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Abstract
With the prevalence of in-database AI-powered analytics, there

is an increasing demand for database systems to efficiently man-

age the ever-expanding number and size of deep learning models.

However, existing database systems typically store entire models as

monolithic files or apply compression techniques that overlook the

structural characteristics of deep learning models, resulting in sub-

optimal model storage overhead. This paper presentsNeuralStore, a
novel in-database model management system that enables efficient

storage and utilization of deep learning models. First, NeuralStore
employs a tensor-based model storage engine to enable fine-grained

model storage within databases. In particular, we enhance the hier-

archical navigable small world (HNSW) graph to index tensors, and

only store additional deltas for tensors within a predefined simi-

larity threshold to ensure tensor-level deduplication. Second, we

propose a delta quantization algorithm that effectively compresses

delta tensors, thus achieving a superior compression ratio with

controllable model accuracy loss. Finally, we devise a compression-

aware model loading mechanism, which improves model utiliza-

tion performance by enabling direct computation on compressed

tensors. Experimental evaluations demonstrate that NeuralStore
achieves superior compression ratios and competitive model load-

ing throughput compared to state-of-the-art approaches.
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1 Introduction
Modern database management systems (DBMSs) are increasingly

integrating artificial intelligence (AI) to support advanced data ana-

lytics [7, 15, 32, 33, 41, 43]. Such in-database AI-powered analytics
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enable users to issue complex data analytics tasks through special-

ized SQL interfaces [32, 46, 47]. DBMSs then automatically retrieve

the relevant stored data and perform AI inference to provide deeper

insights that traditional statistical operations (e.g., averages and

sums) often fail to capture. As a result, the entire AI analytic work-

flow occurs within the database, which eliminates the need to move

large amounts of data outside DBMSs, and thus facilitates efficient

and secure analytics [15, 42].

Sectors such as finance [16, 20] and e-commerce [32, 33] are

rapidly adopting in-database AI-powered analytics in their criti-

cal business workflows, and with the advancements of AI, deep

learning (DL) models have become prevalent. Consider purchase

recommendations in e-commerce as an illustrative example, where

items are recommended based on personal user profiles, includ-

ing habits, occupations, and lifestyles. As user profiles typically

contain sensitive information, such as salary and browsing his-

tory, in-database analytics is particularly suitable for handling such

recommendation tasks. To enable precise and personalized recom-

mendations, e-commerce vendors commonly deploy specialized

DL models tailored to different users, regions, or customer seg-

ments. These specialized models are often derived from fundamen-

tal pre-trained DL models [45], which may consist of dozens or

even hundreds of layers, each potentially requiring gigabytes of

storage [30, 38, 39]. Further, as user profiles continuously evolve

over time, these specialized models must be regularly updated or

fine-tuned, leading to a steadily increasing number of models. As

a result, efficient in-database DL model management (i.e., storing

and loading DL models directly within DBMSs) has become a foun-

dational capability for in-database AI-powered analytics.

Existing in-database model management approaches generally

treat each model as an isolated unit and store full-fledged mod-

els independently. For example, DBMSs such as PostgresML [7],

Oracle [6], and Azure [4] serialize each model into a BLOB and

store it directly in a dedicated model table [4, 6, 7]. Alternatively,

systems such as ModelDB [39], RAVEN [33], and Vertica-ML [15]

store file paths in the table, while placing the actual models as ex-

ternal files. Although straightforward, these methods suffer from

substantial storage overhead, as storing hundreds of models can

require terabytes of space due to redundant parameters and deep

architectures. This overhead grows rapidly with the scale and com-

plexity of DL model deployments. To mitigate storage costs, users

can manually compress models before storing them into DBMSs

using general data compression algorithms [2, 8, 26], floating-point

compression schemes [26], or specialized model compression meth-

ods [38]. However, such optimization only partially addresses the

storage issue, as they still handle each model independently, i.e.,

the overall storage cost remains proportional to the total number

and size of models [38]. This persistent linear growth in storage
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overhead presents a critical bottleneck for scalable DL model man-

agement. Addressing this challenge requires new strategies that

exploit structural similarities across models to reduce redundancy.

Storing a DL model involves two core components: 1) the model

architecture, typically represented as a computational graph that

defines the connectivity and operations of layers; and 2) a set of

layers, where each layer comprises one or more high-dimensional

floating-point tensors. As model fine-tuning is relatively common,

many DL models share similar architectures and contain identical

or highly similar tensors, particularly when fine-tuning is limited to

a subset of layers [21, 30, 38]. This observation naturally motivates

us to explore similarities and relationships across models, thus

eliminating redundancy and improving overall storage efficiency.

Given that the model’s learnable parameters (e.g., weights and

biases) in tensors constitute the majority of a model’s storage cost,

we aim to identify redundant tensors and store only incremen-

tal differences between similar tensors. However, achieving this

tensor-level deduplication requires addressing three key challenges:

First, similarities between tensors are implicit. For instance, two

models without explicit lineage may still contain similar tensors.

Consequently, effectively identifying similar layers across a large

collection of models is inherently challenging. Second, tensors typi-

cally consist of high-entropy floating-point parameters. Even if two

tensors exhibit similar structures and parameters, directly calculat-

ing their parameter-wise differences can result in a delta tensor of

identical dimensionality, yielding little to no storage savings. Thus,

generating compact delta tensors that meaningfully reduce storage

consumption is not straightforward. Third, since models are stored

as fine-grained delta tensors, retrieving a model involves recon-

structing the complete model based on these tensors. Due to the

complexity and depth of DL models, this reconstruction process can

be costly, and therefore, efficiently retrieving models is non-trivial.

In this paper, we present NeuralStore, an efficient in-database

model management system designed to reduce DL model storage

costs while streamliningmodel utilization.We first propose a tensor-

based storage engine that departs from traditional per-model stor-

age by identifying and storing shared tensor components across

models, significantly improving space efficiency through structured

deduplication. At its core is a high-performance tensor index built

upon the Hierarchical Navigable Small World (HNSW) graph struc-

ture. Specifically, we categorize tensors into two types: base tensors,

which store original parameters, and delta tensors, which maintain

differences relative to a corresponding base tensor. Base tensors are

stored as nodes in the HNSW-based tensor index, while delta ten-

sors are placed separately in dedicated tensor pages. When saving a

new model, we deconstruct it into individual tensors, and for each

tensor, we search the tensor index to determine whether a similar

base tensor already exists within a predefined similarity threshold.

If such a base tensor is found, we compute and store the correspond-

ing delta tensor; otherwise, unmatched tensors are stored as new

base tensors. To integrate this design seamlessly into DBMSs, we

build the tensor-based storage engine on top of modern database

architecture, with enhancements specifically designed for efficient

DL model management. In particular, we introduce a tailored index

cache that efficiently buffers portions of the HNSW-based tensor

index and extend the native page layout to support large tensors

without disrupting the existing page-based storage mechanism.

We then introduce a delta quantization algorithm that com-

presses delta tensors to achieve reduced storage overhead. Un-

like traditional quantization that operates on complete models, we

quantize delta tensors, whose parameter ranges are typically much

narrower than those of the original tensors. This mitigates the accu-

racy loss commonly associated with traditional model quantization.

Moreover, our algorithm is adaptive, dynamically selecting the bit

width for each delta tensor based on its parameter distribution,

enabling fine-grained control over the trade-off between storage

efficiency and model accuracy.

Lastly, we design a compression-aware model loading mecha-

nism that enables direct computation on compressed tensors, elim-

inating the need to fully reconstruct models before use. Unlike

traditional pipelines that first decompress models into memory, our

approach integrates the reconstruction directly into the computa-

tion graph and pipelines tensor loading with computation. This

tight integration reduces inference latency and memory overhead,

improving model loading performance in in-database settings.

In summary, we make the following contributions:

• We present NeuralStore, a novel in-database DL model man-

agement system that enables efficient tensor-level storage and

loading.

• We introduce a structured tensor-based storage engine that can

be seamlessly integrated into modern DBMSs.

• We develop an adaptive delta quantization algorithm that min-

imizes storage by dynamically adjusting the bit width for each

delta tensor.

• We design a compression-aware model loading mechanism that

supports direct computation over compressed tensors, reducing

the overall in-database AI-powered analytics latency.

• We implement NeuralStore as a pluggable PostgreSQL extension

and evaluate its performance against state-of-the-art systems.

Experiment results demonstrate substantial gains in end-to-end

AI-powered analytics performance, storage efficiency, and model

saving and loading throughput.

• We integrate NeuralStore into DuckDB, and the performance

evaluation confirms its general extensibility.

The remainder of the paper is structured as follows. Section 2

provides the relevant background and presents the problem state-

ment. Section 3 overviews the system architecture of NeuralStore.
Section 4 details the design of NeuralStore. Section 5 describes the

system implementation, and Section 6 presents the experimental

results. Section 7 reviews the related works, and finally, Section 8

concludes the paper.

2 Background
In this section, we provide the relevant background and formally

define the problem that NeuralStore aims to address.

