

EU SST

Space Surveillance and Tracking

Ensuring space safety and sustainability

Space Situational Awareness

FUTURE EVOLUTIONS OF EUSST COLLISION AVOIDANCE SERVICE

04/05/2024

François LAPORTE, Morgane JOUISSE, Pierre PREAULT (CNES), Cristina PEREZ (AEE) SENSITIVE UNCLASSIFIED (Official use only)

#EUSpace

Current EUSST Service

Collision **Avoidance (CA) Risk assessment of conjunctions and generation of collision avoidance alerts Described in the EUSST Service portfolio :** https://portal.eusst.eu/portalng/public-download/ServicePortfolio **Provision of CDM** upon several set of thresholds (INFO, WARNING, ALERT) **Key features User-tailored** service (Service Configuration Document): Ephemerides and Maneuver Information are welcomed in CCSDS format, but other formats are also accepted Thresholds (PoC , Radial Separation & Miss Distance, Time to TCA) can be configured Hot redundancy scheme involving ES (S3TOC) and FR (CAESAR) with harmonised service level and single service provider per registered user **Enhanced Analysis** support (e.g. covariance estimations, HBR estimations, PoC sensitivity analysis and Scaled PoC computations) **Risk Mitigation** support : CAM support if requested **On call team** available 24/7 to perform analysis, ensure the coordination with operators, provide support to operators requests Support to exceptional operations (LEOP, End of Life, relocations,...)

Key Concept - Scaled PoC

- **EU SST uses the Scaled PoC to compute the risk level**
- **Covariance is the key factor** to compute Probability of Collision
- Coefficients kp and ks for magnitude of variation of dispersions for primary and for secondary have been chosen from a statistical analysis in the past.
- C (combined covariance) = kp * Cp + ks * Cs with kp and ks independent scale factors applied to respective covariance
- Scaled PoC is defined as the maximum value of PoC when kp and ks are in a realistic interval
- Realistic intervals of kp and ks are computed automatically from past CDMs of the conjunctions

Key Concept - Hard Body Radius

- The concept of Hard Body Radius (HBR) is used to compute the Scaled PoC, HBR refinement leads to a higher quality of the CA service
 - Too conservative HBR leads to higher PoC
 - → Refinement needed to avoid unnecessary avoidance manœuvres
 - → Refinement needed to avoid oversized manœuvres
 - HBR = radius of the sphere, centered at the Center Of Gravity, containing the whole S/C
 - HBR of S/C can be decreased if attitude is known
 - Users can provide an attitude ephemeris or a look-up table
 - HBR of secondary objects may be computed from:
 - DISCOS database for payloads or R/B
 - SATCAT information

Key Concept – CDM Management

- EUSST manages several data sources of orbit
 - For primary objects
 - O/O ephemerides : "Ops"
 - For secondary objects
 - O/O ephemerides uploaded to EUSST portal: "Ops"
 - O/O ephemerides shared (for instance on Space-Track.org, or by mail) for non-EUSST users : "Ext"
 - 19th SDS & CARA orbits: "19th", "SP_E"
 - Operational Center catalog, built from EUSST contributing sensors and national measurements: "Cat" for EUSST catalog

 \rightarrow When managing a conjunction, the analyst needs to identify the most accurate orbit data source and "create" the best CDM at the time of the analysis

Key Concept – CDM Management

What is the "Best CDM" ?

Best CDM is the one having the best sources for the Primary and Secondary

source	description	advantage	drawback
Ops or Ext	EUSST or external operator ephemerides	With maneuvers	
19 th SDS	Most up to date US data (in CDM)		Without maneuvers
SP_E	US Precise Ephemerides		Without maneuvers Without covariance
САТ	OC in house catalog	Autonomous product	Without maneuvers

Building the best CDM means identifying the best OD among those available for the current conjunction, which depends not only on the source, but also on:

- Freshness of measurements
- Relative quality of the position and covariance

EU SST Portal

- Operational since 2016
- Overall availability >99.9%
- Scalable Architecture
- Agile SW Development
- Continuous Integration
- Monthly releases with updates and new features

The interface for the provision of SST services

PROGRAMME OF THE EUROPEAN UNION

EU SST Portal: <u>https://portal.eusst.eu/</u>

- Dashboard page with timeline and most relevant conjunctions' information
- Conjunction event pages (timeline, latest information update, evolution charts, products – CDM/PDF/HTML) with different CDM types, ephemerides, users' planned maneuvers
- CA dynamic services' information charts (geometry and risk evolution, 2D conjunction plan, PoC sensitivity analysis)
- Communication and Coordination Platform allowing operators to exchange when potential collisions are detected
- **REST API for operators and OCs**
- Fleet access management feature for operators
- Built-in CA service configuration feature

Short to mid term Evolutions

Smooth management of S/C in EUSST Portal

With the increasing number of users, the number of S/C registered to EUSST CA Service is evolving constantly with launches and End-of-Life operations.

 \rightarrow OCs will be able to automate the management of the S/C receiving the service and update their respective service configurations in the OCs systems, as per the EUSST SCD.

Transition from a temporary to a definitive identification (international designator and SATCAT number) on EUSST portal and Space-Track.

Information on best CDM at a given moment

- Identification of the best CDM at a given time may not be obvious in several cases
- For instance:
 - Active secondary providing an ephemeris no maneuver until TCA:
 - Is the O/O orbit better than 19th SDS or EUSST Operational Center ones ? (for instance, if not based on a GNSS)
 - What to do if no covariances are available?
 - Defunct large object:
 - Is the EUSST Operational Center orbit better than 19th SDS at the beginning of the follow-up of the event ? Or when EUSST is receiving additional tracking from its sensor network?

