Managing
Complex Screens
with Plug-in
Architecture

By Darius Sabaliauskas, Senior iOS Engineer @Vinted

e History lesson

Why plug-in architecture?

What is plug-in architecture?

Open/Closed principle
e Examples (UIKit)

e Summary

History

e Plug-in architecture ==
Microkernel architecture

e Unix (1970s) had small modular
utilities that could be piped
together

e 1980s5-1990s component-based
software engineering

e Internet Explorer first major

browser to support extensions in
1997

e Eclipse IDE - plug-in based
system (released in 2001)

Why?

e Some screens are very complex
and doing different things. For
example, product page, checkout,
home page, etc.

e MVC, MVP, MVVM, VIP, VIPER,
etc. are not enough for complex
screens

e Plug-in/Microkernel architecture is
one of solutions

Open/Closed principle

"software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for
modification”

Plug-in Architecture

Parts
e Core system
e Plug-ins

PROS

e Makes it easy to add new
functionality aka plug-in

e Plug-in can be developed and
tested independently

CONS

e Core system needs to be well
designed upfront

e Changing Core system is
expensive

Plug-in
Component

Plug-in
Component

Plug-in
Component

Core System

Plug-in
Component

Plug-in
Component

Plug-in
Component

Plug-in Architecture

Parts
e Core system
e Plug-in

PROS

e Makes it easy to add new
functionality aka plug-in

e Plug-in can be developed and
tested independently

CONS

e Core system needs to be well
designed upfront

e Changing Core system is
expensive

Carrier 2 -

37y Bicycle 12.00 €

Ccom 9 lex @ o
Sclreen

>< Envelope 0.42 €

Total Price: 42.42 €

Carrier 2

@7y Bicycle

Complex
screen

Complex UView
screen

UlView
UlView

Complex
screen

UIViewController

UlViewController

UIViewController

UlIViewController

Complex
screen

Structure

CheckoutViewController CheckoutService

GET

CoreSystem /content

Plug-in A

Plug-in Z

enum PluginRegistry {
static let entries: [String: PluginFactory.Type] = |
"items": ItemsPluginFactory.self,
"total_price": TotalPricePluginFactory.self,
"promo_code": PromoCodePluginFactory.self,
"payment_method" : PaymentMethodPluginFactory.self,

Sounds too good
to be true?

Response problem

o \/
o Do request in plug-in itself

o \V2
o Change decoding. ResponseData - Dictionary - Array<[String: Data]>

protocol PluginFactory {
init()
func make(from data: Data) throws -> Plugin

protocol Plugin: AnyObject {
var controller: UlViewController { get }

J

“plugins”: |
"type": llfoon,
“content”: { “a”: “1", "...":

protocol PluginFactory { | '’
init() }
func make(from data: Data) throws -> Plugin

struct TotalPricePluginFactory: PluginFactory {
func make(from data: Data) throws -> Plugin {
let decoder = JSONDecoder ()
let totalPrice = try decoder.decode(TotalPrice.self, from: data)
return TotalPricePlugin(totalPrice: totalPrice)

Structure

CheckoutViewController CheckoutService

GET

CoreSystem /content

Plug-in A

Plug-in Z

Solved?

final class CheckoutCoreSystem {
var layout: |UIViewController
var onRefresh: ((Encodable) -> Void)? {}

init(
registry: [String: PluginFactory.Type] = PluginRegistry.entries,
items: [(identifier: String, data: Data)]

)

func validate() throws -> [PluginOutput] {}

}

Validation

protocol PluginValidatable {
func validate() throws -> PluginOutput

;

enum PluginOutput {
case total(Double)
case paymentMethod(PaymentMethod)

;

let validatablePlugins = plugins.compactMap {
S0 as? PluginValidatable

;

Communication

protocol PluginEventPublishing: AnyObject {
var onPublish: ((PluginEvent) -> Void)? { get set }

;

protocol PluginEventConsuming: AnyObject {
func onConsume(_ event: PluginEvent)

}

enum PluginEvent {
case refresh([String: Encodable])

;

private func setupEventsBindings() {
let publishers = plugins.compactMap { $0 as? PluginEventPublishing }
for publisher in publishers {
publisher.onPublish = { [weak self] event in
self?.handlePublishedEvent(event)

}
}

private func handlePublishedEvent(_ event: PluginEvent) {
nofityAllEventConsumingPlugins(on: event)
onConsume(event) // Notify self

}

private func nofityAllEventConsumingPlugins(on event: PluginEvent) {

let consumers = plugins.compactMap { S0 as? PluginEventConsuming }
consumers.forEach { $0.onConsume(event) }

e Plug-in architecture could modularise
complex screen

Think well about core system and make it
small (really small)

Consider trade-offs

Communication is a pain
e Remember Open/Closed principle

e Remember Interface Segregation
principle

T'hank you

X (@sabadarius

IN https://www.linkedin.com/in/darius-sabaliauskas/

M https://medium.com/@jamagas