2.1 In-database AI-powered Analytics
In-database AI-powered analytics enables DBMSs to handle com-

plex data analytics tasks via specialized SQL syntax [6, 32] or user-

defined functions (UDFs) [7, 43]. For example, let us consider the

click-through rate (CTR) prediction task, as shown in Figure 1. A

data analyst submits a query to estimate CTR scores, i.e., the prob-

ability of a user clicking on the product. Upon receiving the query,
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Data Storage

user

name age region

Sam 30 Europe

Alice 21 North America

Bob 35 East Asia

...

...

...

...

product

id

1021

1022

1023

...

...

...

...

SELECT  product.id, score
FROM user JOIN product 
CROSS APPLY predict_ctr(
    user.*, product.*, model_id
) As score 
WHERE user.name = 'Sam'

AI Analytics Query Query ResultQuery ResultQuery Result

Product A (score: 0.76)

Product B (score: 0.71)

Product C (score: 0.68)

Product D (score: 0.90)

Retrieve Data

Model
Exist?

Yes
No

Inference
Train / Fine-tune Model

Load Model

Model Repository

Figure 1: In-database AI-powered Analytics Workflow – It

consists of three main steps: (1) data retrieval, (2) model loading,

and (3) inference.

the DBMS retrieves relevant data (e.g., product ID, user name, etc.)

from the user and product tables, loads the DL model specified by

the model ID, and performs model inference to predict CTR scores.

Since different analytics tasks often require different DL mod-

els, a model repository is typically maintained, where models are

stored as files or binary large objects (BLOBs). Each model may

have dozens or hundreds of layers and consume gigabytes of stor-

age, and therefore, repeatedly loading these large models from

disk for different tasks can introduce substantial latency. Moreover,

with ongoing data updates, models need to be frequently retrained

or fine-tuned to maintain accuracy. For instance, a CTR predic-

tion model may generate multiple updated versions over time to

reflect new user and product data, which significantly increases

storage overhead. These factors limit the scalability of in-database

AI-powered analytics and degrade the response time of analytics

queries. To address these challenges, we design NeuralStore, an
in-database model management system that reduces model storage

overhead and improves model loading efficiency.

2.2 Storage Optimizations for DL Models
Existing storage optimization techniques for DL models can be

broadly categorized into general-purpose data compression algo-

rithms and model-specific compression techniques. General com-

pression algorithms, such as ZSTD [8], can be directly applied to

serialized DL model files, and are effective at removing exact dupli-

cate patterns in the data. However, DL models rarely contain such

duplicates [30, 38], especially across layers with diverse weights.

Similarly, floating-point compression schemes such as ZFP [26] per-

form well on structured, spatially local data, but not on DL models

whose weights are typically high-dimensional, continuous, broadly

distributed, and lack spatial regularity. These characteristics limit

the effectiveness of generic compressors.

Model-specific compression techniques address the aforemen-

tioned shortcomings. In particular, ELF [38] eliminates the exponent

bits of floating-point values within the range (–1, 1) by remapping

them to the interval [1, 2), to improve compressibility. Nonetheless,

ELF operates on each model in isolation, missing opportunities to

exploit shared structure across models.

Rather than optimizing each model independently, we aim to re-

duce storage costs by leveraging inter-model similarities and shared

components. NeuralStore builds on this idea by enabling tensor-

level deduplication, identifying and reusing redundant model com-

ponents across a collection.

2.3 Hierarchical Navigable Small World
Approximate Nearest Neighbor search (ANN) is a technique for

efficiently identifying data points in high-dimensional spaces that

are approximately closest to a given query point [14, 40]. Existing

ANN algorithms can be categorized into hashing-based [12, 22],

tree-based [35], quantization-based [24, 48], and graph-based ap-

proaches [17, 29]. Among these, the Hierarchical Navigable Small

World (HNSW) graph [29], a state-of-the-art graph-based method,

is widely adopted due to its ability to achieve high recall with

low query latency. HNSW organizes data points into a multi-layer

graph structure. Each layer forms a navigable small-world graph,

where nodes are connected to their approximate nearest neighbors.

Higher layers provide coarse-grained shortcuts, while the lower

layers enable fine-grained local search. Given a query, the search

algorithm starts from a high-level node and performs greedy search

layer by layer, descending through the hierarchy until it reaches

the bottom layer, where it refines the search to identify the approx-

imate nearest neighbor. Formally, let 𝐺 = (𝑉 , 𝐸) denote the HNSW
graph, where 𝑉 is the set of data points represented as vertices,

and 𝐸 consists of edges between points, weighted by their pairwise

distances. Given a query point 𝑞 and an entry point 𝑣0, HNSW iter-

atively traverses the graph to find the neighbor 𝑣𝑡+1 of the current
vertex 𝑣𝑡 that is closest to 𝑞. This process continues until no closer

neighbor is found, at which point the current node is returned as

the approximate nearest neighbor.

In NeuralStore, we leverage HNSW to index base tensors effi-

ciently. This allows us to identify previously stored base tensors

that are most similar to a given input tensor.

2.4 Post-training Model Quantization
Quantization is designed to reduce the computational and mem-

ory costs of DL models [18, 19, 25]. It maps a model’s weights

and activations to lower-precision formats (e.g., from Float32 to

Int8). In general, quantization techniques can be classified into

quantization-aware training (QAT) [13, 23] and post-training quan-

tization (PTQ) [27, 31, 44]. QAT integrates quantization opera-

tions during model training, while PTQ is performed after model

training. In PTQ, a Float32 tensor 𝜃 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, where 𝑥𝑖 ∈
[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] is quantized to a tensor of 𝑏-bit integers 𝑞1, 𝑞2, . . . , 𝑞𝑛
using a scale factor 𝑠 =

𝑥max−𝑥min

2
𝑏−1 and a zero-point offset 𝑧. Each

value is quantized as 𝑞𝑖 = 𝑟𝑜𝑢𝑛𝑑
( 𝑥𝑖−𝑥𝑚𝑖𝑛

𝑠

)
+𝑧. While PTQ is simple

and efficient, it inevitably introduces precision loss, especially when

the dynamic range of 𝑋 is wide or the bit width 𝑏 is small.

Unlike traditional use cases of PTQ, we leverage PTQ in the con-

text of model management. We observe that delta tensors, i.e., the

differences between similar tensors across models, typically exhibit

smaller value ranges than the original tensors. As a result, applying

PTQ to delta tensors can help mitigate the accuracy degradation

typically associated with quantizing full tensors. To further reduce

precision loss, NeuralStore dynamically adjusts the quantization

bit width 𝑏 for each delta tensor, based on its value distribution

and a user-defined accuracy tolerance. This enables fine-grained

compression while preserving model performance.
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2.5 Problem Definition
Modern DBMSs increasingly support AI-powered analytics by in-

corporating DL models. In this context, in-database model man-

agement refers to the capability of DBMSs to store and utilize DL

models efficiently. A well-designed system must achieve the follow-

ing three objectives: (1) Storage consumption: Minimize the total

storage required to maintain a collection of models, especially as

the number and size of models grow. (2) Model accuracy: Preserve

the predictive performance of models, particularly when storage-

saving techniques (e.g., quantization or compression) are applied.

(3) Query efficiency: Ensure high-throughput model loading and

low-latency inference to support analytical workloads.

However, these objectives are often in tension with one another.

For example, aggressive compression may reduce storage overhead,

but at the cost of increased precision loss or additional decoding

overhead during inference. Similarly, techniques that improve load-

ing efficiency may require storing uncompressed or partially com-

pressed models, thereby increasing storage consumption. Given

these trade-offs, it is typically infeasible to optimize all three objec-

tives simultaneously [43, 50]. In this work, we focus on minimizing

storage consumption, which becomes increasingly critical as the

number and size of models grow, while maintaining acceptable

model accuracy and reasonable query efficiency. In particular, we

ensure that the accuracy degradation caused by our approach re-

mains within a user-defined tolerance, and the model is efficient

for retrieval and inference. We now formally define the problem

addressed by NeuralStore.
Problem definition. LetM = {𝑀1, 𝑀2, . . . , 𝑀𝑛} denote a set of
𝑛 DL models, where each model 𝑀𝑖 consists of a set of 𝐿𝑖 layers,

i.e., 𝑀𝑖 = {ℓ𝑖,1, ℓ𝑖,2, . . . , ℓ𝑖,𝐿𝑖 }. Each layer ℓ𝑖, 𝑗 contains a set of 𝐾𝑖, 𝑗

learnable tensors: ℓ𝑖, 𝑗 =

{
𝜃
(1)
𝑖, 𝑗
, 𝜃
(2)
𝑖, 𝑗
, . . . , 𝜃

(𝐾𝑖,𝑗 )
𝑖, 𝑗

}
, 𝜃

(𝑘 )
𝑖, 𝑗
∈ R𝑑

(𝑘 )
𝑖,𝑗

,

where 𝑑
(𝑘 )
𝑖, 𝑗

refers to the dimensionality of the 𝑘-th learnable tensor

in layer 𝑗 of model 𝑀𝑖 . Given a precision loss tolerance 𝑝 (e.g.,

a relative or absolute error bound), the goal of NeuralStore is to
jointly minimize the total storage cost and query latency of the

DL model collection, while ensuring that the compression-induced

accuracy loss remains within acceptable bounds. Formally, let 𝑆 (M)
denote the total storage cost of the model collectionM, and𝑇 (M)
denote the total query latency (e.g., model loading and inference

time). The optimization objective can be defined as:

min 𝛼 · 𝑆 (M) + 𝛽 ·𝑇 (M),
subject to ∀𝑀𝑖 ∈ M, Error(𝑀𝑖 ) ≤ 𝑝.

