It's Everywhere

DATA? DATA!
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ER... WHY?

) | was curious
> I1like data

) It looks like an important tradeoff down the line
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- String/UUID id
- Student student

- ClassModule module

METHODOLOGY

) 1 GB of hierarchical data

- Double grade

- String comment

) ~ Tk students, ~30 modules, ~5 grades per 0..n
both ClassModule

) Generation is random every time to avoid - String/UUID id - String/UUID id
caching bias - String name - String name
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BASELINE

) Last Mac Mini in Intel version, plenty of RAM, SSD
) Re-generate the dataset before each test

) Measured with Benchmark, the new-ish Swift framework

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



YE OLDE SCHOOL

) JSON serialization
) Manual SQLite commands

) No framework!
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IN-MEMORY
VS
JSON

) Roughly the same amount of RAM used (duh) ) 36 ms to calculate the average
(once the data is loaded)

) Roughly the same time calculating the
average (duh) ) 7-9s to read or write the whole

JSON
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JSON
VS
SQLITE (MANUAL)

) Reading: 10ms for SQLite vs 8000ms for JSON

Manual SQLite writing (batch 1000) - 77.0

Manual SQLite writing (single obj
Manual SQLite writing (batch 100) - 106.0

) Writing: Batching is important!

847'6 - Bunum NOSr

) Minor differences between batching by 100 or
1000, but not batching at all is 10x slower

) Because of ~computer science~, SQLite is
slower on the insertion side by 10x, for a 800x
speedup on reading in exchange

Values are in seconds
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A MODERN SQLITE
FRAMEWORK

> Blackbird (by Marco Arment) used in
production

) Not optimized for speed! Optimized for code
length So modern!

) 3 times fewer code than manual SQLite
and o times less errors and debugging
minutes
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SQLITE (MANUAL)

VS
BLACKBIRD 3x the memory because of the scaffolding
(MEMORY) Makes sense. Worth it.

Values are in megabytes Values are in megabytes
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SQLITE(MANUAL)
VS
BLACKBIRD

(S PEE D) Plus, full async vs my crappy code

Not a huge tradeoff for type safety
and model migrations

Values are in milliseconds ° Values are in seconds
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COREDATA VS
SWIFTDATA

) SwiftData is CoreData under the hood, for
the most part

) Both use SQLite as a backend

) CoreData was born out of EOF on NeXT, and
publicly released in 2005
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SQLITE (MANUAL) VS COREDATA
VS SWIFTDATA

SwiftData reading - 73.0 SwiftData writing - 672.0

Values are in milliseconds

Values are in seconds
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SQLITE (MANUAL) VS COREDATA
VS SWIFTDATA

) Hold your horses!

) SwiftData is very SwiftUI centric, and
changes a lot between Sonoma and Sequoia

) It is very opinionated, and so am I. Maybe
incompatibly so.

) It is absolutely not meant for that kind of
usage and | had to fight it every step of the
way
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BOOOOOO!

) SQLite and CoreData are mature, and extremely optimized over the years, but they have
idiosyncrasies that you may hate, and the debugging is hard
(Time spent on writing the code: ~2 days, because of CLI vs CoreServices issues)

) Blackbird (and other frameworks like it) have a very different optimization strategy:
minimizing development time
(Time spent on writing the code: ~2 hours)

) SwiftData is constantly evolving and optimized for a view-centric world
(Time spent on writing the code: 5 days, because of the differences between platform
versions, especially regarding async/await tolerances)
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BENCHMARK

) VERY simple to use for simple CLI tools, but super hard to use in graphical/
asynchronous environments

) A lot of undocumented behaviors (leaks, warmup cycles, etc)

) Promising for datacrazies!
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BONUS ROUND

> JSON

> Intel MacOS 14
vs M1 MacOS 14
vs M1 MacOS 15

) M1 is roughly 2x as fast, no regression
between MacOS 14 and 15

) Blackbird follows the same pattern, with a
tiny speedup under MacOS 15, thanks to
Swift compiler advances
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BONUS ROUND

SQLite and CoreData
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reading, slower when
writing. No regression
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BONUS ROUND

) SwiftData

> Intel MacOS 14
vs M1 MacOS 14
vs M1 MacOS 15

) l... don’t want to talk about
it
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