inference, users send Load model
requests to the model loader, which fetches the compressed ten-
sors from the storage layer and performs computation without full
decompression. Next, we describe each component in detail.
Storage Layer. The storage layer is responsible for managing all
model-related data in NeuralStore, including HNSW, tensors, and
model architectures. NeuralStore persists HNSW on disk, which are
loaded into memory at runtime and used by the model compressor
for efficient similarity search. To reduce the size of HNSW, we
store the 8-bit quantized tensors in the vertices as the base tensors.
NeuralStore stores model tensors as quantized deltas with respect
to the corresponding base tensors. The quantization parameters,
such as zero point and scale, are serialized and stored as the prefix of
each quantized delta and tensor. Additionally, the serialized model
architectures are stored in the meta storage. NeuralStore uses a
relational table to organize model metadata, including model IDs
and names, so that external users can easily manage and interact
with models in the database.

Model Compressor. The model compressor is used to reduce the
model size using our delta quantization algorithm (Section 4.2)
according to the following steps. (1) The system first decouples
model weights from the model architecture. This separation allows
NeuralStore to manage weights at the granularity of individual
tensors. (2) A similarity search is performed for each tensor to
locate the most similar base tensor in the system. (3) The delta
between the input tensor and the base tensor is then computed.
(4) If the delta is sufficiently small to be quantized within the user-
defined bit width, it is stored in the storage layer. Otherwise, a new
HNSW vertex is created using the quantized value of the input
tensor, and the process repeats from Step (2).

Model Loader. The model loader is designed to efficiently retrieve
the required models using the compression-aware model loading

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

Index Storage

Model Architecture Delta Tensor Storage

Tensor Page

398

i

Tensor Page

Tensor-based Storage Engine

Figure 3: Tensor-based Storage Engine - The engine consists of
three components: index storage for HNSW-based indexes, delta
tensor storage, and metadata storage for model architectures.

mechanism. Specifically, NeuralStore loads the base tensors, delta
tensors, and the computation graph into memory. To facilitate fast
retrieval, tensors are loaded without full decompression, i.e., de-
quantization and reconstruction. The shared base tensor is loaded
only once, even when referenced by multiple layers or models. To
reduce the memory usage, we modify the computation graph upon
retrieval so that tensors are only de-quantized and reconstructed be-
fore they are invoked in the computation. NeuralStore then follows
the modified computation graph to compute the results.
Running Example. Let us continue the CTR prediction example
shown in Figure 1. After receiving the analytics task, the data-
base retrieves relevant data and initiates a Load Model request to
NeuralStore. In particular, NeuralStore employs the model loader
to perform compression-aware loading, retrieving the associated
tensors and computation graph for in-database CTR prediction. Fur-
ther, when a newly trained or fine-tuned model needs to be stored,
the database issues a Save Model request. In response, NeuralStore
compresses the model using the adaptive delta quantization algo-
rithm and persists the compressed tensors in the storage layer.

4 Design of NeuralStore

In this section, we detail the key techniques proposed for
NeuralStore, including a tensor-based storage engine, a delta quan-
tization algorithm, and a compression-aware model loading and
inference mechanism.

4.1 Tensor-based Storage Engine

To exploit the structural similarities across DL models, NeuralStore
organizes and compresses deep learning models at the granularity
of individual tensors rather than entire models. This design en-
ables similarity-based delta compression across models, allowing
the system to avoid redundant storage by referencing previously
stored tensors. The overall storage layout is illustrated in Figure 3.
NeuralStore separates model storage into two main components:
index storage, which stores shared base tensors used for reference,

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

and delta tensor storage, which stores the differences between
compressed tensors and their matched references. In addition, we
serialize each model’s architecture into a dedicated metadata stor-
age, which extends the native tablespace that stores table structures
commonly used in DBMSs.

Index Storage. Given that different models may contain tensors
of varying shapes, NeuralStore maintains a collection of HNSW
indexes, one per unique tensor structure (i.e., shape). Each HNSW
index organizes similarly shaped tensors into a proximity graph,
where each node stores a base tensor, and edges connect similar
tensors to facilitate efficient ANN search. To reduce the index size,
each base tensor is quantized to 8-bit using linear quantization
prior to insertion. Although quantization introduces some loss,
NeuralStore preserves full-precision representation recoverability
by storing a corresponding delta tensor that captures the difference
between the original tensor and its quantized representation. Our
proposed delta quantization algorithm will be detailed in Section 4.2.
Delta Tensor Storage. The delta tensor storage is responsible
for efficiently storing the compressed differences between base
tensors and the tensors compressed relative to them. To support the
typically large size of tensor data, we introduce a new page type
in the database called a tensor page. Unlike standard heap pages,
tensor pages are allowed to exceed the traditional page size limit
and are managed separately to optimize read/write performance
for large blocks. Within each tensor page, we store compressed
deltas compactly. For each delta tensor, we store the following: 1)
A 4-bit scale; 2) A 4-bit zero-point; 3) A quantized weight array.
Each tensor is dynamically quantized based on its value range,
and therefore, maintains its own scale and zero-point, which are
used to de-quantize the delta tensor (Section 4.2). The quantized
weights represent the difference between a base tensor and its
corresponding variant, as determined by approximate similarity
search. This design allows multiple models to share common base
tensors while storing only the compressed deltas for fine-tuned
variants. To further optimize model loading performance, delta
tensors are organized in the order defined by the model architecture.
This improves spatial locality and supports efficient reconstruction
during model loading and inference.

Index Cache. To reduce the overhead of accessing HNSW in model
compression and loading, we introduce an index cache that stores
the deserialized HNSWs in memory. When a lookup of a base
tensor is invoked, the system first checks the cache; if the cor-
responding HNSW index exists, the system bypasses disk I/O and
the de-serialization process. This caching mechanism significantly
reduces latency, particularly when models that share similar base
tensors are loaded and saved frequently during iterative inference
or fine-tuning. It maintains a bounded size and is managed using a
least-recently used (LRU) eviction policy.

4.2 Delta Quantization Algorithm

Based on the properties discussed in Section 2.5, we propose a
delta quantization algorithm to achieve efficient model compression
while maintaining user-defined precision loss. Figure 4 depicts the
workflow of model insertion. Given a collection of deep learning
models D = {My, My, ..., Mp }, and a user-defined precision tolerance
p, NeuralStore compresses the model as follows.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Index Storage " Precision :
i ___Tolerance
HNSW <
Indexes]
T Similarity |
‘ > i___Threshold

w—BEb

Figure 4: Delta Quantization Algorithm — NeuralStore com-
presses tensors in four steps: (1) decouple the weights from model
architecture, (2) search for the closest base tensor with ANN, (3)
perform delta-encoding, and (4) apply quantization to deltas.

Weight-Architecture Decoupling. Upon receiving the model sav-
ing request, we first decouple model weights (i.e., tensors) from
model architectures to simplify and streamline the compression
workflow. In NeuralStore, deep learning model architectures and
tensors are managed independently. Given a set of deep learning
models D, we extract their architectures into a set S = {s1, $2, ..., Sn}»
and aggregate all tensors into a unified set T = {#1, f2, ..., t; }, where
m is the total number of tensors across all models. The architec-
ture set S is stored in full, while compression is applied solely to
the tensor set T. The benefit of such decoupling is that it enables
independent optimization of the storage of tensors and architec-
tures. In particular, we can flatten the tensors to one-dimensional
arrays, so that they can match with more similar tensors for dedu-
plication. For example, tensors with dimensions (10, 10) and (5, 20)
are both flattened to a common shape of (100, 1), increasing the
opportunities of finding similar tensors.