(1)

Here, 𝛼 and 𝛽 are user-defined weights that balance the im-

portance of storage efficiency and query performance. Error(𝑀𝑖 )
represents the quantifiable accuracy degradation introduced by

compressing model𝑀𝑖 , such as layer-wise tensor deviation or loss

in downstream prediction accuracy.

3 System Overview
In this section, we describe the system architecture of NeuralStore.
As shown in Figure 2, NeuralStore comprises three core compo-

nents, namely the model compressor, the model loader, and the

storage layer. Upon receiving users’ Save model requests, the model

compressor is invoked to reduce the model size using our delta

Load Model

Model Loader Index Storage

Delta Tensor Storage

Quantized Delta

HNSW Indexes

Meta Storage

Save Model

Model Compressor

Index Cache

Similarity Search

Delta Encoding

Dynamic
Quantization

Figure 2: System Architecture of NeuralStore – The system

supports two main workflows: (1) model saving (red), where models

are compressed before being stored, and (2) model loading (blue),

where models are retrieved by the model loader.

quantization algorithm. The compressed tensor, updated ANN in-

dexes, and model architecture are then serialized and stored in

the storage layer. During model inference, users send Load model

requests to the model loader, which fetches the compressed ten-

sors from the storage layer and performs computation without full

decompression. Next, we describe each component in detail.

Storage Layer. The storage layer is responsible for managing all

model-related data in NeuralStore, including HNSW, tensors, and

model architectures.NeuralStore persists HNSW on disk, which are

loaded into memory at runtime and used by the model compressor

for efficient similarity search. To reduce the size of HNSW, we

store the 8-bit quantized tensors in the vertices as the base tensors.

NeuralStore stores model tensors as quantized deltas with respect

to the corresponding base tensors. The quantization parameters,

such as zero point and scale, are serialized and stored as the prefix of

each quantized delta and tensor. Additionally, the serialized model

architectures are stored in the meta storage. NeuralStore uses a

relational table to organize model metadata, including model IDs

and names, so that external users can easily manage and interact

with models in the database.

Model Compressor. The model compressor is used to reduce the

model size using our delta quantization algorithm (Section 4.2)

according to the following steps. (1) The system first decouples

model weights from the model architecture. This separation allows

NeuralStore to manage weights at the granularity of individual

tensors. (2) A similarity search is performed for each tensor to

locate the most similar base tensor in the system. (3) The delta

between the input tensor and the base tensor is then computed.

(4) If the delta is sufficiently small to be quantized within the user-

defined bit width, it is stored in the storage layer. Otherwise, a new

HNSW vertex is created using the quantized value of the input

tensor, and the process repeats from Step (2).

Model Loader. The model loader is designed to efficiently retrieve

the required models using the compression-aware model loading
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Index Storage

Delta Tensor Storage

Tensor Page Tensor Page

Model Architecture

Index Cache

Tensor-based Storage Engine

Figure 3: Tensor-based Storage Engine – The engine consists of

three components: index storage for HNSW-based indexes, delta

tensor storage, and metadata storage for model architectures.

mechanism. Specifically, NeuralStore loads the base tensors, delta
tensors, and the computation graph into memory. To facilitate fast

retrieval, tensors are loaded without full decompression, i.e., de-

quantization and reconstruction. The shared base tensor is loaded

only once, even when referenced by multiple layers or models. To

reduce the memory usage, we modify the computation graph upon

retrieval so that tensors are only de-quantized and reconstructed be-

fore they are invoked in the computation. NeuralStore then follows

the modified computation graph to compute the results.

Running Example. Let us continue the CTR prediction example

shown in Figure 1. After receiving the analytics task, the data-

base retrieves relevant data and initiates a Load Model request to

NeuralStore. In particular, NeuralStore employs the model loader

to perform compression-aware loading, retrieving the associated

tensors and computation graph for in-database CTR prediction. Fur-

ther, when a newly trained or fine-tuned model needs to be stored,

the database issues a Save Model request. In response, NeuralStore
compresses the model using the adaptive delta quantization algo-

rithm and persists the compressed tensors in the storage layer.

4 Design of NeuralStore
In this section, we detail the key techniques proposed for

NeuralStore, including a tensor-based storage engine, a delta quan-

tization algorithm, and a compression-aware model loading and

inference mechanism.

4.1 Tensor-based Storage Engine
To exploit the structural similarities across DL models, NeuralStore
organizes and compresses deep learning models at the granularity

of individual tensors rather than entire models. This design en-

ables similarity-based delta compression across models, allowing

the system to avoid redundant storage by referencing previously

stored tensors. The overall storage layout is illustrated in Figure 3.

NeuralStore separates model storage into two main components:

index storage, which stores shared base tensors used for reference,

and delta tensor storage, which stores the differences between

compressed tensors and their matched references. In addition, we

serialize each model’s architecture into a dedicated metadata stor-

age, which extends the native tablespace that stores table structures

commonly used in DBMSs.

Index Storage. Given that different models may contain tensors

of varying shapes, NeuralStore maintains a collection of HNSW

indexes, one per unique tensor structure (i.e., shape). Each HNSW

index organizes similarly shaped tensors into a proximity graph,

where each node stores a base tensor, and edges connect similar

tensors to facilitate efficient ANN search. To reduce the index size,

each base tensor is quantized to 8-bit using linear quantization

prior to insertion. Although quantization introduces some loss,

NeuralStore preserves full-precision representation recoverability

by storing a corresponding delta tensor that captures the difference

between the original tensor and its quantized representation. Our

proposed delta quantization algorithmwill be detailed in Section 4.2.

Delta Tensor Storage. The delta tensor storage is responsible

for efficiently storing the compressed differences between base

tensors and the tensors compressed relative to them. To support the

typically large size of tensor data, we introduce a new page type

in the database called a tensor page. Unlike standard heap pages,

tensor pages are allowed to exceed the traditional page size limit

and are managed separately to optimize read/write performance

for large blocks. Within each tensor page, we store compressed

deltas compactly. For each delta tensor, we store the following: 1)

A 4-bit scale; 2) A 4-bit zero-point; 3) A quantized weight array.

Each tensor is dynamically quantized based on its value range,

and therefore, maintains its own scale and zero-point, which are

used to de-quantize the delta tensor (Section 4.2). The quantized

weights represent the difference between a base tensor and its

corresponding variant, as determined by approximate similarity

search. This design allows multiple models to share common base

tensors while storing only the compressed deltas for fine-tuned

variants. To further optimize model loading performance, delta

tensors are organized in the order defined by the model architecture.

This improves spatial locality and supports efficient reconstruction

during model loading and inference.

Index Cache. To reduce the overhead of accessing HNSW in model

compression and loading, we introduce an index cache that stores

the deserialized HNSWs in memory. When a lookup of a base

tensor is invoked, the system first checks the cache; if the cor-

responding HNSW index exists, the system bypasses disk I/O and

the de-serialization process. This caching mechanism significantly

reduces latency, particularly when models that share similar base

tensors are loaded and saved frequently during iterative inference

or fine-tuning. It maintains a bounded size and is managed using a

least-recently used (LRU) eviction policy.

4.2 Delta Quantization Algorithm
Based on the properties discussed in Section 2.5, we propose a

delta quantization algorithm to achieve efficient model compression

while maintaining user-defined precision loss. Figure 4 depicts the

workflow of model insertion. Given a collection of deep learning

models𝐷 = {𝑀1, 𝑀2, ..., 𝑀𝑛}, and a user-defined precision tolerance
𝑝 , NeuralStore compresses the model as follows.

5
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Figure 4: Delta Quantization Algorithm – NeuralStore com-

presses tensors in four steps: (1) decouple the weights from model

architecture, (2) search for the closest base tensor with ANN, (3)

perform delta-encoding, and (4) apply quantization to deltas.

Weight-Architecture Decoupling. Upon receiving the model sav-

ing request, we first decouple model weights (i.e., tensors) from

model architectures to simplify and streamline the compression

workflow. In NeuralStore, deep learning model architectures and

tensors are managed independently. Given a set of deep learning

models𝐷 , we extract their architectures into a set 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛},
and aggregate all tensors into a unified set𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚}, where
𝑚 is the total number of tensors across all models. The architec-

ture set 𝑆 is stored in full, while compression is applied solely to

the tensor set 𝑇 . The benefit of such decoupling is that it enables

independent optimization of the storage of tensors and architec-

tures. In particular, we can flatten the tensors to one-dimensional

arrays, so that they can match with more similar tensors for dedu-

plication. For example, tensors with dimensions (10, 10) and (5, 20)
are both flattened to a common shape of (100, 1), increasing the

opportunities of finding similar tensors.

Tensor Similarity Search. For each tensor 𝑡 ∈ 𝑇 , we search for a

similar tensor already stored in NeuralStore using an approximate

nearest neighbor index constructed for its shape. Specifically, we

query the ANN index,𝐴, to find a previously stored base tensor 𝑡𝑏𝑎𝑠𝑒
that minimizes the similarity metric (e.g., Euclidean distance) with 𝑡 .

