
Managing
Complex Screens
with Plug-in
Architecture
By Darius Sabaliauskas, Senior iOS Engineer Vinted

Agenda

● History lesson

● Why plug-in architecture?

● What is plug-in architecture?

● Open/Closed principle

● Examples UIKit

● Summary

History

● Plug-in architecture ==
Microkernel architecture

● Unix 1970s had small modular
utilities that could be piped
together

● 1980s-1990s component-based
software engineering

● Internet Explorer first major
browser to support extensions in
1997

● Eclipse IDE - plug-in based
system (released in 2001

Why?

● Some screens are very complex
and doing different things. For
example, product page, checkout,
home page, etc.

● MVC, MVP, MVVM, VIP, VIPER,
etc. are not enough for complex
screens

● Plug-in/Microkernel architecture is
one of solutions

Open/Closed principle

"software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for
modification"

Plug-in Architecture

Parts
● Core system
● Plug-ins

PROS
● Makes it easy to add new

functionality aka plug-in
● Plug-in can be developed and

tested independently

CONS
● Core system needs to be well

designed upfront
● Changing Core system is

expensive

Plug-in Architecture

CORE

Plug-in

Plug-in

Plug-in

Plug-in

Pl
ug

-in

Parts
● Core system
● Plug-in

PROS
● Makes it easy to add new

functionality aka plug-in
● Plug-in can be developed and

tested independently

CONS
● Core system needs to be well

designed upfront
● Changing Core system is

expensive

Complex
screen

Complex
screen

1

2

5

3
4

Complex
screen

1

3
2

5

UIView

UIView
UIView

UIView4

Complex
screen

1

3
2

5

UIViewController

UIViewController
UIViewController

UIViewController4

Complex
screen

1

3
2

5

Plugin

Plugin
Plugin

Plugin4

Structure

UIView

CheckoutViewController

CoreSystem

Plug-in A Plug-in Z

CheckoutService

GET
/content

POST
/pay

enum PluginRegistry {
 static let entries: [String: PluginFactory.Type] = [
 "items": ItemsPluginFactory.self,
 "total_price": TotalPricePluginFactory.self,
 "promo_code": PromoCodePluginFactory.self,
 "payment_method": PaymentMethodPluginFactory.self,
]
}

Sounds too good
to be true?

Response problem

● V1
○ Do request in plug-in itself

● V2
○ Change decoding. ResponseData → Dictionary → Array<[String: Data]>

protocol PluginFactory {
 init()
 func make(from data: Data) throws -> Plugin
}

protocol Plugin: AnyObject {
 var controller: UIViewController { get }
}

protocol PluginFactory {
 init()
 func make(from data: Data) throws -> Plugin
}

struct TotalPricePluginFactory: PluginFactory {
 func make(from data: Data) throws -> Plugin {
 let decoder = JSONDecoder()
 let totalPrice = try decoder.decode(TotalPrice.self, from: data)
 return TotalPricePlugin(totalPrice: totalPrice)
 }
}

{
 “plugins”: [
 {
 “type”: “foo”,
 “content”: { “a”: “1”, “...”: “...” }
 }
]
}

Structure

UIView

CheckoutViewController

CoreSystem

Plug-in A Plug-in Z

CheckoutService

GET
/content

POST
/pay

Solved?

final class CheckoutCoreSystem {
 var layout: [UIViewController] {}
 var onRefresh: ((Encodable) -> Void)? {}

 init(
 registry: [String: PluginFactory.Type] = PluginRegistry.entries,
 items: [(identifier: String, data: Data)]
)

 func validate() throws -> [PluginOutput] {}
}

Validation

protocol PluginValidatable {
 func validate() throws -> PluginOutput
}

enum PluginOutput {
 case total(Double)
 case paymentMethod(PaymentMethod)
}

let validatablePlugins = plugins.compactMap {
 $0 as? PluginValidatable
}

Communication

protocol PluginEventPublishing: AnyObject {
 var onPublish: ((PluginEvent) -> Void)? { get set }
}

protocol PluginEventConsuming: AnyObject {
 func onConsume(_ event: PluginEvent)
}

enum PluginEvent {
 case refresh([String: Encodable])
}

private func setupEventsBindings() {
 let publishers = plugins.compactMap { $0 as? PluginEventPublishing }
 for publisher in publishers {
 publisher.onPublish = { [weak self] event in
 self?.handlePublishedEvent(event)
 }
 }
}

private func handlePublishedEvent(_ event: PluginEvent) {
 nofityAllEventConsumingPlugins(on: event)
 onConsume(event) // Notify self
}

private func nofityAllEventConsumingPlugins(on event: PluginEvent) {
 let consumers = plugins.compactMap { $0 as? PluginEventConsuming }
 consumers.forEach { $0.onConsume(event) }
}

Summary

● Plug-in architecture could modularise
complex screen

● Think well about core system and make it
small (really small)

● Consider trade-offs

● Communication is a pain

● Remember Open/Closed principle

● Remember Interface Segregation
principle

Thank you

https://www.linkedin.com/in/darius-sabaliauskas/

@sabadarius

https://medium.com/@jamagas