Tensor Similarity Search. For each tensor ¢t € T, we search for a
similar tensor already stored in NeuralStore using an approximate
nearest neighbor index constructed for its shape. Specifically, we
query the ANN index, A, to find a previously stored base tensor ¢4,
that minimizes the similarity metric (e.g., Euclidean distance) with ¢.
In our design, we use the HNSW index for its efficiency and strong
performance in searching high-dimensional tensors, which are
prevalent in deep learning models. As described in Section 4.1, the
base tensor #p,,, stored in the HNSW vertex consists of quantized
8-bit integers. To enable the comparison with the input tensor, a
32-bit float, we de-quantize the base tensor, with the zero point and
scale factor stored in the vertex, to tr,11 pase-

Delta Encoding. We calculate the delta encoding of the tensor, 6,
and its bit width after quantization, denoted as nbit, as follows:

8 =t = tfull—bases

nbit = [logz (WH 2)

where &;in and 8,4y are the minimum and maximum values in §,
respectively. We can observe that the range of and user-defined
precision tolerance p collaboratively determine the final bit width
to store the tensor. With a wide range of § and a small precision
tolerance p, the system will result in a large bit width and increase

Paper No: 518

the storage consumption. Therefore, we introduce a threshold 7 for
the range of §. If ppax — Omin is less than or equal to 7, NeuralStore
will proceed to quantize and store § in the storage layer. Otherwise,
NeuralStore creates a new vertex in HNSW and recalculates the
delta based on the new vertex. This is to reduce the storage for
the current tensor as well as potentially facilitate more effective
compression for the future. The procedure is detailed as follows: (1)
The original tensor ¢ is quantized to obtain g, ansizeq> comprising
8-bit integers. (2) A new vertex storing tguansizeq i created and
inserted into HNSW. (3) The system applies de-quantization to
tquantized to get t’. The delta is calculated using & = ¢ —t’. We have
evaluated the impact of varying thresholds 7 in Section 6.4.1. For a
tensor with normalization, the range of the new delta falls within
Ls_l) ~ 0.0078. According to our evaluation, it is recommended to
set a threshold between 0.1 and 0.2 to achieve the best performance.
N-Bit Quantization. For tensors selected for compression, we
quantize their delta values according to nbit (calculated from Equa-
tion 2) to reduce storage cost while maintaining the precision loss
within a user-defined precision tolerance p. To achieve this, we
apply linear asymmetric quantization with a fixed bit width of 2p,
setting the scale accordingly:

) K])
quantized_delta; = {EJ + zero_point, (3)

where scale = 2p, and zero_point = L— 5’""1" J This indicates that
scale

the distance between two consecutive quantized numbers is 2p,
and therefore any points in between are within the distance of p
to their closest quantized number. Moreover, since each tensor is
individually quantized according to its value range, the number of
bits required to store the tensor is minimized.

Algorithm 1 illustrates the complete model compression proce-
dure. Given a set of deep learning models D = {M;, My, ..., My}
and a user-defined precision tolerance p, NeuralStore first decou-
ples each model into its architecture and tensors (Line 1). The set of
architectures S is stored in full, while tensors T are compressed. For
each tensor t € T, the system performs an ANN search using an
HNSW index to find the most similar base tensor fp,. (Lines 3-4).
If a sufficiently similar match is found, the system computes the
delta § = t — tp,ge (Line 5). Otherwise, ¢ is quantized and inserted
into the index, and the delta is recomputed against its quantized
version (Lines 6-9). The delta tensor ¢ is then quantized using linear
asymmetric quantization. The number of bits (nbit) is dynamically
determined to ensure the quantization error remains within the tol-
erance p (Line 10). Each element of § is quantized using the derived
scale and zero-point (Lines 11-14). The quantized delta, along with
the reference tensor and bit width metadata, is stored for future
reconstruction (Line 15). Finally, the set of model architectures S is
saved to complete the compression process (Line 16).

The delta quantization algorithm has three key novelties com-
pared to existing methods. First, it exploits inter-model similarities.
For each new model inserted, we search globally for the tensors
closest to the input tensor, resulting in deduplication among models.
Moreover, the integration of ANN enables flexible and incremental
compression. As the system ingests more models, the growing num-
ber of base tensors increases the likelihood of finding close matches
for newly added tensors, thereby improving compression efficiency

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

Algorithm 1: Delta Quantization in NeuralStore

Input: Model set D = {M;, Mz, ..., My}, precision tolerance p
Output: Compressed tensors and model architectures stored in
NeuralStore
1 S, T « DECOUPLETENSORS(D)
and tensors T
2 foreach ¢t € T do

// Extract architectures S

3 A «— GeTINDEXERFROMPOOL(dim(t))
4 thase < A.SEARCH(#)

5 8 < DELTAENCODE (£, tpase)

6 if SHouLDCoMPRESS(S) = false then

7 tq < QUANTIZEFORINDEX ()

8 A.INSERT(tg)

9 & < DELTAENCODE(¢, tg)

10 nbit «— [logz (max(é‘)z;min(&))-‘

11 scale « 2p

. min(8)
12 zero_point « | — =
13 foreach §; € § do
14 L qd; « {&J + zero_point
15 STOREQUANTIZEDDELTA(qd, thase, nbit)

16 STOREARCHITECTURES(S)

over time. This approach eliminates the need to re-compress ex-
isting models and is particularly well-suited for dynamic model
management scenarios where models are frequently added and fine-
tuned. Second, it applies quantization to delta encoding. Compared
with quantization over the original weights, this method substan-
tially reduces the required bit width to represent model weights and
lowers the precision loss by processing on a smaller scale. Lastly,
each tensor and delta is dynamically quantized based on its value
range, rather than applying a fixed global quantization parameter.
This adaptive approach maximizes the compression ratio while
adhering to the user-defined precision loss constraints.
Discussion. The effectiveness of the delta quantization algorithm
is decided by the precision tolerance p, which defines the upper
bound of the quantization bin width. A larger precision tolerance
results in quantization with wider rounding intervals, thus yield-
ing a higher compression ratio, but potentially degrading model
performance. To mitigate such risk, NeuralStore uses a precision
tolerance of 5.96 x 10~8 (2724) by default, which is smaller than
the machine epsilon for single-precision floating-point numbers.
As shown in Section 6.4.5, over 90% of the tested models exhibit no
performance change under this tolerance, demonstrating that the
default precision tolerance is sufficiently strict to limit the impact
on model performance. NeuralStore also allows users to configure
the precision tolerance on a per-model basis. We provide a utility
tool in our code repository [10] to guide users in selecting an ap-
propriate tolerance for a specific model. First, given a model and
a test dataset, it compresses the model using multiple candidate
tolerances. Next, it evaluates the performance of each compressed
variant on the test data and reports the results to the user. Based on
the analysis results, users can choose a preferred tolerance to store
the model accordingly, effectively balancing storage consumption
and model performance degradation.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Computation

]
1 Graph :
1
- !
! 1
1
[D R R DY R 1
! Memory 1
! 1
1 1
1 1
1 1
! Delta Base 1
: Tensors Tensors !
1
1

« T T 7777177 T DeltaTensor ' T T 7|7 ngex Storage,

1
: Partial Loading Storage 1 HNSW 1 HNSW?2
1

1

[— D 1! !

| Delta 1 | i !
1

! Delta 2 " '

! Delta3 | '
1 [

1 Delta4 1! :

Figure 5: Compression-aware Model Inference — NeuralStore
adopts flexible tensor loading with partial delta tensor bits and on-
demand decompression to streamline the model loading process.

4.3 Compression-aware Model Loading

In conventional model management systems, compressed models
are often required to be decompressed or reconstructed before they
are served for inferences. This results in significant overhead in
model loading and extensive memory consumption, accommodat-
ing the full model inside memory. As shown in Figure 5, we present
the compression-aware model inference mechanism, which stream-
lines the model loading and inference process, as well as reduces
the memory consumption.

4.3.1 Model Loading. When a Load Model request is received,
NeuralStore first looks up the reference of the first tensor page
in the model table with the model ID. Since the tensor pages of a
model are organized consecutively, it then scans the delta pages for
model architecture, delta tensors, and references (HNSW ID and
vertex ID) to base tensors. Lastly, NeuralStore traverses the HN-
SWs to fetch the index pages containing base tensors. NeuralStore
only stores the quantized tensors in memory to reduce the memory
consumption.