In our design, we use the HNSW index for its efficiency and strong

performance in searching high-dimensional tensors, which are

prevalent in deep learning models. As described in Section 4.1, the

base tensor 𝑡𝑏𝑎𝑠𝑒 stored in the HNSW vertex consists of quantized

8-bit integers. To enable the comparison with the input tensor, a

32-bit float, we de-quantize the base tensor, with the zero point and

scale factor stored in the vertex, to 𝑡𝑓 𝑢𝑙𝑙−𝑏𝑎𝑠𝑒 .
Delta Encoding. We calculate the delta encoding of the tensor, 𝛿 ,

and its bit width after quantization, denoted as 𝑛𝑏𝑖𝑡 , as follows:

𝛿 = 𝑡 − 𝑡
f𝑢𝑙𝑙−𝑏𝑎𝑠𝑒 ,

𝑛𝑏𝑖𝑡 =

⌈
log

2

(
𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛

2𝑝

)⌉
. (2)

where 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are the minimum and maximum values in 𝛿 ,

respectively. We can observe that the range of 𝛿 and user-defined

precision tolerance 𝑝 collaboratively determine the final bit width

to store the tensor. With a wide range of 𝛿 and a small precision

tolerance 𝑝 , the system will result in a large bit width and increase

the storage consumption. Therefore, we introduce a threshold 𝜏 for

the range of 𝛿 . If 𝛿𝑚𝑎𝑥 −𝛿𝑚𝑖𝑛 is less than or equal to 𝜏 , NeuralStore
will proceed to quantize and store 𝛿 in the storage layer. Otherwise,

NeuralStore creates a new vertex in HNSW and recalculates the

delta based on the new vertex. This is to reduce the storage for

the current tensor as well as potentially facilitate more effective

compression for the future. The procedure is detailed as follows: (1)

The original tensor 𝑡 is quantized to obtain 𝑡𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 , comprising

8-bit integers. (2) A new vertex storing 𝑡𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 is created and

inserted into HNSW. (3) The system applies de-quantization to

𝑡𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 to get 𝑡 ′. The delta is calculated using 𝛿 = 𝑡 − 𝑡 ′. We have

evaluated the impact of varying thresholds 𝜏 in Section 6.4.1. For a

tensor with normalization, the range of the new delta falls within

1−(−1)
2
8
≈ 0.0078. According to our evaluation, it is recommended to

set a threshold between 0.1 and 0.2 to achieve the best performance.

N-Bit Quantization. For tensors selected for compression, we

quantize their delta values according to 𝑛𝑏𝑖𝑡 (calculated from Equa-

tion 2) to reduce storage cost while maintaining the precision loss

within a user-defined precision tolerance 𝑝 . To achieve this, we

apply linear asymmetric quantization with a fixed bit width of 2𝑝 ,

setting the scale accordingly:

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑑𝑒𝑙𝑡𝑎𝑖 =

⌊
𝛿𝑖

𝑠𝑐𝑎𝑙𝑒

⌋
+ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡, (3)

where 𝑠𝑐𝑎𝑙𝑒 = 2𝑝 , and 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 =

⌊
− 𝛿𝑚𝑖𝑛

𝑠𝑐𝑎𝑙𝑒

⌋
. This indicates that

the distance between two consecutive quantized numbers is 2𝑝 ,

and therefore any points in between are within the distance of 𝑝

to their closest quantized number. Moreover, since each tensor is

individually quantized according to its value range, the number of

bits required to store the tensor is minimized.

Algorithm 1 illustrates the complete model compression proce-

dure. Given a set of deep learning models 𝐷 = {𝑀1, 𝑀2, . . . , 𝑀𝑛}
and a user-defined precision tolerance 𝑝 , NeuralStore first decou-
ples each model into its architecture and tensors (Line 1). The set of

architectures 𝑆 is stored in full, while tensors𝑇 are compressed. For

each tensor 𝑡 ∈ 𝑇 , the system performs an ANN search using an

HNSW index to find the most similar base tensor 𝑡
base

(Lines 3-4).

If a sufficiently similar match is found, the system computes the

delta 𝛿 = 𝑡 − 𝑡
base

(Line 5). Otherwise, 𝑡 is quantized and inserted

into the index, and the delta is recomputed against its quantized

version (Lines 6-9). The delta tensor 𝛿 is then quantized using linear

asymmetric quantization. The number of bits (𝑛𝑏𝑖𝑡 ) is dynamically

determined to ensure the quantization error remains within the tol-

erance 𝑝 (Line 10). Each element of 𝛿 is quantized using the derived

scale and zero-point (Lines 11-14). The quantized delta, along with

the reference tensor and bit width metadata, is stored for future

reconstruction (Line 15). Finally, the set of model architectures 𝑆 is

saved to complete the compression process (Line 16).

The delta quantization algorithm has three key novelties com-

pared to existing methods. First, it exploits inter-model similarities.

For each new model inserted, we search globally for the tensors

closest to the input tensor, resulting in deduplication among models.

Moreover, the integration of ANN enables flexible and incremental

compression. As the system ingests more models, the growing num-

ber of base tensors increases the likelihood of finding close matches

for newly added tensors, thereby improving compression efficiency

6
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Algorithm 1: Delta Quantization in NeuralStore
Input:Model set 𝐷 = {𝑀1, 𝑀2, . . . , 𝑀𝑛 }, precision tolerance 𝑝

Output: Compressed tensors and model architectures stored in

NeuralStore
1 𝑆,𝑇 ← DecoupleTensors(𝐷 ) // Extract architectures 𝑆

and tensors 𝑇

2 foreach 𝑡 ∈ 𝑇 do
3 𝐴← GetIndexerFromPool(𝑑𝑖𝑚 (𝑡 ) )
4 𝑡

base
← 𝐴.Search(𝑡 )

5 𝛿 ← DeltaEncode(𝑡, 𝑡
base
)

6 if ShouldCompress(𝛿) = false then
7 𝑡𝑞 ←QuantizeForIndex(𝑡 )
8 𝐴.Insert(𝑡𝑞 )
9 𝛿 ← DeltaEncode(𝑡, 𝑡𝑞 )

10 𝑛𝑏𝑖𝑡 ←
⌈
log

2

(
max(𝛿 )−min(𝛿 )

2𝑝

)⌉
11 scale← 2𝑝

12 zero_point←
⌊
− min(𝛿 )

scale

⌋
13 foreach 𝛿𝑖 ∈ 𝛿 do
14 qd𝑖 ←

⌊
𝛿𝑖
scale

⌋
+ zero_point

15 StoreQuantizedDelta(qd, 𝑡
base

, 𝑛𝑏𝑖𝑡 )

16 StoreArchitectures(𝑆)

over time. This approach eliminates the need to re-compress ex-

isting models and is particularly well-suited for dynamic model

management scenarios where models are frequently added and fine-

tuned. Second, it applies quantization to delta encoding. Compared

with quantization over the original weights, this method substan-

tially reduces the required bit width to represent model weights and

lowers the precision loss by processing on a smaller scale. Lastly,

each tensor and delta is dynamically quantized based on its value

range, rather than applying a fixed global quantization parameter.

This adaptive approach maximizes the compression ratio while

adhering to the user-defined precision loss constraints.

Discussion. The effectiveness of the delta quantization algorithm

is decided by the precision tolerance 𝑝 , which defines the upper

bound of the quantization bin width. A larger precision tolerance

results in quantization with wider rounding intervals, thus yield-

ing a higher compression ratio, but potentially degrading model

performance. To mitigate such risk, NeuralStore uses a precision
tolerance of 5.96 × 10−8 (2−24) by default, which is smaller than

the machine epsilon for single-precision floating-point numbers.

As shown in Section 6.4.5, over 90% of the tested models exhibit no

performance change under this tolerance, demonstrating that the

default precision tolerance is sufficiently strict to limit the impact

on model performance. NeuralStore also allows users to configure

the precision tolerance on a per-model basis. We provide a utility

tool in our code repository [10] to guide users in selecting an ap-

propriate tolerance for a specific model. First, given a model and

a test dataset, it compresses the model using multiple candidate

tolerances. Next, it evaluates the performance of each compressed

variant on the test data and reports the results to the user. Based on

the analysis results, users can choose a preferred tolerance to store

the model accordingly, effectively balancing storage consumption

and model performance degradation.

Partial Loading HNSW 2

Delta 1

Delta 2

Delta 3

Delta 4

Delta
Tensors

Base
Tensors

HNSW 1
Delta Tensor

Storage
Index Storage

Memory

Computation
Graph

Figure 5: Compression-aware Model Inference – NeuralStore
adopts flexible tensor loading with partial delta tensor bits and on-

demand decompression to streamline the model loading process.

4.3 Compression-aware Model Loading
In conventional model management systems, compressed models

are often required to be decompressed or reconstructed before they

are served for inferences. This results in significant overhead in

model loading and extensive memory consumption, accommodat-

ing the full model inside memory. As shown in Figure 5, we present

the compression-aware model inference mechanism, which stream-

lines the model loading and inference process, as well as reduces

the memory consumption.

4.3.1 Model Loading. When a Load Model request is received,

NeuralStore first looks up the reference of the first tensor page

in the model table with the model ID. Since the tensor pages of a

model are organized consecutively, it then scans the delta pages for

model architecture, delta tensors, and references (HNSW ID and

vertex ID) to base tensors. Lastly, NeuralStore traverses the HN-
SWs to fetch the index pages containing base tensors. NeuralStore
only stores the quantized tensors in memory to reduce the memory

consumption.

