Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

Mastering Test Driven Development using JUnit -

Explore TDD, Unit Testing, JUnit 5, Best Practices, Database Testing, Refactoring,
Mocking, Advanced Features & More

Duration: 3 Days

Skill Level: Introductory

Available Format: Instructor-Led Online; Instructor-Led, Onsite In Person ; Blended;
On Public Schedule

Test Driven Development (TDD) and Unit Testing Essentials is a three-day,
comprehensive hands-on test-driven development / JUnit / TDD training course geared
for developers who need to get up and running with essential Test-driven development
programming skills using JUnit and various open-source testing frameworks.

What You’ll Learn

This course provides a comprehensive, hands-on training experience for Java
developers who want to build high-quality, maintainable software using modern test-
driven development (TDD) and unit testing practices. The course is delivered using
JUnit 6 on a Java 25 runtime, allowing participants to work with the latest testing tools
and platform capabilities while focusing on proven testing principles rather than
language-specific features.

Throughout the course, you will learn how to apply TDD effectively by writing tests first
to drive design, clarify requirements, and reduce defects. You will explore the core
features of JUnit, including test structure, annotations, assertions, parameterized tests,
lifecycle management, and advanced testing capabilities. These concepts are
reinforced through hands-on exercises that mirror real-world development scenarios.

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

Another key part of the course is mocking and isolation using Mockito. You will learn
how and when to use test doubles—such as stubs and mocks, to isolate units under
test, control dependencies, and verify interactions between components. The course
covers Mockito fundamentals, best practices for mocking collaborators, argument
matching, interaction verification, and common pitfalls, all within the context of TDD and
clean test design.

The course also introduces the use of Al-assisted techniques for generating test
data. You will learn how Al tools can be used to quickly create realistic, boundary, and
edge-case test data, improve test coverage, and reduce the manual effort involved in
setting up complex test scenarios. Emphasis is placed on using Al responsibly—
reviewing, validating, and refining generated data so that tests remain accurate,
meaningful, and maintainable.

Although the course uses JUnit 6, all concepts and techniques are fully applicable to
JUnit 5. JUnit 6 builds directly on the JUnit 5 architecture, so developers working with
JUnit 5 can immediately apply what they learn without adjustment.

The course does not require Java 25—specific knowledge. A solid understanding of
Java 11 or later is sufficient. The emphasis is on testing strategy, framework usage,
and design discipline rather than on advanced Java language features.

By the end of the course, you will be equipped to write clear and reliable unit tests, use
Mockito effectively to isolate and verify behavior, leverage Al to enhance test data
creation, practice disciplined test-driven development, and integrate automated testing
into modern Java build and delivery pipelines with confidence.

This skills-centric course is approximately 50% hands-on labs and 50% instructor-led
discussion, designed to build practical, job-ready expertise in Test-Driven
Development (TDD) using JUnit 6, Mockito, and modern Al-assisted testing
techniques. Participants work through guided exercises and labs that reinforce core
testing concepts, with a strong focus on writing clean, maintainable, and well-tested
Java code.

Working in a hands-on learning environment, guided by an expert instructor, attendees
will learn to:

o Understand the principles, workflow, and benefits of Test-Driven Development
(TDD)

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

TECHNOLOGY TRAINING

Real-World IT Training, Coaching & Skills Development Solutions

©)
@)

o O O O

Explain the role of unit testing within modern Java development

Understand the architecture and capabilities of JUnit 6, and how it relates to
JUnit 5

Write, organize, and execute unit tests using JUnit annotations, assertions, and
lifecycle methods

Use JUnit tests to drive the implementation and design of Java code
Apply best practices and patterns for writing readable, maintainable, and
reliable tests

Understand how testing and debugging complement each other during
development

Create well-structured test suites, including parameterized and advanced test
scenarios

Use Mockito to isolate units under test by mocking dependencies

Stub behavior and verify interactions using Mockito within a TDD workflow
Generate realistic and edge-case test data using Al-assisted techniques
Use Al tools to improve test coverage, reduce manual test data creation, and
explore boundary conditions

Evaluate when Al-generated test data is appropriate and how to validate its
correctness

Refactor production and test code safely with confidence, using tests as a safety
net

Discuss and compare different testing techniques and where each fits in the
testing pyramid

This course is intended for Java developers who want to improve the quality, reliability,
and maintainability of their code through disciplined testing, modern tooling, and TDD

practices.