Flexible Model Loading. NeuralStore enables flexible model load-
ing to optimize the trade-off among memory consumption, loading
efficiency, and precision loss. In scenarios where the efficiency of
model serving is critical, while higher model tolerance is accepted,
NeuralStore allows the users to selectively fetch partial bits of delta
tensors, or even only the base tensor. This will lead to faster model
loading and lower memory consumption due to fewer bits loaded
and disk I/O at the cost of higher model precision loss. Notably, the
additional precision loss brought by the flexible model loading only
has a limited impact on the resulting model performance due to
our unique compression algorithm, as shown in Section 6. Since
each delta is calculated with respect to the closest base tensor, and
quantization is applied dynamically on each delta, ignoring the least
significant bits of the quantized delta leads to an average difference
of 107* compared with fetching the quantized delta in full bits.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Algorithm 2: Compression-Aware Model Inference

Input: Compressed model M, inference bit width b

Output: Augmented computation graph G for runtime execution
1 G « LoADMODELGRAPH (M)
2 T « GETCOMPRESSEDTENSORS (M)
3 foreach tensort € T do

4 thase <— RETRIEVEQUANTIZEDBASE(?)
5 tdeltas it < RETRIEVEQUANTIZEDDELTA()
6 if nbit > b then
7 tdelta < EXTRACTMSB (#geltar)
8 scalegeqy «— scalegey X 2701~
9 Nieq base < CREATEDEQUANTIZENODE (#pases SCalepases ZPpyse)
10 Ndeqﬁdelta —
CREATEDEQUANTIZENODE (tdelta, SCal€deltas ZPdelta)
11 Nadd < CREATEADDNODE (Ndeq_base) Ndeq_delta)
12 G.INSERTNODE (N,qq)
13 G.DIRECTOUTPUT(N,44, ORIGINALNODE(?))

14 return G

4.3.2 On-demand Decompression. NeuralStore adopts the on-
demand decompression during model serving to ensure the mini-
mum memory usage. To serve the model, NeuralStore first deserial-
izes the model architecture to form a computation graph. When the
computation reaches the step that involves a compressed tensor, it
will de-quantize the delta tensor and the corresponding base tensor
and reconstruct them to get the full-bit-width tensor for calculation.
The full-bit-width tensor will be discarded after the computation
is finished. This leads to consistent memory usage with additional
computation cost for decompression. Such overhead can be miti-
gated by temporarily storing the de-quantized base tensors, which
will be used again by the following layers. In particular, during
model loading, we record the share count of each base tensor. For
base tensors with the share count greater than 0 during the com-
putation, we store the de-quantized base tensor and decrease the
share count. When the share count reaches 0, the de-quantized
base tensor will be deleted. In this way, we eliminate the duplicate
de-quantization of the same base tensors.
Augmented Computation Graph. To enable on-demand decom-
pression inference, NeuralStore augments the original model graph
with additional computational nodes that handle dequantization
and reconstruction at runtime. Specifically, a compressed tensor is
reconstructed by combining two components: the quantized base
tensor and its corresponding quantized delta. The base tensor is
always stored and loaded in 8-bit quantized form, while the delta
tensor is flexibly loaded based on the desired inference precision,
as discussed in Section 4.3.1. Both the base and delta tensors are de-
quantized using their associated scale and zero-point values, which
are retrieved alongside the quantized representations. These de-
quantization operations are expressed as Dequantizel inear nodes
within the computation graph. The outputs of the two dequantiza-
tion branches are then combined through an element-wise addition
node to reconstruct the original tensor. This augmented graph elim-
inates the need for full offline decompression and enables efficient
execution directly over the compressed representation.

We illustrate the compression-aware model inference process
in Algorithm 2. Given a compressed model M and the targeted

Paper No: 518

t1 t2

t3
.

Tensor 21 LD
AERECE
Tensor 3 : : : LD DC TC
1 1 1 1 1 1
Tensor 41 1 1
] 1 1
Tesors} 11|
1 1 1 1 1 1 1 1
| LD | Load | DC |Decompress Compute

Figure 6: Pipelining — NeuralStore pipelines tensor loading, de-
compression, and computation during model loading.

delta inference bit width b, NeuralStore first loads the original com-
putation graph (Line 1). For each tensor, the system retrieves its
quantized base and delta components, along with their associated
quantization metadata (i.e., bit width, scale, and zero-point) (Lines
4-5). If the delta tensor was originally quantized to a higher bit
width than the target delta bit width b, only the most significant b
bits are extracted. To compensate for the bit truncation, the quan-
tization scale is adjusted proportionally (Lines 6-8). The system
then creates two DequantizelLinear nodes, one for the base tensor
and one for the (truncated) delta tensor (Lines 9-10). These two
dequantized outputs are fused through an Add node to reconstruct
the tensor in float space (Line 11). NeuralStore inserts the dequanti-
zation and addition nodes directly into the model graph. The output
of this reconstruction subgraph is then wired to the corresponding
original node that consumed the tensor (Lines 11-13). This augmen-
tation enables runtime reconstruction of compressed tensors and
eliminates the need for full offline decompression.

4.3.3 Pipelining. We further improve the model serving process by
leveraging pipelining. The entire process can be divided into three
phases, namely, model loading, tensor decompression, and model
computation. The model loading phase is I/O-intensive, as it in-
volves retrieving delta tensors and HNSW indices that store the base
tensors. Tensor decompression is primarily CPU-bound, though its
computational overhead can be mitigated through the use of AVX
instruction sets. Model computation is also CPU-intensive, domi-
nated by matrix multiplication operations. To improve throughput,
we pipeline these three phases. As illustrated in Figure 6, at the
i-th stage of the pipeline, the system performs model loading for
the i-th tensor, decompression for the (i — 1)-th tensor, and model
computation for the (i — 2)-th tensor. This design enables concur-
rent execution of the three phases, effectively hiding latency and
improving resource utilization. The benefits of pipelining are fur-
ther amplified when the model computation phase is offloaded to a
GPU due to less resource contention.

5 Implementation

We implement NeuralStore as a pluggable extension of PostgreSQL
with 5000 LoC lines of code in C/C++. We have made our source
code available [10].

NeuralStore is tightly integrated with PostgreSQL to support
efficient model storage, loading, and compression-aware inference
through SQL interfaces. We provide several PostgreSQL UDFs, such

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

as ns_save_model and ns_load_model, to store and retrieve mod-
els. NeuralStore manages model storage at the granularity of ten-
sors. Compressed tensors are organized into tensor pages, each of
which contains the complete set of compressed tensors for a single
deep learning model. Tensor pages are enforced to be read-only
by NeuralStore, and are memory-mapped using mmap to reduce
memory footprint and enable sharing across PostgreSQL sessions.
At the start of each tensor page, a fixed-length header records the
offsets and lengths of all delta tensors. Each delta tensor keeps
metadata, including its shape, dimension, quantization parameters
(i.e., scale and zero point), and single-element bit width, followed
by a bit-packed payload.

To accelerate the retrieval of HNSW indexes, NeuralStore main-
tains a local cache for HNSW indexes. The cache is bounded by
a user-defined buffer size, which is set to 32 GB by default at the
startup stage of PostgreSQL. When memory is insufficient, the
least recently used index is evicted from the cache to the disk
based on LRU. We build our index on top of hnswlib, and extend
anew Spacelnterface called QuantizedlL2Space to support dis-
tance computation between quantized vectors with different scales
and zero-points. To further accelerate this, we optimize the distance
computation using AVX2 SIMD instructions.

NeuralStore supports both full decompression and compression-
aware inference for ONNX framework models. For compression-
aware inference, we modify ONNX computation graphs to incorpo-
rate on-demand decompression. Particularly, the system retrieves
quantized delta and base tensors and inserts DequantizelLinear
and Add nodes into the graph to perform runtime reconstruction, as
described in Section 4.3.2. During compression, both delta computa-
tion and quantization are carried out in double precision to mitigate
rounding errors introduced by low-precision representations.

To demonstrate the generalizability of the proposed method, we
also implement NeuralStore as a loadable extension of DuckDB.
Adapting NeuralStore to DuckDB involves three customizations:
(1) rewriting the UDF registration logic, (2) replacing PostgreSQL’s
shared-memory-based index cache with an in-process index cache,
and (3) adapting memory allocation from PostgreSQL to DuckDB’s
C++ runtime. This DuckDB-based implementation is functionally
comparable to the PostgreSQL-based implementation, enabled by
two key design factors. First, NeuralStore relies on components
that are commonly available in modern DBMSs, such as page-based
storage engines, UDF interfaces, and buffer managers. Second, its
modular design decouples database-specific APIs, such as shared
memory management and data access methods, from the core logic
of model compression and loading.