Flexible Model Loading. NeuralStore enables flexible model load-

ing to optimize the trade-off among memory consumption, loading

efficiency, and precision loss. In scenarios where the efficiency of

model serving is critical, while higher model tolerance is accepted,

NeuralStore allows the users to selectively fetch partial bits of delta

tensors, or even only the base tensor. This will lead to faster model

loading and lower memory consumption due to fewer bits loaded

and disk I/O at the cost of higher model precision loss. Notably, the

additional precision loss brought by the flexible model loading only

has a limited impact on the resulting model performance due to

our unique compression algorithm, as shown in Section 6. Since

each delta is calculated with respect to the closest base tensor, and

quantization is applied dynamically on each delta, ignoring the least

significant bits of the quantized delta leads to an average difference

of 10
−4

compared with fetching the quantized delta in full bits.

7
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Algorithm 2: Compression-Aware Model Inference

Input: Compressed model 𝑀̂ , inference bit width 𝑏

Output: Augmented computation graph𝐺 for runtime execution

1 𝐺 ← LoadModelGraph(𝑀̂ )
2 𝑇 ← GetCompressedTensors(𝑀̂ )
3 foreach tensor 𝑡 ∈ 𝑇 do
4 𝑡

base
← RetrieveQuantizedBase(𝑡 )

5 𝑡
delta

, 𝑛𝑏𝑖𝑡 ← RetrieveQuantizedDelta(𝑡 )
6 if 𝑛𝑏𝑖𝑡 > 𝑏 then
7 𝑡

delta
← ExtractMSB(𝑡

delta
, 𝑏 )

8 scale
delta
← scale

delta
× 2

𝑛𝑏𝑖𝑡−𝑏

9 𝑁
deq_base

← CreateDeqantizeNode(𝑡
base

, scale
base

, zp
base
)

10 𝑁
deq_delta

←
CreateDeqantizeNode(𝑡

delta
, scale

delta
, zp

delta
)

11 𝑁
add
← CreateAddNode(𝑁

deq_base
, 𝑁

deq_delta
)

12 𝐺.InsertNode(𝑁
add
)

13 𝐺.DirectOutput(𝑁
add
,OriginalNode(𝑡 ) )

14 return𝐺

4.3.2 On-demand Decompression. NeuralStore adopts the on-

demand decompression during model serving to ensure the mini-

mum memory usage. To serve the model, NeuralStore first deserial-
izes the model architecture to form a computation graph. When the

computation reaches the step that involves a compressed tensor, it

will de-quantize the delta tensor and the corresponding base tensor

and reconstruct them to get the full-bit-width tensor for calculation.

The full-bit-width tensor will be discarded after the computation

is finished. This leads to consistent memory usage with additional

computation cost for decompression. Such overhead can be miti-

gated by temporarily storing the de-quantized base tensors, which

will be used again by the following layers. In particular, during

model loading, we record the share count of each base tensor. For

base tensors with the share count greater than 0 during the com-

putation, we store the de-quantized base tensor and decrease the

share count. When the share count reaches 0, the de-quantized

base tensor will be deleted. In this way, we eliminate the duplicate

de-quantization of the same base tensors.

Augmented Computation Graph. To enable on-demand decom-

pression inference,NeuralStore augments the original model graph

with additional computational nodes that handle dequantization

and reconstruction at runtime. Specifically, a compressed tensor is

reconstructed by combining two components: the quantized base

tensor and its corresponding quantized delta. The base tensor is

always stored and loaded in 8-bit quantized form, while the delta

tensor is flexibly loaded based on the desired inference precision,

as discussed in Section 4.3.1. Both the base and delta tensors are de-

quantized using their associated scale and zero-point values, which

are retrieved alongside the quantized representations. These de-

quantization operations are expressed as DequantizeLinear nodes
within the computation graph. The outputs of the two dequantiza-

tion branches are then combined through an element-wise addition

node to reconstruct the original tensor. This augmented graph elim-

inates the need for full offline decompression and enables efficient

execution directly over the compressed representation.

We illustrate the compression-aware model inference process

in Algorithm 2. Given a compressed model 𝑀̂ and the targeted

LD DC TC

t1 t2 t3 t4 t5 t6 t7

LD DC TC

LD DC TC

LD DC TC

LD DC TC

Tensor 1

Tensor 2

Tensor 3

Tensor 4

Tensor 5

LD Load DC Decompress TC Compute

Figure 6: Pipelining – NeuralStore pipelines tensor loading, de-
compression, and computation during model loading.

delta inference bit width 𝑏, NeuralStore first loads the original com-

putation graph (Line 1). For each tensor, the system retrieves its

quantized base and delta components, along with their associated

quantization metadata (i.e., bit width, scale, and zero-point) (Lines

4-5). If the delta tensor was originally quantized to a higher bit

width than the target delta bit width 𝑏, only the most significant 𝑏

bits are extracted. To compensate for the bit truncation, the quan-

tization scale is adjusted proportionally (Lines 6-8). The system

then creates two DequantizeLinear nodes, one for the base tensor
and one for the (truncated) delta tensor (Lines 9-10). These two

dequantized outputs are fused through an Add node to reconstruct

the tensor in float space (Line 11). NeuralStore inserts the dequanti-
zation and addition nodes directly into the model graph. The output

of this reconstruction subgraph is then wired to the corresponding

original node that consumed the tensor (Lines 11-13). This augmen-

tation enables runtime reconstruction of compressed tensors and

eliminates the need for full offline decompression.

4.3.3 Pipelining. We further improve the model serving process by

leveraging pipelining. The entire process can be divided into three

phases, namely, model loading, tensor decompression, and model

computation. The model loading phase is I/O-intensive, as it in-

volves retrieving delta tensors and HNSW indices that store the base

tensors. Tensor decompression is primarily CPU-bound, though its

computational overhead can be mitigated through the use of AVX

instruction sets. Model computation is also CPU-intensive, domi-

nated by matrix multiplication operations. To improve throughput,

we pipeline these three phases. As illustrated in Figure 6, at the

𝑖-th stage of the pipeline, the system performs model loading for

the 𝑖-th tensor, decompression for the (𝑖 − 1)-th tensor, and model

computation for the (𝑖 − 2)-th tensor. This design enables concur-

rent execution of the three phases, effectively hiding latency and

improving resource utilization. The benefits of pipelining are fur-

ther amplified when the model computation phase is offloaded to a

GPU due to less resource contention.

5 Implementation
We implement NeuralStore as a pluggable extension of PostgreSQL

with 5000 LoC lines of code in C/C++. We have made our source

code available [10].

NeuralStore is tightly integrated with PostgreSQL to support

efficient model storage, loading, and compression-aware inference

through SQL interfaces. We provide several PostgreSQL UDFs, such

8
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as ns_save_model and ns_load_model, to store and retrieve mod-

els. NeuralStore manages model storage at the granularity of ten-

sors. Compressed tensors are organized into tensor pages, each of

which contains the complete set of compressed tensors for a single

deep learning model. Tensor pages are enforced to be read-only

by NeuralStore, and are memory-mapped using mmap to reduce

memory footprint and enable sharing across PostgreSQL sessions.

At the start of each tensor page, a fixed-length header records the

offsets and lengths of all delta tensors. Each delta tensor keeps

metadata, including its shape, dimension, quantization parameters

(i.e., scale and zero point), and single-element bit width, followed

by a bit-packed payload.

To accelerate the retrieval of HNSW indexes, NeuralStore main-

tains a local cache for HNSW indexes. The cache is bounded by

a user-defined buffer size, which is set to 32 GB by default at the

startup stage of PostgreSQL. When memory is insufficient, the

least recently used index is evicted from the cache to the disk

based on LRU. We build our index on top of hnswlib, and extend

a new SpaceInterface called QuantizedL2Space to support dis-
tance computation between quantized vectors with different scales

and zero-points. To further accelerate this, we optimize the distance

computation using AVX2 SIMD instructions.

NeuralStore supports both full decompression and compression-

aware inference for ONNX framework models. For compression-

aware inference, we modify ONNX computation graphs to incorpo-

rate on-demand decompression. Particularly, the system retrieves

quantized delta and base tensors and inserts DequantizeLinear
and Add nodes into the graph to perform runtime reconstruction, as

described in Section 4.3.2. During compression, both delta computa-

tion and quantization are carried out in double precision to mitigate

rounding errors introduced by low-precision representations.

To demonstrate the generalizability of the proposed method, we

also implement NeuralStore as a loadable extension of DuckDB.

Adapting NeuralStore to DuckDB involves three customizations:

(1) rewriting the UDF registration logic, (2) replacing PostgreSQL’s

shared-memory-based index cache with an in-process index cache,

and (3) adapting memory allocation from PostgreSQL to DuckDB’s

C++ runtime. This DuckDB-based implementation is functionally

comparable to the PostgreSQL-based implementation, enabled by

two key design factors. First, NeuralStore relies on components

that are commonly available in modern DBMSs, such as page-based

storage engines, UDF interfaces, and buffer managers. Second, its

modular design decouples database-specific APIs, such as shared

memory management and data access methods, from the core logic

of model compression and loading.