The target audience includes:

@)
©)
©)

Java developers new to Test-Driven Development

Developers with limited or informal experience using JUnit or Mockito

Java developers transitioning from legacy testing approaches to modern JUnit
(JUnit 5/ 6)

Developers responsible for maintaining or refactoring existing Java codebases
Team leads and senior developers who want to establish or reinforce testing best
practices within their teams

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

Participants should have a working knowledge of Java (Java 11 or later). While the
course uses JUnit 6 and a Java 25 runtime, no prior experience with Java 25—specific
features or Al tools is required.

TT2100 Core Java 25 Programming Developer's Workshop

Take Before: Students should have development skills at least equivalent to the following
course(s) or should have attended as a pre-requisite:

e TT2104 Core Java Programming for OO Experienced Developers — 4 days

TT2120 Basic Java Programming for Developers New to OO (C, COBOL,
etc.)

TT2104 Fast Track to Core Java Programming for OO Experienced
Developers

TT2000 Core Java Programming Developer's Workshop

1) Test-Driven Development

Test-Driven Development (TDD) offers a focused and disciplined way to create software
that is both reliable and easy to maintain. By starting with tests before any code is
written, you clarify exactly what needs to be built and can confirm every change works
as intended. This lesson explores why ad-hoc testing methods often fall short and how
TDD provides a solution that ensures your code is always functional, well-documented,
and ready for change. You will learn the step-by-step process behind TDD, see how
continuous testing supports better design and fewer bugs, and discover how automation
and coverage tools streamline the entire workflow. With these concepts in hand, you will
be equipped to build software that stands up to real-world demands and keeps projects
on track.

e |dentify why software containing bugs is still shipped.

e Explain the rationale behind test-driven development (TDD).

e Describe the process and steps of TDD.

e Compare traditional development with TDD.

e Summarize the benefits and side effects of TDD.

e Recognize best practices for writing effective tests.

e Outline the importance of automation and code coverage in testing.

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

2) Unit Testing Fundamentals

Understanding unit testing is essential for building reliable software. You will learn how
unit tests work at the smallest level, focusing on individual pieces of code to ensure they
function as intended. By exploring the differences between unit, integration, and
functional tests, you will see why unit testing is the most effective way to catch bugs
early and improve code quality. This lesson will show you how to write clear,
independent, and maintainable tests, as well as how to use frameworks and best
practices to keep your test suite effective. By mastering unit testing, you will be able to
find issues quickly, support refactoring efforts, and create documentation that benefits
the entire development team.

e Define what unit testing is and its purpose.

e Distinguish between unit testing, integration testing, and functional testing.

e |dentify characteristics of good unit tests.

e Recognize the importance of test isolation and managing dependencies.

e Describe best practices for writing readable and maintainable test code.

e Summarize the principles for reliable and effective tests.

3) Jumpstart: JUnit

JUnit is an essential tool for building reliable Java applications using automated testing.
In this lesson, you will see how JUnit enables you to write and run tests that confirm
your code behaves as intended. You will learn how to use core annotations to organize
your tests, apply assertions to check results, and harness the power of modern IDEs to
streamline your workflow. The lesson also covers how Apache Maven fits into the
testing process, making it easier to manage dependencies and automate test execution.
By understanding the structure and best practices of writing tests with JUnit, you gain
confidence that your code changes are safe and your applications stay robust.

e |dentify the main features and purpose of JUnit.

e Describe how JUnit tests are structured and executed.

e Explain the use of annotations and assertions in JUnit.

e Recognize the differences between JUnit 5 and JUnit 6.

e Demonstrate how to write and run unit tests in an IDE.

e Understand the role and configuration of Apache Maven for testing.

e Explain the purpose of the Maven Surefire plugin and reporting.

e Describe the use of test fixtures and lifecycle methods in JUnit.