6 Performance Evaluation

In this section, we evaluate NeuralStore by comparing it with state-
of-the-art model management systems and compression algorithms.
We conduct system-level and micro benchmarks to measure the
query throughput, storage consumption, and model accuracy.

6.1 Experimental Setup

We conduct our experiments on two servers, each equipped with
an Intel(R) Xeon(R) W-1290P CPU (10 cores X 2 hardware threads),
128GB of DRAM, a 894GB SAMSUNG_MZ7L3960 SSD, and an

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Table 1: Experimental AI-powered Analytics Workloads

ID Workload DataSet Model

(a) Sequence Classification = IMDB DistilBERT

(b) Image Classification Beans Vision Transformer
(c) Tabular Classification Avazu MLP

Table 2: Summary of models used in the workloads

Type Model Count Size (GB)
MobileNetV2 30 0.25
ResNet-50 110 9.63
cv ViT-B/16 110 35.43
ViT-L/32 5 5.71
Swin-T 70 7.35
Swin-B 60 19.74
BERT-base 50 20.41
DistilBERT 50 12.37
RoBERTa 50 23.23
BERT-large 50 62.39
NLP T5-small 50 11.28
T5-base 50 41.54
BART-base 50 25.98
BART-large 50 75.71
Multimodal BLIP-base 15 10.97
Total 800 361.99

NVIDIA RTX 3090 GPU. We use one server to simulate clients
that issue save model and load model requests, while the other
server functions as the database server.

6.1.1 Workloads. To evaluate model management performance
under realistic scenarios, we collect 800 DL models totaling 361GB,
covering a diverse range of model architectures and sizes. Due
to the space constraints, we provide a summary of these models
in the extended version [9]. Before running the experiments, we
perform a warmup phase to download all models from Hugging-
face [5] and store them locally in advance. We feed the systems with
read and write workloads, containing randomly selected models,
to simulate model saving and loading operations. We first save the
models into the evaluated system to measure write throughput and
subsequently load them to measure read throughput.

As summarized in Table 2, we set up three representative
in-database Al-powered analytics tasks: (a) sequence classifica-
tion [11]: 20 DistilBERT models fine-tuned on the IMDB dataset [28],
each performing 100 text inferences to classify movie reviews, (b)
image classification [43]: 20 Vision Transformer (ViT) models fine-
tuned on the Beans dataset [1], each processing 100 images to iden-
tify bean leaf diseases, and (c) tabular classification [49]: 12 multi-
layer perceptron (MLP) models trained on the Avazu dataset [3],
each classifying 500 user records to predict CTR scores.

6.1.2 Baselines. We compare it against two representative baseline
systems: a database-based model management system, PostgresML,
and a file-based model management system, ELF*. To facilitate
fair comparisons, all systems are integrated with PostgreSQL to
store the metadata of models. We employ an open-sourced imple-
mentation on PostgreSQL [49] that provides standard in-database
Al-powered analytics interfaces, and integrate it with the evaluated
systems to perform end-to-end experiments, i.e., conducting model
saving, model loading, and model inference within the database.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

PostgresML [7]. PostgresML is a PostgreSQL extension designed
for in-database machine learning. It stores each model as a serial-
ized BLOB in a model table and leverages PostgreSQL’s built-in
TOAST mechanism for compression, using a LZ-family compres-
sion algorithm known as PGLZ.

ELF” [38]. To the best of our knowledge, there is no open-source
file-based model management system. We therefore implement
ELF*, a file-based baseline that integrates ELF [38], a state-of-the-
art model compression algorithm. When saving new models, ELF*
compresses each model using ELF and stores it as a separate file,
and then records the file path in a PostgreSQL model table. When
loading a model, ELF* fetches the model metadata (including the
file path) from the database, loads the model file from disk, and
decompresses it for use.

We also compare NeuralStore with widely used general-purpose
compression algorithms, ZSTD and ZFP, and specialized model
compression methods, ELF, in terms of storage consumption and
the resulting model accuracy.

ZSTD [8]. ZSTD is a lossless compression algorithm developed by
Facebook. It is commonly used for general-purpose data compres-
sion. We use its official release (v1.5.5) in our experiments.

ZFP [26]. ZFP is a lossy compression algorithm designed for
floating-point arrays. It allows users to adjust error bounds ac-
cording to the accuracy requirements of the target data. We use its
official release (v0.5.5) to conduct our experiments.

ELF [38]. ELF is a state-of-the-art model compression framework
that eliminates the exponent fields of floating point numbers by
projecting the model weights from (-1,1) to [1, 2). We use its official
open-source code and extend it to support the ONNX model format
to align with our workload.

6.1.3 Default configuration. We configure PostgreSQL with a 32GB
shared buffer. Other PostgreSQL parameters remain at their default
values unless specified. We choose 7 = 0.16 as the default similarity
threshold in NeuralStore, and enable the flexible model loading by
default. We set the precision tolerance of ZFP and NeuralStore to
5.96 x 1078, consistent with that used in ELF, ensuring a uniform
upper bound on the precision loss. A detailed analysis of how these
default parameter settings are determined is provided in Section 6.4.

6.2 System Performance Evaluation

Here we evaluate the system performance of NeuralStore by com-
paring it with PostgresML and ELF*.

6.2.1 End-to-end Performance Evaluation. We first evaluate the
end-to-end latency for in-database Al-powered analytics. In each
task, we save multiple models as described in Section 6.1, then load
each model and perform inference. We accumulate the latency of
each stage and show the results in Figure 7. NeuralStore reduces
total query latency by up to 32%, 26%, and 47% compared to Post-
gresML, and by up to 20%, 22%, and 14% compared to ELF*, across
sequence, image, and tabular classification tasks. For model saving,
NeuralStore takes 46s, 60s, and 5s for the three tasks, outperforming
both PostgresML (71s, 82s, 14s) and ELF* (52s, 70s, 6s). This im-
provement is attributed to our tensor-based storage engine, which
batches tensor writes into pages and defers HNSW index updates
until eviction, thereby reducing I/O overhead. For model loading,

10

Paper No: 518

I PostgresML [ELF* B NeuralStore EXX Saving Loading Inference

150

0

(a) Sequence Classification (b) Image Classification (c) Tabular Classification
Figure 7: End-to-end Time Breakdown for In-database AI-
powered Analytics
BN NeuralStore

A PostgresML EEEE ELF*

400

o
=3
o
o
=3

= 5

£ g,

> 2400 %300

] El o

g &30 o

=25 = ©200

EL 3 200 g

2 2 s

2 2100 E 100

g 3

£ £
o 2 F0Tg e 20 32 07200 400 800

Number of Models

Number of Clients

Number of Clients

(a) Write Throughput (b) Read Throughput (c) Storage Consumption

Figure 8: Overall Performance of NeuralStore.

ELF
B NeuralStore

BN Zstd
BE= ZFpP

ELF
—— NeuralStore

Storage (GB)

|
1
]
I
r
1
1
]
i
I
I
I
P
~f
i

800 %70 12 14 16 18
Compression Ratio

200 400 600

Number of Models
(a) Storage Consumption (b) Compression Ratio

Figure 9: Evaluation on Compression Algorithms.

B Index —A— Compression B3 Single-thread
@@ Delta EEE Multi-thread
12
L —
=R
= 1358 @150
o 8 c £
° 2 5
g 1508 £100
S 4 S g
& £ 3 50
o <
o 1459 F 0
1 2 4 8 16 32 1 2 4 8 16 32

Threshold (x10-2) Threshold (x10-2)

(a) Storage Consumption (b) Compression Throughput

Figure 10: Performance Impact of Similarity Threshold.

NeuralStore achieves up to 61% and 50% speedup over ELF* and
PostgresML, respectively. This is due to the fact that our tensor-
based storage engine avoids redundant base-tensor fetching and
reduces disk I/0. Moreover, our compression-aware model loading
mechanism eliminates decompression during loading, further im-
proving the model loading throughput. Inference latency remains
comparable across all systems since they share the same ONNX
runtime, with only negligible increases for NeuralStore due to the
on-demand decompression during inference.

