
Background

Currently, the android release process is briefly divided into three steps (as shown in the
roadmap diag)

1. Final integrated build drop for quality assurance. It usually takes 2-3 days. Developers
need to raise merge requests to the reviewers before the predecided code freeze date
while following the JIRA pipeline and GITLAB nomenclature (IND: Feature: Project Nitro
INDT-4166). It is an entirely automated process.

2. Quality Assurance & bug reporting: This takes around 5-7 days. The process is
partially automated with some test cases.

3. Application publishing and monitoring: Below data of the last ten releases shows
how app rollout works. The process is entirely manual, from reviewer filtering bugs to
assigning a developer to release an incremental version.

Last 10 release cycle information

Release version 1% rollout start 100% rollout end Total releases Days to finish

17.00.00 29/01/2022 02/02/2022 2 4

17.10.00 09/02/2022 11/02/2022 1 2

17.20.00 24/02/2022 01/03/2022 2 6

17.30.00 10/03/2022 13/03/2022 1 3

17.40.00 23/03/2022 26/03/2022 2 3

17.50.00 07/04/2022 17/04/2022 4 10

17.60.00 28/04/2022 05/05/2022 3 6

17.70.00 12/05/2022 19/05/2022 5 7

17.80.00 25/05/2022 30/05/2022 3 5

17.90.00 10/06/2022 14/06/2022 2 4

18.00.00 23/06/2022 01/07/2022 5 8

We can draw the following conclusions from the above table:

● Average days to finish complete rollout (last 10 releases) : 5 - 6 days

● 𝐷𝑎𝑦𝑠 𝑡𝑜 𝑓𝑖𝑛𝑖𝑠ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑟𝑜𝑙𝑙𝑜𝑢𝑡 ∝ (𝐷𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑜) 𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛

Goals / Use cases

➢ Improve the app maintenance process by automation which helps reviewer and
developers to quickly release the bug fixes (Automatic bug assign) therefore reducing
the #Days to finish the complete rollout

➢ There is no record of the bug fixes during the incremental releases. Since it usually
doesn't go through the JIRA pipeline. Automation should keep track of each bug using
JIRA. The developer needs to close that assigned JIRA by adding the final remarks (ex,
Added null check for programList property in search since not all services will have
program feature)

➢ It is sometimes possible to bypass crashes during the release process since it is a
manual process, and these bugs may prove to be problematic in the future.

Implementation

Automation will be responsible for getting corrupt line number and file from stack trace and
informing to developer by creating JIRA and communicating via hangouts.
Developer will be assigned through git annotate for that corrupted line.
It should be assigned developer’s responsibility to work on that bug or reassigned that bug to
the respective person.

Challenge : The biggest challenge right now is to get the crash data in the structured format
and do analysis over that.

Possible Solutions:
● Pulling data from big query since both firebase or play console doesn’t provide the data

in a direct way
● Web crawling to generate the stack trace data

Additional information

This documentation aims to automate step 3 (refer background) of the android release process.

A few years back when CI/CD automation was completed for step 1 (Integrated build drop) the
following milestones were achieved

Below is the graph which shows the percentage of the number of merge requests sent after the
freeze date (Automation started on 9.10.00)