4) Annotations

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

In this lesson, you will explore advanced features of JUnit that help manage and
organize test execution efficiently. You will learn how to skip tests when necessary, set
custom names for better clarity in test reports, and enforce strict execution time limits to
catch slow tests early. You will also see how to control the order in which tests run and
apply conditions so that tests execute only in suitable environments, based on factors
like operating system or Java version. Tags provide another layer of control, allowing
you to include or exclude specific tests in different contexts, both from build tools and
within IDEs. Composing custom annotations and automating resource cleanup further
supports effective and maintainable test code. These tools equip you to create robust
and adaptable test suites for a wide range of Java projects.

e Explain how to use the @Disabled annotation for skipping tests.

e Describe how to set custom display names for tests with a DisplayNameGenerator.

e Apply timeouts to test methods using the @Timeout annotation.

e Use assertTimeout and assertTimeoutPreemptively for fine-grained timeout control.

e Control test execution order with @TestMethodOrder and MethodOrderer options.

e Configure conditional test execution based on OS, Java version, properties, and

environment variables.

e Tag tests with @Tag and filter tests using Maven Surefire, command line, or IDE.

e Compose custom meta-annotations for reusable test annotations.

e Automatically manage resource cleanup with the @AutoClose annotation.

5) Fluent Assertions with AssertJ

AssertJ gives you a powerful way to write clear and maintainable assertions in your
Java tests. With AssertJ, your checks read almost like natural language, making it
easier to understand what your tests are doing and why they fail. You will see how to
chain assertions, work with a variety of data types, and apply advanced techniques like
property extraction and recursive comparison. By integrating AssertJ into your projects,
you gain access to expressive APIs for collections, objects, and more, all while
improving test readability and reliability. This lesson covers everything from adding
AssertJ to a Maven project to handling tricky cases like nulls and reporting multiple
failures at once.

e Demonstrate how to write basic assertions with AssertJ.

e |dentify the reasons Assertd is preferred in modern Java testing.

e Add Assertd as a dependency in a Maven project.

e Use type-specific assertions for various data types.

e Apply collection assertions to check size, order, and content.

e Extract and assert properties from objects in collections.

e Filter collections before making assertions.

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING
e Handle null and empty collections with Assertd. -
e Utilize soft assertions to validate multiple properties in one test.

6) Parameterized Tests

Parameterized tests let you write a single test method that runs automatically with
different input values. This approach cuts down on duplicated code and makes your test
coverage easier to expand. You will see how JUnit provides a variety of ways to supply
input data, from simple values listed directly in the code to complex data loaded from
files or generated at runtime. You will explore built-in sources like @ ValueSource,
@CsvSource, and @EnumSource, as well as techniques for handling null and empty
values. You will also learn how to use factory methods and custom providers for
maximum flexibility. Along the way, you will discover how to set up your test methods,
match data types, and customize the display names for each test run. With these tools,
you can build tests that are both thorough and maintainable.

e Explain the purpose and benefits of parameterized tests in JUnit.

e Use @ValueSource to provide simple input values to a test.

e Apply @CsvSource and @CsvFileSource for supplying multiple arguments.

e Demonstrate the use of @EnumSource for testing with enum constants.

e Use @MethodSource for custom and complex data sets

e Implement null and empty argument sources in parameterized tests.

e Customize test invocation display names using placeholders.

e Create and use custom ArgumentsProvider classes with @ArgumentsSource.

7) Advanced Features

Understanding advanced JUnit features boosts the flexibility and maintainability of your
test suites. With nested unit tests, you can organize related test cases into logical
groups, making complex scenarios easier to manage. Dynamic test creation, enabled
by @TestFactory, lets you generate tests at runtime using data from files, databases, or
other sources. This approach is especially useful when the number of tests is unknown
in advance or when test inputs change frequently. Hierarchical reporting provides clear
insight into test execution, adapting automatically as your data evolves. You'll also see
how to validate exception scenarios, repeat tests for reliability, and keep your tests
isolated with temporary directories. Extensions offer powerful ways to customize test
behavior, while grouped assertions help ensure thorough validation in a single run.
These techniques provide practical solutions for building robust, data-driven, and
maintainable test automation with JUnit.

e Identify how nested unit tests organize test cases in JUnit.

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING
e Explain the purpose and use of the @TestFactory annotation.
e Describe how dynamic tests are generated and executed.
e Demonstrate how hierarchical test reporting works with dynamic containers.
e Recognize when to use @TestFactory for runtime-driven test creation.
e Use assertThrows to test for expected exceptions.
e Apply @RepeatedTest for repeated executions of test methods.
e Summarize the role of JUnit extensions and how to register them.
e lllustrate the use of @TempDir for managing temporary directories in tests.
e Group multiple assertions with assertAll for comprehensive validation.