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

6.2.2 Throughput. We then evaluate the write and read throughput
with varying numbers of clients ranging from 8 to 32. For write oper-
ations, the clients concurrently save models randomly chosen from
the model pool described in Section 6.1.1. The results are shown
in Figure 8(a). We can observe that the throughput of all systems
increases as more clients are included due to the increased con-
currency. NeuralStore outperforms the baselines, achieving a peak
throughput of 42 queries per minute compared with 37 for ELF*
and 17 for PostgresML. PostgresML performs the worst by storing
the model with the TOAST mechanism in PostgreSQL. The models
are divided into small chunks, which are fetched separately and
reconstructed. This leads to high disk I/O overhead. ELF* achieves
throughput comparable to NeuralStore across all numbers of clients,
but remains behind due to higher I/O cost, especially when multiple
models are stored concurrently. For read operations, each client
continuously sends queries, with each query loading a random
model. Figure 8(b) shows the read throughput. NeuralStore outper-
forms ELF* and PostgresML by up to 2.5x and 1.4X, respectively.
The improvement in the performance stems from three key designs.
First, NeuralStore maintains an in-memory index cache to avoid re-
peated fetching of base tensors, thus reducing the disk I/O. Second,
NeuralStore adopts an on-demand decompression strategy, where
quantized deltas and base tensors are de-quantized at inference time,
thereby eliminating the need for full model decompression prior to
execution. Lastly, the flexible model loading enables NeuralStore
to load only the most significant 8 bits of the quantized deltas for
inference, further reducing the disk I/O and memory bandwidth.

6.2.3 Storage. We report the resulting storage usage in Figure 8(c).
As observed, NeuralStore has the least storage consumption. In
particular, it consumes 93% and 70% of the space required by ELF*
and PostgresML, respectively. Overall, NeuralStore achieves a com-
pression ratio of 1.38%, compared to 1.32X for ELF* and 0.97x for
PostgresML. These improvements are due to NeuralStore’s delta
quantization compression, which identifies shared base tensors
across models and dynamically quantizes the base and delta tensors
to reduce storage cost.

6.2.4 In-depth Bottleneck Analysis. To better understand system
bottlenecks, we report CPU and I/O costs for saving and loading
a representative model (google/vit-base-patch16-224) in Table 3.
For model saving, NeuralStore achieves the shortest wall time and
lowest I/O block usage. This aligns with the results in Figure 8(a).
In addition, NeuralStore exhibits the highest CPU utilization com-
pared to PostgreSQL and ELF*, which is expected because its higher
compression ratio incurs greater computational cost. For model
loading, NeuralStore achieves up to 50% and 55% lower wall time
than PostgresML and ELF*, respectively. The results are also consis-
tent with its higher read throughput shown in Figure 8(b). We also
observe that NeuralStore achieves the lowest system time, CPU
utilization, and I/O block reads. This is attributed to the on-demand
decompression and flexible loading strategies, which reduce the
cost of fully decompressing models and I/O overhead. In addition,
we measure the memory usage of the evaluated model. The re-
sults show that NeuralStore consumes 165MB of memory during
model loading, compared to 330MB for both PostgresML and ELF*.
This further demonstrates the effectiveness of the proposed flexible
loading mechanism in reducing memory consumption.

11

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Table 3: CPU and I/O Statistics for Model Saving / Loading

o i Svst Wall User System CPU 1/0
peration ystem Time (s) Time(s) Time (s) Utilization Blocks
Model PostgresML 4.828 2.491 1.276 0.780 1154816
Savin: ELF* 4.794 2.783 1.633 0.921 506776

& NeuralStore 3.283 2.087 0.971 0.932 348504
PostgresML 1.919 0.503 1.308 0.944 702680
Model .
Loadin, ELF 1.982 1.395 0.583 0.998 507192
e NeuralStore 0.895 0.470 0.227 0.779 348568
B3 ZFP E== ZFP
B=® NeuralStore B2 NeuralStore
2.0 —_

2 Zg0

1.6 =

< = 60

812 5

3 £40

4

508 g’

£0.4 £20

o =

0.0 0
5.96e-8 1.19e-7 1le-6 le-5 5.96e-8 1.19e-7 1le-6 le-5
Tolerance Tolerance

(a) Compression Ratio (b) Compression Throughput

Figure 11: Performance Impact of Precision Tolerance.

6.3 Compression Performance Evaluation

We now assess the compression performance of NeuralStore. We
conduct the experiments by progressively increasing the number of
stored models from 200 to 800, and measure the storage consump-
tion. Moreover, we calculate the compression ratio according to the
original size, totaling 361GB.

6.3.1 Storage and Compression Ratio. We plot the storage sizes
of the compressed models obtained using different compression
algorithms in Figure 9. NeuralStore consistently achieves the lowest
compressed size across all model scales. At 800 models, it reduces
the total storage to 261GB, corresponding to a compression ratio
of 1.38%. While the compression ratios for ELF, ZFP, and ZSTD
are 1.32X, 1.18%, and 1.10X, respectively. This trend persists across
different scales, demonstrating the scalability and effectiveness of
delta quantization compression.

6.3.2 Per-model Compression Ratio Distribution. We study the per-
model compression effectiveness of NeuralStore. To account for
shared base tensors, we evenly distribute the storage cost of each
base tensor in the index across all tensors that reference it. Fig-
ure 9(b) shows the cumulative distribution function (CDF) of per-
model compression ratios. NeuralStore outperforms all baselines
across the distribution. Over 60% of models achieve a compression
ratio greater than 1.4%, and nearly 90% exceed 1.3X. In contrast, no
model compressed with ELF reaches 1.4x, and fewer than 3% of
models do so with ZFP or ZSTD. We also observe that the three base-
line methods exhibit steep CDF curves concentrated between 1.2X
and 1.3, which indicates limited variability in their compression ef-
fectiveness. For example, ELF compresses tensors by deduplicating
the 8-bit exponent field of floating-point values, which caps its ideal
compression ratio around 1.33X. In contrast, NeuralStore exploits
tensor-level similarities across models, enabling adaptive compres-
sion that achieves higher ratios when redundancy is present.

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

B8 Full loading
Flexible loading (8-bit)

Tensors (%)

Throughput (query/min)

0 2 4 6 8 1012141618
Saved Bits

4 8 16 24 32
Number of Clients

(a) Model Loading Throughput (b) Compression-aware Model Loading

Figure 12: Performance Impact of Flexible Model Loading.

6.4 Micro-Benchmarks

To gain deeper insights into the performance trade-offs, we conduct
micro-benchmarks to evaluate the impact of key system parame-
ters, namely, the similarity threshold 7, the user-defined precision
tolerance p, as well as the design choice of flexible model loading.

6.4.1 Performance Impact of Similarity Threshold. A key param-
eter that influences the storage cost in NeuralStore is the simi-
larity threshold (), which decides whether a tensor can be delta-
compressed depending on its distance from base tensors. A higher
threshold enables more aggressive delta compression by accepting
looser matches, thereby reducing the number of base tensors added
to the HNSW indexes. However, this also results in degraded ef-
fectiveness of delta-encoding. We evaluate the impact of 7 using a
subset of the dataset, consisting of 50 DL models fine-tuned from
google/bert-base. We vary the similarity threshold and measure
the resulting storage sizes of delta tensors and HNSW indexes.

Figure 10(a) shows how varying 7 affects storage consumption.
As 7 increases, more tensors are qualified for delta encoding. Con-
sequently, it reduces the opportunity of creating new vertex nodes
in HNSW indexes, resulting in smaller index sizes. However, the
decrease in the storage of HNSW indexes slows down when 7 in-
creases beyond 0.16. This is because HNSWs still need to maintain
a minimum number of vertices for excessively distant tensors. Sim-
ilarly, the storage of delta tensors increases when 7 is small, while
the marginal increase diminishes as 7 becomes higher. It is because
a higher similarity threshold results in a delta computed against
sub-optimal base tensors, and therefore increases the number of bits
required to represent the tensor. When 7 exceeds a certain range,
in this case is 0.16, the allowed distance is greater than the nearest
base tensors. As a result, tensors are always able to find another
base tensor to create a smaller delta. Therefore, the increase in the
delta storage diminishes. The overall compression ratio (plotted as
a red line) reflects the trade-off between index storage and delta
storage. In the beginning, the index storage drops faster, leading to
an increased compression ratio. It peaks at 7 = 0.16. After that, the
increase in delta tensors storage overwhelms the space saved by
indexes, leading to compression ratio drops.