6 Performance Evaluation
In this section, we evaluate NeuralStore by comparing it with state-

of-the-art model management systems and compression algorithms.

We conduct system-level and micro benchmarks to measure the

query throughput, storage consumption, and model accuracy.

6.1 Experimental Setup
We conduct our experiments on two servers, each equipped with

an Intel(R) Xeon(R) W-1290P CPU (10 cores × 2 hardware threads),

128GB of DRAM, a 894GB SAMSUNG_MZ7L3960 SSD, and an

Table 1: Experimental AI-powered Analytics Workloads

ID Workload DataSet Model
(a) Sequence Classification IMDB DistilBERT

(b) Image Classification Beans Vision Transformer

(c) Tabular Classification Avazu MLP

Table 2: Summary of models used in the workloads

Type Model Count Size (GB)

CV

MobileNetV2 30 0.25

ResNet-50 110 9.63

ViT-B/16 110 35.43

ViT-L/32 5 5.71

Swin-T 70 7.35

Swin-B 60 19.74

NLP

BERT-base 50 20.41

DistilBERT 50 12.37

RoBERTa 50 23.23

BERT-large 50 62.39

T5-small 50 11.28

T5-base 50 41.54

BART-base 50 25.98

BART-large 50 75.71

Multimodal BLIP-base 15 10.97

Total 800 361.99

NVIDIA RTX 3090 GPU. We use one server to simulate clients

that issue save model and load model requests, while the other

server functions as the database server.

6.1.1 Workloads. To evaluate model management performance

under realistic scenarios, we collect 800 DL models totaling 361GB,

covering a diverse range of model architectures and sizes. Due

to the space constraints, we provide a summary of these models

in the extended version [9]. Before running the experiments, we

perform a warmup phase to download all models from Hugging-

face [5] and store them locally in advance. We feed the systems with

read and write workloads, containing randomly selected models,

to simulate model saving and loading operations. We first save the

models into the evaluated system to measure write throughput and

subsequently load them to measure read throughput.

As summarized in Table 2, we set up three representative

in-database AI-powered analytics tasks: (a) sequence classifica-

tion [11]: 20 DistilBERTmodels fine-tuned on the IMDB dataset [28],

each performing 100 text inferences to classify movie reviews, (b)

image classification [43]: 20 Vision Transformer (ViT) models fine-

tuned on the Beans dataset [1], each processing 100 images to iden-

tify bean leaf diseases, and (c) tabular classification [49]: 12 multi-

layer perceptron (MLP) models trained on the Avazu dataset [3],

each classifying 500 user records to predict CTR scores.

6.1.2 Baselines. We compare it against two representative baseline

systems: a database-based model management system, PostgresML,

and a file-based model management system, ELF
∗
. To facilitate

fair comparisons, all systems are integrated with PostgreSQL to

store the metadata of models. We employ an open-sourced imple-

mentation on PostgreSQL [49] that provides standard in-database

AI-powered analytics interfaces, and integrate it with the evaluated

systems to perform end-to-end experiments, i.e., conducting model

saving, model loading, and model inference within the database.

9
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PostgresML [7]. PostgresML is a PostgreSQL extension designed

for in-database machine learning. It stores each model as a serial-

ized BLOB in a model table and leverages PostgreSQL’s built-in

TOAST mechanism for compression, using a LZ-family compres-

sion algorithm known as PGLZ.

ELF∗ [38]. To the best of our knowledge, there is no open-source

file-based model management system. We therefore implement

ELF
∗
, a file-based baseline that integrates ELF [38], a state-of-the-

art model compression algorithm. When saving new models, ELF
∗

compresses each model using ELF and stores it as a separate file,

and then records the file path in a PostgreSQL model table. When

loading a model, ELF
∗
fetches the model metadata (including the

file path) from the database, loads the model file from disk, and

decompresses it for use.

We also compare NeuralStorewith widely used general-purpose

compression algorithms, ZSTD and ZFP, and specialized model

compression methods, ELF, in terms of storage consumption and

the resulting model accuracy.

ZSTD [8]. ZSTD is a lossless compression algorithm developed by

Facebook. It is commonly used for general-purpose data compres-

sion. We use its official release (v1.5.5) in our experiments.

ZFP [26]. ZFP is a lossy compression algorithm designed for

floating-point arrays. It allows users to adjust error bounds ac-

cording to the accuracy requirements of the target data. We use its

official release (v0.5.5) to conduct our experiments.

ELF [38]. ELF is a state-of-the-art model compression framework

that eliminates the exponent fields of floating point numbers by

projecting the model weights from (-1,1) to [1, 2). We use its official

open-source code and extend it to support the ONNX model format

to align with our workload.

6.1.3 Default configuration. We configure PostgreSQLwith a 32GB

shared buffer. Other PostgreSQL parameters remain at their default

values unless specified. We choose 𝜏 = 0.16 as the default similarity

threshold in NeuralStore, and enable the flexible model loading by

default. We set the precision tolerance of ZFP and NeuralStore to
5.96 × 10−8, consistent with that used in ELF, ensuring a uniform

upper bound on the precision loss. A detailed analysis of how these

default parameter settings are determined is provided in Section 6.4.

6.2 System Performance Evaluation
Here we evaluate the system performance of NeuralStore by com-

paring it with PostgresML and ELF
∗
.

6.2.1 End-to-end Performance Evaluation. We first evaluate the

end-to-end latency for in-database AI-powered analytics. In each

task, we save multiple models as described in Section 6.1, then load

each model and perform inference. We accumulate the latency of

each stage and show the results in Figure 7. NeuralStore reduces
total query latency by up to 32%, 26%, and 47% compared to Post-

gresML, and by up to 20%, 22%, and 14% compared to ELF
∗
, across

sequence, image, and tabular classification tasks. For model saving,

NeuralStore takes 46s, 60s, and 5s for the three tasks, outperforming

both PostgresML (71s, 82s, 14s) and ELF
∗
(52s, 70s, 6s). This im-

provement is attributed to our tensor-based storage engine, which

batches tensor writes into pages and defers HNSW index updates

until eviction, thereby reducing I/O overhead. For model loading,
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Figure 10: Performance Impact of Similarity Threshold.

NeuralStore achieves up to 61% and 50% speedup over ELF
∗
and

PostgresML, respectively. This is due to the fact that our tensor-

based storage engine avoids redundant base-tensor fetching and

reduces disk I/O. Moreover, our compression-aware model loading

mechanism eliminates decompression during loading, further im-

proving the model loading throughput. Inference latency remains

comparable across all systems since they share the same ONNX

runtime, with only negligible increases for NeuralStore due to the

on-demand decompression during inference.
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6.2.2 Throughput. We then evaluate the write and read throughput

with varying numbers of clients ranging from 8 to 32. For write oper-

ations, the clients concurrently save models randomly chosen from

the model pool described in Section 6.1.1. The results are shown

in Figure 8(a). We can observe that the throughput of all systems

increases as more clients are included due to the increased con-

currency. NeuralStore outperforms the baselines, achieving a peak

throughput of 42 queries per minute compared with 37 for ELF
∗

and 17 for PostgresML. PostgresML performs the worst by storing

the model with the TOAST mechanism in PostgreSQL. The models

are divided into small chunks, which are fetched separately and

reconstructed. This leads to high disk I/O overhead. ELF
∗
achieves

throughput comparable toNeuralStore across all numbers of clients,

but remains behind due to higher I/O cost, especially when multiple

models are stored concurrently. For read operations, each client

continuously sends queries, with each query loading a random

model. Figure 8(b) shows the read throughput. NeuralStore outper-
forms ELF

∗
and PostgresML by up to 2.5× and 1.4×, respectively.

The improvement in the performance stems from three key designs.

First, NeuralStoremaintains an in-memory index cache to avoid re-

peated fetching of base tensors, thus reducing the disk I/O. Second,

NeuralStore adopts an on-demand decompression strategy, where

quantized deltas and base tensors are de-quantized at inference time,

thereby eliminating the need for full model decompression prior to

execution. Lastly, the flexible model loading enables NeuralStore
to load only the most significant 8 bits of the quantized deltas for

inference, further reducing the disk I/O and memory bandwidth.

6.2.3 Storage. We report the resulting storage usage in Figure 8(c).

As observed, NeuralStore has the least storage consumption. In

particular, it consumes 93% and 70% of the space required by ELF
∗

and PostgresML, respectively. Overall, NeuralStore achieves a com-

pression ratio of 1.38×, compared to 1.32× for ELF
∗
and 0.97× for

PostgresML. These improvements are due to NeuralStore’s delta
quantization compression, which identifies shared base tensors

across models and dynamically quantizes the base and delta tensors

to reduce storage cost.

6.2.4 In-depth Bottleneck Analysis. To better understand system

bottlenecks, we report CPU and I/O costs for saving and loading

a representative model (google/vit-base-patch16-224) in Table 3.

For model saving, NeuralStore achieves the shortest wall time and

lowest I/O block usage. This aligns with the results in Figure 8(a).