8) JUnit Best Practices

Unit testing is a cornerstone of robust software development, ensuring your code
behaves as intended now and in the future. In this lesson, you will see what separates a
good test from a weak one and learn why test code deserves as much care as
production code. By focusing on readability, structure, and reliability, you can create
tests that serve as both documentation and safety nets for ongoing development. You
will also explore common pitfalls in unit testing, practical strategies to manage
dependencies, and techniques to keep your test suite lean and meaningful.
Understanding the difference between unit and integration tests, as well as the value of
automation and coverage analysis, will help you build more maintainable and
trustworthy software systems.

e Define the qualities of a good unit test.

e Identify factors that affect test readability and maintainability.

e Distinguish between reliable and unreliable tests.

e Evaluate the quality of test assertions.

e Detect common unit test code smells and apply solutions.

e Identify effective test data management strategies.

e Apply coding practices that improve test quality.

e Understand challenges of testing legacy code.

e Prepare a suitable environment for unit testing.

e Recognize the role of automation and coverage in testing.

9) Mocking of Components

Unit testing relies on creating a controlled environment where your code can be
checked independently of outside influences. By using test dummies such as stubs,
fakes, spies, and mocks, you can replace real systems like databases and services with
predictable stand-ins. This approach makes your tests faster, more reliable, and easier

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

to interpret, since failures are not caused by external factors. You will see how different
types of test dummies fit specific testing needs, from simply returning fixed data to
verifying how your code interacts with its dependencies. Through practical examples,
you will discover how to design tests that are both clear and robust, supporting not only
quality but also the pace of development.

e Define the purpose and advantages of using test dummies in unit testing.

e |dentify how isolation improves the focus and reliability of unit tests.

e Explain how test dummies contribute to faster and more stable tests.

e Distinguish between different types of test dummies, including stubs, fakes, spies, and

mocks.
e Demonstrate how to use stubs to provide fixed responses in tests.
e Describe the typical structure of unit tests that use mocks.

10) Introduction to Mockito

Mockito is a powerful tool for writing effective unit tests in Java, especially when
following Test Driven Development practices. By using mocks, you can focus your tests
on a single unit of code, replacing its collaborators with controlled test doubles. T his
ensures that tests run quickly and consistently, with no reliance on real databases,
networks, or external systems. Understanding the differences between mocks and
stubs, and how to use each effectively, will help you design clear and robust tests. With
Mockito, you have fine-grained control over how dependencies behave during testing,
and you can verify that your code interacts with its collaborators exactly as intended.
This lesson will guide you through setting up Mockito, creating and configuring mocks,
using argument matchers, and applying verification techniques to ensure your tests
capture the right behavior.

e Explain the role of Mockito in unit testing with TDD.

e Set up Mockito as a test dependency in a Maven project.

e Create and configure manual mocks using Mockito.

e Stub mock behavior to control method responses.

e Use argument matchers and custom matchers in tests.

o Verify interactions, arguments, call counts, and call order with Mockito.

e |dentify and avoid common pitfalls in using matchers and verification.

11) Working with Mockito
Mockito annotations offer a powerful way to simplify your unit tests by reducing the

amount of setup code you need to write. By learning how to enable and use these
annotations with JUnit 6, you can create cleaner, more maintainable tests for your Java

e Info@triveratech.com e toll free 844.475.4559 Page


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING
code. You will explore how to use @Mock and @InjectMocks to automate mock
creation and injection, making your test classes easier to read and modify. You will also
see how Mockito handles exceptions in mocks, allowing you to test error handling paths
without relying on real failures or external systems. Finally, you will discover what spies
are, how they differ from mocks, and when it makes sense to use them in your testing
strategy.

¢ |dentify core Mockito annotations and their purposes.

e Enable Mockito annotations using JUnit 6 integration.

e Apply @Mock and @InjectMocks to streamline test setup.

e Configure mock objects to throw exceptions for both void and non-void methods.

e Describe the concept and utility of spies in Mockito.

e Safely stub spies to prevent unintended side effects.

e Recognize scenarios where spies are appropriate in testing.

12) More Mockito

You will examine how Mockito’s capabilities have evolved to remove many early
limitations and support advanced mocking scenarios. You will see how different mock
makers work and why inline mocking is now the default for modern Java projects. You
will also learn the technical configurations required to enable dynamic agent loading, as
well as how to mock static methods, final classes, constructors, and even default
interface methods. Throughout, you will explore best practices and common pitfalls, so
you can recognize when advanced mocking is appropriate and when it is better to
rethink your test or design. By mastering these techniques, you can confidently handle
complex testing challenges in modern Java applications.

e List the historical limitations of Mockito and how they have changed.

e Describe the difference between subclass, proxy, and inline mock makers.