We also evaluate the impact of 7 on compression throughput
under single-threaded and multi-threaded settings. For the multi-
threading setup, we perform compression on the same 50 BERT
models using two threads. Each thread fetches the tensor to be
compressed from a shared queue and performs the similarity search,
delta encoding, and quantization independently. The results are
shown in Figure 10(b). As the similarity threshold 7 becomes higher,

12

Paper No: 518

—e— |AAccuracy| Compressed Storage Size ~ ---- Original Storage Size

8000

2000 P ha000) 2000 17000
0.04{ 0021 | | [o0z5] 0.025
_ 0.02 B 0,025 6000
7 g
****** 5000
© 0.03{ 0.0 0 0.000, 0 0.00 0 <
s 2.0e-3 2.8e-3 4.5e-3 4.9e-3 2e-2 6e-2 ©
3 4000 &,
£ 0.02 e
5° 3000 5
S
— 2000
0.01
1000
/ —

0.0
535>
(a) Sequence Classification (b) Image Classification

Figure 13: Model Accuracy and Storage Change under Differ-
ent Precision Tolerance

0
D 0100 05 ok oD o1
696?{ NOEAE TR e e

(c) Tabular Classification

D A0 5 N D

1 09 o 0P ot
AT AIALTNETRET e

AN NN S

the compression throughput increases from 90.5MB/s to 139.3MB/s
for single-thread execution, and 155.8MB/s to 197.9MB/s for multi-
thread execution. This trend aligns with earlier observations, as
more tensors are delta-compressed instead of inserted into the
index, the system avoids costly HNSW index maintenance, leading
to faster overall compression. Notably, when 7 = 0.16, NeuralStore
achieves the highest throughput and compression ratio.

6.4.2 Performance Impact of Precision Tolerance. We now evaluate
the effectiveness of the delta quantization algorithm under varying
precision tolerance p. The precision tolerance is given by users as a
parameter when storing each model. It defines the upper bound of
the quantization bin width, ensuring the resulting model accuracy
is not significantly compromised. Varying the precision tolerance
enables users to balance the trade-off between compression per-
formance and model accuracy. In this experiment, we vary the
precision tolerance from 5.96 x 10~8 (single precision machine ep-
silon) to 107>, and compare the compression ratio and throughput
of NeuralStore and ZFP on the full 800-model set we collected.

The compression ratios are shown in Figure 11(a). As the pre-
cision tolerance increases, the compression ratio also improves
because a wider tolerance (larger bin width) reduces the number
of bits required during quantization. NeuralStore consistently out-
performs ZFP across all tolerance levels. For example, at a toler-
ance of 107>, the compression ratio of NeuralStore is 2.07x and
1.68x for ZFP, exhibiting a 1.2X improvement. This is attributed to
NeuralStore’s ability to exploit inter-model tensor similarity, which
becomes more effective as the precision tolerance increases.

We further measure the compression throughput with respect to
the range of precision tolerance. As illustrated in Figure 11(b), the
throughput of NeuralStore increases from 80.4MB/s to 90.7MB/s as
the tolerance varies from 5.96 x 1078 to 107>. This is because as
precision tolerance increases, the number of bits to represent the
delta becomes fewer. Consequently, more tensors will fall within
the similarity threshold, resulting in fewer tensors to be inserted
into the HNSW indexes. By reducing the costly index insertions and
graph maintenance operations, the overhead of delta quantization
compression is significantly mitigated. As a result, NeuralStore
achieves faster compression rates at higher tolerance levels, without
sacrificing its compression advantage.

6.4.3 Performance Impact of Flexible Model Loading. We evaluate
the performance impact of flexible model loading, which provides
users with options to load quantized-delta in full bit width and
partial bit width. To quantify the trade-off between model accuracy
and efficiency in both model loading and memory usage, we conduct

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

B NeuralStore Full Loading

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

B8 NeuralStore Flexible Loading

B Original E=3 ZFP ELF
0.66 5%
=
SIILT i
30.80 » 0.95 a0.64
< ¢ g B
30.70{ o o o o o S =] ﬁ
5] (V)
< £0.90 062
0.60
o50(§ § § § §| o085 0606 o o o

035 0.70 0.80
2030 20.68 . 0.60
Soaslf§ B || d B 5 ©
Ca £ 30.65 = 0.40 ;
€0.20 < 0.63 :
0.15 0.60 0.20

(a) Sequence Classification (b) Image Classification

(c) Tabular Classification

(d) Summarization (e) Object Detection (f) Tabular Regression

Figure 14: Model Performance of Compared Compression Algorithms under Different Tasks

DuckDB
B2 DuckDB + NeuralStore

DuckDB
B® DuckDB + NeuralStore

o
o

N
o

N
o

o

Throughput (query/min)

1 2 4 8
Number of Threads

16

Number of Threads

(a) Write Throughput (b) Read Throughput

Figure 15: Performance of NeuralStore on DuckDB

experiments with two loading strategies, namely full loading and
flexible loading with 8 bits.

First, we measure the throughput of the two strategies. The
experiment is conducted by first initializing NeuralStore with 50
models using a precision tolerance of 5.96 X 1078, We then run 4 to
32 clients, each of which continuously sends the load model queries.
Depending on the strategy, NeuralStore either loads full-bit-width
or 8-bit delta tensors. The results are presented in Figure 12(a). It
shows that 8-bit flexible loading achieves up to a 2.4X speedup
compared to full loading. This improvement is attributed to the
reduced number of bits that need to be read, which lowers both
disk I/O and memory usage. Notably, the disk I/O becomes a bottle-
neck when models are concurrently retrieved by over 16 clients. In
contrast, the flexible loading strategy avoids such a bottleneck by
significantly reducing the bits loaded.

Second, we evaluate the number of bits saved for each delta
tensor using the flexible loading strategy. To run the experiment,
we initialize 800 models in NeuralStore, and load the models non-
repeatedly. We record the number of bits saved for each tensor and
display the results in Figure 12(b). It shows that flexible loading
saves 8.4 bits on average, which indicates a compression ratio of
1.53x. With a precision tolerance of 5.96 x 1078, discarding this
number of bits results in a precision loss of less than 107*. 5% of
the delta tensors save 0 bits with flexible loading because their bit
width is less than or equal to 8. These tensors mainly originate from
the same base tensor as their corresponding delta tensors.

6.4.4 Performance Impact of Precision Tolerance. We then evaluate
the impact of precision tolerance on model performance. We use
the tasks and models as described in Section 6.1.1. For each task, we
gradually increase the precision tolerance from 5.96 x 10~8 until a
surge in models’ average absolute performance change is observed.
At each precision tolerance, we measure the average absolute accu-
racy change and compressed storage size. The results are shown

13

Table 4: Summary of Models Used for Performance Change
Evaluation

Domain Task Dataset Architecture
BERT (9)
Sequence Classification IMDB DistilBERT (22)
RoBERTa (16)
NLP T5-small (42)
Summarization SAMSum T5-base (20)
BART-base (10)
Stanéc;};ils)ogs ViT-base (34)
ov Image Classification Food-101 lelrrll—_ltvlanse ((;1))
CIFAR-10 Y
Object Detection CPPE-5 DETR-ResNet-50 (18)
Classification Avazu MLP (12)
Tabular Regression Regression MLP (4)
& & TabNet (4)

in Figure 13. Across all tasks, increasing the precision tolerance
leads to reduced storage consumption, as fewer bits are needed
during quantization. However, the sensitivity to precision tolerance
varies across tasks. For sequence classification, model performance
change remains within 0.02% at tolerances below 1 x 107>, The
model performance change begins to amplify from a tolerance of
2x1073, from where it increases from 0.42% to 3.22% at the tolerance
of 2.8 x 103, For image classification, model performance remains
unaffected at tolerances below 1 X 107>, but starts increasing from
4.5 x 1073, reaching a peak change of 4.12% at 4.9 X 1073, Lastly,
tabular classification models maintain a performance change below
0.6% until the tolerance reaches 2 X 1072, beyond which model
performance change increases up to 3.91% at 6 x 1072, Users can
configure a higher tolerance on a per-model basis to balance the
trade-off between storage consumption and model performance
degradation. For example, models for image classification tasks can
safely use a precision tolerance up to 1x 107>, since no performance
change is observed in Figure 13 at this tolerance level.