In addition, NeuralStore exhibits the highest CPU utilization com-

pared to PostgreSQL and ELF
∗
, which is expected because its higher

compression ratio incurs greater computational cost. For model

loading, NeuralStore achieves up to 50% and 55% lower wall time

than PostgresML and ELF
∗
, respectively. The results are also consis-

tent with its higher read throughput shown in Figure 8(b). We also

observe that NeuralStore achieves the lowest system time, CPU

utilization, and I/O block reads. This is attributed to the on-demand

decompression and flexible loading strategies, which reduce the

cost of fully decompressing models and I/O overhead. In addition,

we measure the memory usage of the evaluated model. The re-

sults show that NeuralStore consumes 165MB of memory during

model loading, compared to 330MB for both PostgresML and ELF
∗
.

This further demonstrates the effectiveness of the proposed flexible

loading mechanism in reducing memory consumption.

Table 3: CPU and I/O Statistics for Model Saving / Loading

Operation System Wall
Time (s)

User
Time (s)

System
Time (s)

CPU
Utilization

I/O
Blocks

Model
Saving

PostgresML 4.828 2.491 1.276 0.780 1154816

ELF
∗

4.794 2.783 1.633 0.921 506776

NeuralStore 3.283 2.087 0.971 0.932 348504

Model
Loading

PostgresML 1.919 0.503 1.308 0.944 702680

ELF
∗

1.982 1.395 0.583 0.998 507192

NeuralStore 0.895 0.470 0.227 0.779 348568
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Figure 11: Performance Impact of Precision Tolerance.

6.3 Compression Performance Evaluation
We now assess the compression performance of NeuralStore. We

conduct the experiments by progressively increasing the number of

stored models from 200 to 800, and measure the storage consump-

tion. Moreover, we calculate the compression ratio according to the

original size, totaling 361GB.

6.3.1 Storage and Compression Ratio. We plot the storage sizes

of the compressed models obtained using different compression

algorithms in Figure 9.NeuralStore consistently achieves the lowest
compressed size across all model scales. At 800 models, it reduces

the total storage to 261GB, corresponding to a compression ratio

of 1.38×. While the compression ratios for ELF, ZFP, and ZSTD

are 1.32×, 1.18×, and 1.10×, respectively. This trend persists across

different scales, demonstrating the scalability and effectiveness of

delta quantization compression.

6.3.2 Per-model Compression Ratio Distribution. We study the per-

model compression effectiveness of NeuralStore. To account for

shared base tensors, we evenly distribute the storage cost of each

base tensor in the index across all tensors that reference it. Fig-

ure 9(b) shows the cumulative distribution function (CDF) of per-

model compression ratios. NeuralStore outperforms all baselines

across the distribution. Over 60% of models achieve a compression

ratio greater than 1.4×, and nearly 90% exceed 1.3×. In contrast, no

model compressed with ELF reaches 1.4×, and fewer than 3% of

models do so with ZFP or ZSTD.We also observe that the three base-

line methods exhibit steep CDF curves concentrated between 1.2×
and 1.3×, which indicates limited variability in their compression ef-

fectiveness. For example, ELF compresses tensors by deduplicating

the 8-bit exponent field of floating-point values, which caps its ideal

compression ratio around 1.33×. In contrast, NeuralStore exploits
tensor-level similarities across models, enabling adaptive compres-

sion that achieves higher ratios when redundancy is present.
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Figure 12: Performance Impact of Flexible Model Loading.

6.4 Micro-Benchmarks
To gain deeper insights into the performance trade-offs, we conduct

micro-benchmarks to evaluate the impact of key system parame-

ters, namely, the similarity threshold 𝜏 , the user-defined precision

tolerance 𝑝 , as well as the design choice of flexible model loading.

6.4.1 Performance Impact of Similarity Threshold. A key param-

eter that influences the storage cost in NeuralStore is the simi-

larity threshold (𝜏), which decides whether a tensor can be delta-

compressed depending on its distance from base tensors. A higher

threshold enables more aggressive delta compression by accepting

looser matches, thereby reducing the number of base tensors added

to the HNSW indexes. However, this also results in degraded ef-

fectiveness of delta-encoding. We evaluate the impact of 𝜏 using a

subset of the dataset, consisting of 50 DL models fine-tuned from

google/bert-base. We vary the similarity threshold and measure

the resulting storage sizes of delta tensors and HNSW indexes.

Figure 10(a) shows how varying 𝜏 affects storage consumption.

As 𝜏 increases, more tensors are qualified for delta encoding. Con-

sequently, it reduces the opportunity of creating new vertex nodes

in HNSW indexes, resulting in smaller index sizes. However, the

decrease in the storage of HNSW indexes slows down when 𝜏 in-

creases beyond 0.16. This is because HNSWs still need to maintain

a minimum number of vertices for excessively distant tensors. Sim-

ilarly, the storage of delta tensors increases when 𝜏 is small, while

the marginal increase diminishes as 𝜏 becomes higher. It is because

a higher similarity threshold results in a delta computed against

sub-optimal base tensors, and therefore increases the number of bits

required to represent the tensor. When 𝜏 exceeds a certain range,

in this case is 0.16, the allowed distance is greater than the nearest

base tensors. As a result, tensors are always able to find another

base tensor to create a smaller delta. Therefore, the increase in the

delta storage diminishes. The overall compression ratio (plotted as

a red line) reflects the trade-off between index storage and delta

storage. In the beginning, the index storage drops faster, leading to

an increased compression ratio. It peaks at 𝜏 = 0.16. After that, the

increase in delta tensors storage overwhelms the space saved by

indexes, leading to compression ratio drops.

We also evaluate the impact of 𝜏 on compression throughput

under single-threaded and multi-threaded settings. For the multi-

threading setup, we perform compression on the same 50 BERT

models using two threads. Each thread fetches the tensor to be

compressed from a shared queue and performs the similarity search,

delta encoding, and quantization independently. The results are

shown in Figure 10(b). As the similarity threshold 𝜏 becomes higher,
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Figure 13: Model Accuracy and Storage Change under Differ-
ent Precision Tolerance

the compression throughput increases from 90.5MB/s to 139.3MB/s

for single-thread execution, and 155.8MB/s to 197.9MB/s for multi-

thread execution. This trend aligns with earlier observations, as

more tensors are delta-compressed instead of inserted into the

index, the system avoids costly HNSW index maintenance, leading

to faster overall compression. Notably, when 𝜏 = 0.16, NeuralStore
achieves the highest throughput and compression ratio.

6.4.2 Performance Impact of Precision Tolerance. We now evaluate

the effectiveness of the delta quantization algorithm under varying

precision tolerance 𝑝 . The precision tolerance is given by users as a

parameter when storing each model. It defines the upper bound of

the quantization bin width, ensuring the resulting model accuracy

is not significantly compromised. Varying the precision tolerance

enables users to balance the trade-off between compression per-

formance and model accuracy. In this experiment, we vary the

precision tolerance from 5.96 × 10−8 (single precision machine ep-

silon) to 10
−5
, and compare the compression ratio and throughput

of NeuralStore and ZFP on the full 800-model set we collected.

The compression ratios are shown in Figure 11(a). As the pre-

cision tolerance increases, the compression ratio also improves

because a wider tolerance (larger bin width) reduces the number

of bits required during quantization. NeuralStore consistently out-

performs ZFP across all tolerance levels. For example, at a toler-

ance of 10
−5
, the compression ratio of NeuralStore is 2.07× and

1.68× for ZFP, exhibiting a 1.2× improvement. This is attributed to

NeuralStore’s ability to exploit inter-model tensor similarity, which

becomes more effective as the precision tolerance increases.

We further measure the compression throughput with respect to

the range of precision tolerance. As illustrated in Figure 11(b), the

throughput of NeuralStore increases from 80.4MB/s to 90.7MB/s as

the tolerance varies from 5.96 × 10−8 to 10
−5
. This is because as

precision tolerance increases, the number of bits to represent the

delta becomes fewer. Consequently, more tensors will fall within

the similarity threshold, resulting in fewer tensors to be inserted

into the HNSW indexes. By reducing the costly index insertions and

graph maintenance operations, the overhead of delta quantization

compression is significantly mitigated. As a result, NeuralStore
achieves faster compression rates at higher tolerance levels, without

sacrificing its compression advantage.

6.4.3 Performance Impact of Flexible Model Loading. We evaluate

the performance impact of flexible model loading, which provides

users with options to load quantized-delta in full bit width and

partial bit width. To quantify the trade-off between model accuracy

and efficiency in bothmodel loading andmemory usage, we conduct

12
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Figure 15: Performance of NeuralStore on DuckDB

experiments with two loading strategies, namely full loading and

flexible loading with 8 bits.

First, we measure the throughput of the two strategies. The

experiment is conducted by first initializing NeuralStore with 50

models using a precision tolerance of 5.96× 10−8. We then run 4 to

32 clients, each of which continuously sends the load model queries.

Depending on the strategy, NeuralStore either loads full-bit-width
or 8-bit delta tensors. The results are presented in Figure 12(a). It

shows that 8-bit flexible loading achieves up to a 2.4× speedup

compared to full loading. This improvement is attributed to the

reduced number of bits that need to be read, which lowers both

disk I/O and memory usage. Notably, the disk I/O becomes a bottle-

neck when models are concurrently retrieved by over 16 clients. In

contrast, the flexible loading strategy avoids such a bottleneck by

significantly reducing the bits loaded.