Short to mid term Evolutions

Improved TEST ephemerides screening

- EUSST has the ability to screen ephemerides with a high priority for critical phases (LEOP, EoL,...)
- Need to be requested by the user and agreed by the Operational Center
 - Dedicated tag (TEST, SPECIAL) to be used in the name of the ephemeris
 - Manual actions from the OC side to set up a dedicated chain
- ightarrow Need to smooth this process which has a good feedback from users
- \rightarrow Need to study if an extension of the mechanism to test mitigation actions can be implemented

For instance, constraints on the HW must be evaluated

Avoidance maneuver visualization

- For each CDMs with maneuver recommendation, users will be able to visualize different avoidance maneuvers
- Information on the impact of different maneuvers
 - Proposition of different magnitudes and/or dates (e.g. N.5 orbits before TCA)
 - Visualization of the evolution of SPoC, total distance... based on the chosen maneuver

Evolution – Automated maneuver recommendation

- Currently, EUSST provides mitigation actions by mail, and can help the user to find a trade-off between flight dynamics and user system constraints
 - E.g. On orbit position of the maneuver may be de-optimized
- Users may need a recommendation in:
 - Impulse Along-Track Delta-V (m/s) at a given date (typically N.5 orbits before TCA) ullet
 - Total Delta-V (m/s), for low-thrust systems
 - Semi-major axis change (m) at a given date (typically N.5 orbits before TCA)
 - Radial Separation (m) at TCA •
 - Stop thrust time, for continuous thrusts systems (e.g. EOR)
- Other needs may arise in the future

Evolution – Automated maneuver recommendation

- All constraints cannot be taken into account:
 - Forbidden on orbit positions to maneuver
 - Need to split the mitigation action into several burns
 - Complex FDS computing burns for the next week

→ Maneuver recommendations cannot be finely tailored to the needs of each users

- But need to automate the provision of maneuver recommendation
 - Provision of theoretical maneuvers, to be adapted by the users with regards to the constraints of their system
- EUSST will continue to support the users with the definition of maneuvers upon user requests
 After definition of mitigation action, users are expected to provide their ephemerides for screening

Evolution – Automated maneuver recommendation

- Maneuvers scenarios will be provided on the portal through OPM associated to CDMs
 - Only for the current best CDM
 - Probably not for conjunctions between maneuverable S/C
- Existing OPM fields do not cover all the cases (e.g. recommendation of a radial separation)
 - Dedicated USER_DEFINED_xxx fields will be created
 - SCD will have to be updated
 - Users will have to select in the SCD the kind of the recommendation they need
- Feedback from users about the performed maneuver
 - Pop-up on the portal to get feedback on the mitigation action for a specific event
 - Feedback is important for future mitigation recommendations

Evolution – Large vs Large screening

Since Mid-January 2023, the Large vs Large screening is available to users

- Visualization of the timeline of events
- Details of each conjunction, such as radial and total miss distances

Large vs Large Screening Events List 📀

DELTA 2 DEB (DPAF) 2006-0160 Radius 2.26 m 2010 AP-01434 km Autonomous Orbit: No PE: 601.45 km	SJ 16-02 2016-043A Radiur: 5-48 m 41534 AP-000.78 m Autonomous Orbit: No PE 598.35 km	TCA: 2024-02-18T01:44:37Z	RMD: -8.01 m MD: 300.19 m CDM Type: SPCAT/SPCAT	CA-06016D-16043A-202402180144
SLOSHSAT 2005-005C Radius: 0.76 m 25544 Arb 11951.00 km Autonomous Orbit: No PE: 275.00 km	BREEZE-M DEB (TANK) 2009-0342 Radius: 3.02 m 35495 A-P1 1355.00 km Autonomous Orbit: No PE 314.00 km	TCA: 2024-02-18T09:35:49Z	RMD: -4808.43 m MD: 4905.64 m CDM Type: SPCAT/SPCAT	CA-05005C-09034C-202402180935
SL-14 R/B 1990-0188 Radius: 10.00 m 26311 AP-645.24 km Autonomous Orbit: No PE-607.75 km	GAOFEN DUOMO (GFDM) Reduct 1000 m 2020-042A Reduct 1000 m 4555 AP+680 90 km Autonomous Orbits No PE: 633.16 km	TCA: 2024-02-18T23:05:03Z	RMD: -1.53 m MD: 1659.34 m CDM Type: SPCAT/SPCAT	CA-900188-20042A-202402182305
COSMOS 2413 (GLONASS) 2004-0534 Radius: 4.55 m 26590 AP-19151.00 m Autenomeus Orbit: No PE-19190.00 km	COSMOS 2458 GLONASS 2009-070C Redius 4.65 m 36113 AP-19147.00 m Autonomous Orbits Yes PE: 19116.00 km	TCA: 2024-02-19T11:05:10Z	RMD: 979.60 m MD: 4112.40 m CDM Type: SPCAT/CAT	CA-04053A-09070C-202402191105
COSMOS 1862 1987-055A Raffue 10.00 m 18132 API 540,66 km Autonomous Orbit No PE 55058 km	TIANHUI 2-028 2021-0748 Radius 1.66 m 49072 AP 534.29 km Autoromous Orbit: No PE 596.36 km	TCA: 2024-02-19T13:14:11Z	RMD: -6.65 m MD: 351.74 m CDM Type: SPCAT/SPCAT	CA-87055A-210748-202402191314

EUSST Space Surveillance and Tracking Ensuring

Ensuring space safety and sustainability

Thank You

PROGRAMME OF THE EUROPEAN UNION