6.4.5 Performance Impact Across Models. We now evaluate the im-
pact of flexible model loading and precision tolerance on model per-
formance. In addition to the three tasks introduced in Section 6.1.1,
we further include three more tasks to cover a wider range of model
architectures: (1) summarization, where models generate abstrac-
tive summaries from dialogues, (2) object detection, where models
identify multiple objects within images, and (3) tabular regression,
where models predict continuous numeric values based on struc-
tured features. In total, our evaluation covers 200 models across six
tasks. Due to the space constraints, we provide a summary of these
models in the extended version [9]. We compress and decompress

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

E=E In-Sequence B8 Random BN Round-Robin
0.005 0.005 0.005
—0.004 —0.004 —0.004
> > >
= o i<
©0.003 ©0.003 ©0.003
3 3 3
g 0.002 2 0.002 g 0.002
< < <
—0.001 I —0.001 —0.001
0.000 0.000 = 0.000

(a) Sequence Classification (b) Image Classification (c) Tabular Classification

0.0010 0.005

—0.0008 —0.0100 0.004

- \n —

J o

©0.0006 N @0.0075 w 0.003 | R

=1 o s

£ 0.0004 | S8 A £ 0.005018 0 B8 NN| < 0.002(F 1 8 N

S|

T0.0002 SNBSS NN —0.0025 [F B NN 0.001{ [BSSs NS

0.0000 0.0000 0.000

(d) Summarization (e) Object Detection
Figure 16: Model Performance Change under Different Or-

ders

(f) Tabular Regression

these models using a fixed precision tolerance of 5.96 X 1078, and
measure their absolute performance change. The results are shown
in Figure 14. For ZFP, ELF, and NeuralStore Full Loading, over 90%
of models exhibit no performance change. For NeuralStore Flexible
Loading, 57 out of 200 models show a performance change less than
0.01%, and over 70% of models exhibit a change within 0.1%. More
than 95% of models remain within a performance change of 1%. The
increase in performance change is expected, since flexible loading
restores only the most significant 8 bits of each delta tensor. Among
all tasks, object detection models are most sensitive to precision
loss, with an average performance change of 0.8%. This is because
the object detection task requires predicting bounding boxes in
images, where small changes in model weights can lead to high
deviations in predicted object locations. On the contrary, image
classification models show the smallest performance change, with
an average of 0.009%, due to the simplicity of the task.

6.4.6 Performance Impact of Storage Order. To assess the impact
of different storage orders on model accuracy, we insert models
in three different orders and evaluate their resulting performance
changes. Specifically, we evaluate the following storage orders: 1)
Random order, which is the default setting we use to avoid poten-
tial bias from fixed storage sequences; 2) Sequential order, where
models fine-tuned from the same pre-trained model are stored
consecutively, representing an optimal case; 3) Round-robin order,
which alternates storage across different architectures to maximize
randomness and complexity, representing a worst-case scenario.
As shown in Figure 16, the insertion order can affect model perfor-
mance. For the sequence classification, image classification, tabular
classification, and object detection tasks, the round-robin order
results in the highest model performance changes of 0.17%, 0.01%,
0.41%, and 1.00%, respectively. For tabular regression, the random
order causes the highest change, while for summarization, the
sequential order yields the highest change. Such performance devi-
ations occur because tensors inserted earlier are more likely to be
selected as bases in the similarity index. As a result, changing the
insertion order can lead to different base-delta pairings during com-
pression and thus slightly influence model performance. However,
the overall effect of storing orders on model performance remains

14

Paper No: 518

limited, as NeuralStore guarantees that the precision loss for each
model stays within the user-defined tolerance.

6.5 Extensibility of NeuralStore

We now extend NeuralStore into DuckDB [34], denoted as
DuckDB+NeuralStore, and assess its performance. For comparison,
the baseline DuckDB applies Zstd compression to each serialized
model before saving it. Both DuckDB+NeuralStore and baseline are
configured with a 32GB memory limit. We vary the number of con-
current connection threads from 1 to 16 and measure write and read
throughput. The results are shown in Figure 15. For write through-
put, we can observe that both systems show performance gain as
the number of concurrent threads increases. DuckDB+NeuralStore
consistently outperforms the baseline across all levels of paral-
lelism. It achieves a peak throughput of 52 queries per minute at 16
threads, which is 1.93x higher than that of the baseline. This is due
to the fact that NeuralStore reduces the I/O cost by utilizing the pro-
posed tensor pages and HNSW index caching. For read operations,
NeuralStore also surpasses the DuckDB baseline across all levels of
parallelism, achieving a peak throughput of 261 queries per minute,
compared to 94 for the DuckDB baseline. These improvements are
attributed to NeuralStore’s in-memory index caching, on-demand
decompression, and flexible model loading strategy. In addition,
DuckDB+NeuralStore consumes only 78% of the storage used by
the baseline DuckDB, demonstrating the overall effectiveness of
our approach in reducing storage consumption.

7 Related Works

In-database Machine Learning. Recently, there has been a grow-
ing interest in in-database machine learning (ML), which aims to
integrate model training and inference directly within database
engines to minimize data movement and exploit database-native ex-
ecution for scalable analytics. Early systems such as Bismarck [16],
MADIib [20], and Oracle Machine Learning [6] embed learning algo-
rithms into SQL-based workflows to enable large-scale model train-
ing over relational data. More recent efforts, such as InferDB [37],
RAVEN [33], CorgiPile [42], Vertica-ML [15], push model inference
into the database engine, optimizing the runtime serving path by
tightly coupling inference with data access. In addition, systems like
EVA [43] and VIVA [36] enable declarative definition of machine
learning pipelines for in-database video analytics. NetsDB [50] pro-
poses tensor deduplication during inference by identifying struc-
tural similarity across neural networks to improve inference ef-
ficiency. While these systems primarily focus on in-database ML
pipelines, they offer limited support for model management. In
contrast, NeuralStore enables efficient in-database model manage-
ment, with a design tailored for modern DL models. We introduce
a set of techniques all natively embedded in the DBMS engine, in-
cluding a tensor-based storage engine, adaptive delta quantization,
and compression-aware model loading, to bridge the gap between
model storage and inference within DBMSs.

Model Management System. There are several existing dedicated
model management systems. ModelDB [39] focuses on tracking
model metadata, lineage, and experiment results to facilitate repro-
ducibility and model governance, but it does not address model
storage optimization. To reduce storage overhead, ModelHub [30]

NeuralStore: Efficient In-database Deep Learning Model Management System (Extended Version)

enables delta storage, which maintains the differences between fine-
tuned and base models with explicit relations. However, ModelHub
only captures pairwise differences between models and their prede-
cessors, and does not account for the high entropy of floating-point
weights, which limits its storage efficiency. In contrast, NeuralStore
targets tensor-level deduplication across the entire model collec-
tion, while incorporating a delta quantization algorithm that can
efficiently compress high-entropy delta tensors.

8 Conclusion

This paper introduced NeuralStore, an efficient in-database deep
learning model management system. We introduced a tensor-based
storage engine that enables fine-grained tensor deduplication by
leveraging an enhanced HNSW-based tensor index. To further re-
duce storage costs while preserving model performance, we pro-
posed an adaptive delta quantization algorithm that dynamically
compresses delta tensors with bounded accuracy loss. Moreover, we
designed a compression-aware loading and inference mechanism
that supports direct computation on compressed tensors, signifi-
cantly improving model retrieval and serving efficiency. Extensive
experimental results demonstrate that, compared to state-of-the-
art in-database model management systems, NeuralStore achieves
substantial storage savings while maintaining competitive model
retrieval throughput and inference accuracy.

References

[1] 2020. Beans Dataset.

[2] 2024. zlib. https://zlib.net.

[3] 2025. Avazu Dataset.

[4] 2025. Azure SQL. https://azure.microsoft.com.

[5] 2025. Hugging Face. https://huggingface.co.

[6] 2025. Oracle Machine Learning. https://docs.oracle.com/en/database/oracle/
machine-learning.

1 2025. PostgresML. https://postgresml.org.

[8] 2025. Zstandard. https://github.com/facebook/zstd.