Second, we evaluate the number of bits saved for each delta

tensor using the flexible loading strategy. To run the experiment,

we initialize 800 models in NeuralStore, and load the models non-

repeatedly. We record the number of bits saved for each tensor and

display the results in Figure 12(b). It shows that flexible loading

saves 8.4 bits on average, which indicates a compression ratio of

1.53×. With a precision tolerance of 5.96 × 10
−8
, discarding this

number of bits results in a precision loss of less than 10
−4
. 5% of

the delta tensors save 0 bits with flexible loading because their bit

width is less than or equal to 8. These tensors mainly originate from

the same base tensor as their corresponding delta tensors.

6.4.4 Performance Impact of Precision Tolerance. We then evaluate

the impact of precision tolerance on model performance. We use

the tasks and models as described in Section 6.1.1. For each task, we

gradually increase the precision tolerance from 5.96 × 10−8 until a
surge in models’ average absolute performance change is observed.

At each precision tolerance, we measure the average absolute accu-

racy change and compressed storage size. The results are shown

Table 4: Summary of Models Used for Performance Change
Evaluation

Domain Task Dataset Architecture

NLP

Sequence Classification IMDB

BERT (9)

DistilBERT (22)

RoBERTa (16)

Summarization SAMSum

T5-small (42)

T5-base (20)

BART-base (10)

CV

Image Classification

Stanford Dogs

ViT-base (34)

Swin-base (4)

Swin-tiny (5)

Beans

Food-101

CIFAR-10

Object Detection CPPE-5 DETR-ResNet-50 (18)

Tabular

Classification Avazu MLP (12)

Regression Regression

MLP (4)

TabNet (4)

in Figure 13. Across all tasks, increasing the precision tolerance

leads to reduced storage consumption, as fewer bits are needed

during quantization. However, the sensitivity to precision tolerance

varies across tasks. For sequence classification, model performance

change remains within 0.02% at tolerances below 1 × 10
−5
. The

model performance change begins to amplify from a tolerance of

2×10−3, fromwhere it increases from 0.42% to 3.22% at the tolerance

of 2.8 × 10−3. For image classification, model performance remains

unaffected at tolerances below 1 × 10−5, but starts increasing from

4.5 × 10−3, reaching a peak change of 4.12% at 4.9 × 10−3. Lastly,
tabular classification models maintain a performance change below

0.6% until the tolerance reaches 2 × 10
−2
, beyond which model

performance change increases up to 3.91% at 6 × 10−2. Users can
configure a higher tolerance on a per-model basis to balance the

trade-off between storage consumption and model performance

degradation. For example, models for image classification tasks can

safely use a precision tolerance up to 1×10−5, since no performance

change is observed in Figure 13 at this tolerance level.

6.4.5 Performance Impact Across Models. We now evaluate the im-

pact of flexible model loading and precision tolerance on model per-

formance. In addition to the three tasks introduced in Section 6.1.1,

we further include three more tasks to cover a wider range of model

architectures: (1) summarization, where models generate abstrac-

tive summaries from dialogues, (2) object detection, where models

identify multiple objects within images, and (3) tabular regression,

where models predict continuous numeric values based on struc-

tured features. In total, our evaluation covers 200 models across six

tasks. Due to the space constraints, we provide a summary of these

models in the extended version [9]. We compress and decompress
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Figure 16: Model Performance Change under Different Or-
ders

these models using a fixed precision tolerance of 5.96 × 10−8, and
measure their absolute performance change. The results are shown

in Figure 14. For ZFP, ELF, and NeuralStore Full Loading, over 90%
of models exhibit no performance change. For NeuralStore Flexible
Loading, 57 out of 200 models show a performance change less than

0.01%, and over 70% of models exhibit a change within 0.1%. More

than 95% of models remain within a performance change of 1%. The

increase in performance change is expected, since flexible loading

restores only the most significant 8 bits of each delta tensor. Among

all tasks, object detection models are most sensitive to precision

loss, with an average performance change of 0.8%. This is because

the object detection task requires predicting bounding boxes in

images, where small changes in model weights can lead to high

deviations in predicted object locations. On the contrary, image

classification models show the smallest performance change, with

an average of 0.009%, due to the simplicity of the task.

6.4.6 Performance Impact of Storage Order. To assess the impact

of different storage orders on model accuracy, we insert models

in three different orders and evaluate their resulting performance

changes. Specifically, we evaluate the following storage orders: 1)

Random order, which is the default setting we use to avoid poten-

tial bias from fixed storage sequences; 2) Sequential order, where

models fine-tuned from the same pre-trained model are stored

consecutively, representing an optimal case; 3) Round-robin order,

which alternates storage across different architectures to maximize

randomness and complexity, representing a worst-case scenario.

As shown in Figure 16, the insertion order can affect model perfor-

mance. For the sequence classification, image classification, tabular

classification, and object detection tasks, the round-robin order

results in the highest model performance changes of 0.17%, 0.01%,

0.41%, and 1.00%, respectively. For tabular regression, the random

order causes the highest change, while for summarization, the

sequential order yields the highest change. Such performance devi-

ations occur because tensors inserted earlier are more likely to be

selected as bases in the similarity index. As a result, changing the

insertion order can lead to different base-delta pairings during com-

pression and thus slightly influence model performance. However,

the overall effect of storing orders on model performance remains

limited, as NeuralStore guarantees that the precision loss for each

model stays within the user-defined tolerance.

6.5 Extensibility of NeuralStore
We now extend NeuralStore into DuckDB [34], denoted as

DuckDB+NeuralStore, and assess its performance. For comparison,

the baseline DuckDB applies Zstd compression to each serialized

model before saving it. Both DuckDB+NeuralStore and baseline are
configured with a 32GB memory limit. We vary the number of con-

current connection threads from 1 to 16 and measure write and read

throughput. The results are shown in Figure 15. For write through-

put, we can observe that both systems show performance gain as

the number of concurrent threads increases. DuckDB+NeuralStore
consistently outperforms the baseline across all levels of paral-

lelism. It achieves a peak throughput of 52 queries per minute at 16

threads, which is 1.93× higher than that of the baseline. This is due

to the fact thatNeuralStore reduces the I/O cost by utilizing the pro-

posed tensor pages and HNSW index caching. For read operations,

NeuralStore also surpasses the DuckDB baseline across all levels of

parallelism, achieving a peak throughput of 261 queries per minute,

compared to 94 for the DuckDB baseline. These improvements are

attributed to NeuralStore’s in-memory index caching, on-demand

decompression, and flexible model loading strategy. In addition,

DuckDB+NeuralStore consumes only 78% of the storage used by

the baseline DuckDB, demonstrating the overall effectiveness of

our approach in reducing storage consumption.

7 Related Works
In-database Machine Learning. Recently, there has been a grow-

ing interest in in-database machine learning (ML), which aims to

integrate model training and inference directly within database

engines to minimize data movement and exploit database-native ex-

ecution for scalable analytics. Early systems such as Bismarck [16],

MADlib [20], and OracleMachine Learning [6] embed learning algo-

rithms into SQL-based workflows to enable large-scale model train-

ing over relational data. More recent efforts, such as InferDB [37],

RAVEN [33], CorgiPile [42], Vertica-ML [15], push model inference

into the database engine, optimizing the runtime serving path by

tightly coupling inference with data access. In addition, systems like

EVA [43] and VIVA [36] enable declarative definition of machine

learning pipelines for in-database video analytics. NetsDB [50] pro-

poses tensor deduplication during inference by identifying struc-

tural similarity across neural networks to improve inference ef-

ficiency. While these systems primarily focus on in-database ML

pipelines, they offer limited support for model management. In

contrast, NeuralStore enables efficient in-database model manage-

ment, with a design tailored for modern DL models. We introduce

a set of techniques all natively embedded in the DBMS engine, in-

cluding a tensor-based storage engine, adaptive delta quantization,

and compression-aware model loading, to bridge the gap between

model storage and inference within DBMSs.

Model Management System. There are several existing dedicated
model management systems. ModelDB [39] focuses on tracking

model metadata, lineage, and experiment results to facilitate repro-

ducibility and model governance, but it does not address model

storage optimization. To reduce storage overhead, ModelHub [30]
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enables delta storage, which maintains the differences between fine-

tuned and base models with explicit relations. However, ModelHub

only captures pairwise differences between models and their prede-

cessors, and does not account for the high entropy of floating-point

weights, which limits its storage efficiency. In contrast,NeuralStore
targets tensor-level deduplication across the entire model collec-

tion, while incorporating a delta quantization algorithm that can

efficiently compress high-entropy delta tensors.

8 Conclusion
This paper introduced NeuralStore, an efficient in-database deep

learning model management system. We introduced a tensor-based

storage engine that enables fine-grained tensor deduplication by

leveraging an enhanced HNSW-based tensor index. To further re-

duce storage costs while preserving model performance, we pro-

posed an adaptive delta quantization algorithm that dynamically

compresses delta tensors with bounded accuracy loss. Moreover, we

designed a compression-aware loading and inference mechanism

that supports direct computation on compressed tensors, signifi-

cantly improving model retrieval and serving efficiency. Extensive

experimental results demonstrate that, compared to state-of-the-

art in-database model management systems, NeuralStore achieves
substantial storage savings while maintaining competitive model

retrieval throughput and inference accuracy.
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