¢ Identify when and how to use static, final, and constructor mocking in Mockito.

e Explain the risks and best practices for mocking private and static methods.

e Demonstrate how to configure dynamic agent loading for inline mocking in Java.

e Show how to mock default methods and understand default return behaviors in Mockito

13) Generating Test Data with Al

Great testing depends on the quality of your test data. You'll see how using realistic,
varied, and purpose-driven data can reveal issues that might go undetected with
generic or repetitive inputs. This lesson highlights the characteristics that make test data
effective and demonstrates why “good enough” is often not enough for real-world

e Info@triveratech.com e toll free 844.475.4559 Page
10


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING
software. You'll explore the pitfalls of poor data, such as missed bugs, broken
integrations, and security vulnerabilities.

Modern tools and techniques can simplify the creation of valuable test data. With Al-
powered solutions and libraries like Faker, you can quickly generate hundreds or
thousands of records that mimic actual user behavior and edge cases. Mockaroo offers
a no-code way to produce complex datasets, while ChatGPT enables prompt-based
data generation, even for tricky scenarios. You'll also learn how to check the data your
tools create to make sure it truly supports your testing goals. By the end of this lesson,
you’ll have a toolkit of strategies to create, validate, and use high-quality test data for
more reliable and efficient testing.

e Explain why realistic and varied test data is essential.

e Use Al models to generate mock data and input structures.

e Apply tools like Mockaroo or DataFaker to generate structured datasets.

e Generate data for edge cases, normal cases, and randomized scenarios.

e Validate the quality and usefulness of Al-generated test data.

e Ensure data anonymization while maintaining data relationships.

e Match tools and techniques to specific data generation goals.

14) Improving Code Quality Through Refactoring

Refactoring is a key technique for keeping codebases healthy, maintainable, and
adaptable to change. In this lesson, You will explore the principles behind refactoring,
discover why it is an essential part of professional development, and see how to apply it
to Java code using practical examples. You will learn to use both manual and
automated refactoring tools, understand how tests keep your changes safe, and see
how modern Java features can further simplify and clarify your code. By the end, you
will be able to identify opportunities for refactoring and confidently improve code quality
without changing its behavior.

e Define refactoring and its purpose in software development.

e Explain how refactoring maintains external behavior while improving internal structure

¢ |dentify the role of tests as a safety net during refactoring.

¢ Recognize common refactoring techniques in Java.

e Apply polymorphism to replace conditionals in code.

e Update code examples using modern Java features such as switch expressions and
streams.

e Assess the impact of refactoring on code quality, speed, and risk.

e Info@triveratech.com e toll free 844.475.4559 Page
11


https://triveratech.com/

Trivera Technologies TrlveraTeCh

Real-World IT Training, Coaching & Skills Development Solutions TECHNOLOGY TRAINING

TTAI2140 Al in Software Testing

Setup Made Simple! Learning Experience Platform (LXP)

All applicable course software, digital courseware files or course notes, labs, data sets
and solutions, live coaching support channels and rich extended learning and post
training resources are provided for you in our “easy access, no install required” online
Learning Experience Platform (LXP), remote lab and content environment. Access
periods vary by course. We'll collaborate with you to ensure your team is set up and
ready to go well in advance of the class. Please inquire about set up details and options
for your specific course of interest.

For More Information

Please contact us or call 844-475-4559 toll free for more information about our training
services (instructor-led, self-paced or blended), coaching and mentoring services, public
course enrollment or questions, partner programs, courseware licensing options and
more.

e Info@triveratech.com e toll free 844.475.4559 Page
12


https://triveratech.com/
https://www.triveratech.com/contactus

	Mastering Test Driven Development using JUnit - TT3503
	What You’ll Learn
	Overview
	Objectives
	Audience
	Pre-Requisites
	Agenda
	Related Courses

	Setup Made Simple! Learning Experience Platform (LXP)
	All applicable course software, digital courseware files or course notes, labs, data sets and solutions, live coaching support channels and rich extended learning and post training resources are provided for you in our “easy access, no install require...
	For More Information