] Anonymous Author(s). 2025. NeuralStore: Efficient In-database Deep Learning
Model Management System (Extended Version). https://storage.googleapis.com/
artifact_docs/p518.pdf
Anonymous Author(s). 2025. NeuralStore Implementation. https://anonymous.
4open.science/r/neurstore-80BD
Christoph Briicke, Philipp Hartling, Rodrigo Escobar Palacios, Hamesh Patel, and
Tilmann Rabl. 2023. TPCx-AI - An Industry Standard Benchmark for Artificial
Intelligence and Machine Learning Systems. Proc. VLDB Endow. 16, 12 (2023),
3649-3661. https://doi.org/10.14778/3611540.3611554
Deng Cai. 2021. A Revisit of Hashing Algorithms for Approximate Nearest
Neighbor Search. IEEE Trans. Knowl. Data Eng. 33, 6 (2021), 2337-2348.
Mengzhao Chen, Wengqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang,
Yu Qiao, and Ping Luo. 2024. EfficientQAT: Efficient Quantization-Aware Training
for Large Language Models. CoRR abs/2407.11062 (2024).

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

The Faiss library. CoRR abs/2401.08281 (2024).

Arash Fard, Anh Le, George Larionov, Wagas Dhillon, and Chuck Bear. 2020.

Vertica-ML: Distributed Machine Learning in Vertica Database. In SIGMOD Con-

ference. 755-768.

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards

a unified architecture for in-RDBMS analytics. In SIGMOD Conference. 325-336.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB

Endow. 12, 5 (2019), 461-474.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,

and Kurt Keutzer. 2021. A Survey of Quantization Methods for Efficient Neural

Network Inference. CoRR abs/2103.13630 (2021).

Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-

ing Deep Neural Network with Pruning, Trained Quantization and Huffman

Coding. In ICLR.

[20] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,

=
it

[15]

[16

[17]

(18]

[19]

15

[21

[22

[23

S
=}

[25

[26

[27]

[28

[29

[30

[31

[32

[34

[35

[36

[37

[38

[39

[40]

[41

[42

[43

[44

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700-1711.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In ICLR.

Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. 604-613.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
In CVPR. 2704-2713.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117-128.

Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. CoRR abs/1806.08342 (2018).

Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans.
Vis. Comput. Graph. 20, 12 (2014), 2674-2683.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. 2021.
Post-Training Quantization for Vision Transformer. In NeurIPS. 28092-28103.
Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.
In The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011,
Portland, Oregon, USA, Dekang Lin, Yuji Matsumoto, and Rada Mihalcea (Eds.).
The Association for Computer Linguistics, 142-150. https://aclanthology.org/P11-
1015/

Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824-836.

Hui Miao, Ang Li, Larry S. Davis, and Amol Deshpande. 2017. Towards Unified
Data and Lifecycle Management for Deep Learning. In ICDE. 571-582.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tij-
men Blankevoort. 2020. Up or Down? Adaptive Rounding for Post-Training
Quantization. In ICML, Vol. 119. 7197-7206.

Beng Chin Ooi, Shaofeng Cai, Gang Chen, Yanyan Shen, Kian-Lee Tan, Yuncheng
Whu, Xiaokui Xiao, Naili Xing, Cong Yue, Lingze Zeng, et al. 2024. NeurDB: an
Al-powered autonomous data system. Science China Information Sciences 67, 10
(2024), 200901.

Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and
Konstantinos Karanasos. 2022. End-to-end Optimization of Machine Learning
Prediction Queries. In SIGMOD Conference. 587-601.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 1981-1984. https://doi.org/10.1145/3299869.3320212
Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for Nearest Neighbor
Search. In KDD. 1378-1388.

Francisco Romero, Johann Hauswald, Aditi Partap, Daniel Kang, Matei Zaharia,
and Christos Kozyrakis. 2022. Optimizing Video Analytics with Declarative
Model Relationships. Proc. VLDB Endow. 16, 3 (2022), 447-460.

Ricardo Salazar-Diaz, Boris Glavic, and Tilmann Rabl. 2024. InferDB: In-Database
Machine Learning Inference Using Indexes. Proc. VLDB Endow. 17, 8 (2024),
1830-1842.

Zhaoyuan Su, Ammar Ahmed, Zirui Wang, Ali Anwar, and Yue Cheng. 2024.
Everything You Always Wanted to Know About Storage Compressibility of Pre-
Trained ML Models but Were Afraid to Ask. Proc. VLDB Endow. 17, 8 (2024),
2036-2049.

Manasi Vartak. 2017. MODELDB: A System for Machine Learning Model Man-
agement. In CIDR.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approximate
Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964-1978.

Naili Xing, Shaofeng Cai, Gang Chen, Zhaojing Luo, Beng Chin Ooi, and Jian Pei.
2024. Database Native Model Selection: Harnessing Deep Neural Networks in
Database Systems. Proc. VLDB Endow. 17, 5 (2024), 1020-1033.

Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cédric Renggli, Shaoduo Gan,
Kaan Kara, Guoliang Li, Ji Liu, Wentao Wu, Jieping Ye, and Ce Zhang. 2022. In-
Database Machine Learning with CorgiPile: Stochastic Gradient Descent without
Full Data Shuffle. In SIGMOD Conference. 1286—-1300.

Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachandran.
2022. EVA: A Symbolic Approach to Accelerating Exploratory Video Analytics
with Materialized Views. In SIGMOD Conference. 602-616.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
Efficient Inference. In MICRO. 811-824.

https://zlib.net
https://azure.microsoft.com
https://huggingface.co
https://docs.oracle.com/en/database/oracle/machine-learning
https://docs.oracle.com/en/database/oracle/machine-learning
https://postgresml.org
https://github.com/facebook/zstd
https://storage.googleapis.com/artifact_docs/p518.pdf
https://storage.googleapis.com/artifact_docs/p518.pdf
https://anonymous.4open.science/r/neurstore-80BD
https://anonymous.4open.science/r/neurstore-80BD
https://doi.org/10.14778/3611540.3611554
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://doi.org/10.1145/3299869.3320212

SIGMOD ’26, May 31-June 5, 2026, Bengaluru, India

[45] Lingze Zeng, Naili Xing, Shaofeng Cai, Gang Chen, Beng Chin Ooi, Jian Pei,
and Yuncheng Wu. 2024. Powering In-Database Dynamic Model Slicing for
Structured Data Analytics. Proc. VLDB Endow. 17, 13 (2024), 4813-4826.

[46] Chenyang Zhang, Junxiong Peng, Chen Xu, Quanging Xu, and Chuanhui Yang.
2024. IMBridge: Impedance Mismatch Mitigation between Database Engine and
Prediction Query Execution. In SIGMOD Conference Companion. ACM, 456-459.

[47] Chenyang Zhang, Junxiong Peng, Chen Xu, Quanqing Xu, and Chuanhui Yang.
2025. Mitigating the Impedance Mismatch between Prediction Query Execution
and Database Engine. Proc. ACM Manag. Data 3, 3 (2025), 189:1-189:28.

16

Paper No: 518

[48] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for

[49

[50

]

Approximate Nearest Neighbor Search. In ICML, Vol. 32. 838-846.

Zhanhao Zhao, Shaofeng Cai, Haotian Gao, Hexiang Pan, Siqi Xiang, Naili Xing,
Gang Chen, Beng Chin Ooi, Yanyan Shen, Yuncheng Wu, and Meihui Zhang. 2025.
NeurDB: On the Design and Implementation of an Al-powered Autonomous
Database. CIDR (2025).

Lixi Zhou, Jiaqing Chen, Amitabh Das, Hong Min, Lei Yu, Ming Zhao, and Jia
Zou. 2022. Serving Deep Learning Models with Deduplication from Relational
Databases. Proc. VLDB Endow. 15, 10 (2022), 2230-2243.

	Abstract
	1 Introduction
	2 Background
	2.1 In-database AI-powered Analytics
	2.2 Storage Optimizations for DL Models
	2.3 Hierarchical Navigable Small World
	2.4 Post-training Model Quantization
	2.5 Problem Definition

	3 System Overview
	4 Design of NeuralStore
	4.1 Tensor-based Storage Engine
	4.2 Delta Quantization Algorithm
	4.3 Compression-aware Model Loading

	5 Implementation
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 System Performance Evaluation
	6.3 Compression Performance Evaluation
	6.4 Micro-Benchmarks
	6.5 Extensibility of NeuralStore

	7 Related Works
	8 Conclusion
	References

