It's Everywhere

DATA? DATA!

SEPT 2024 Zino SWIFT CONNECTION '24



ER... WHY?

) | was curious
> I1like data

) It looks like an important tradeoff down the line

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



- String/UUID id
- Student student

- ClassModule module

METHODOLOGY

) 1 GB of hierarchical data

- Double grade

- String comment

) ~ Tk students, ~30 modules, ~5 grades per 0..n
both ClassModule

) Generation is random every time to avoid - String/UUID id - String/UUID id
caching bias - String name - String name

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



BASELINE

) Last Mac Mini in Intel version, plenty of RAM, SSD
) Re-generate the dataset before each test

) Measured with Benchmark, the new-ish Swift framework

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



YE OLDE SCHOOL

) JSON serialization
) Manual SQLite commands

) No framework!

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



IN-MEMORY
VS
JSON

) Roughly the same amount of RAM used (duh) ) 36 ms to calculate the average
(once the data is loaded)

) Roughly the same time calculating the
average (duh) ) 7-9s to read or write the whole

JSON

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



JSON
VS
SQLITE (MANUAL)

) Reading: 10ms for SQLite vs 8000ms for JSON

Manual SQLite writing (batch 1000) - 77.0

Manual SQLite writing (single obj
Manual SQLite writing (batch 100) - 106.0

) Writing: Batching is important!

847'6 - Bunum NOSr

) Minor differences between batching by 100 or
1000, but not batching at all is 10x slower

) Because of ~computer science~, SQLite is
slower on the insertion side by 10x, for a 800x
speedup on reading in exchange

Values are in seconds

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



A MODERN SQLITE
FRAMEWORK

> Blackbird (by Marco Arment) used in
production

) Not optimized for speed! Optimized for code
length So modern!

) 3 times fewer code than manual SQLite
and o times less errors and debugging
minutes

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



SQLITE (MANUAL)

VS
BLACKBIRD 3x the memory because of the scaffolding
(MEMORY) Makes sense. Worth it.

Values are in megabytes Values are in megabytes

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



SQLITE(MANUAL)
VS
BLACKBIRD

(S PEE D) Plus, full async vs my crappy code

Not a huge tradeoff for type safety
and model migrations

Values are in milliseconds ° Values are in seconds

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



COREDATA VS
SWIFTDATA

) SwiftData is CoreData under the hood, for
the most part

) Both use SQLite as a backend

) CoreData was born out of EOF on NeXT, and
publicly released in 2005

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



SQLITE (MANUAL) VS COREDATA
VS SWIFTDATA

SwiftData reading - 73.0 SwiftData writing - 672.0

Values are in milliseconds

Values are in seconds

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



SQLITE (MANUAL) VS COREDATA
VS SWIFTDATA

) Hold your horses!

) SwiftData is very SwiftUI centric, and
changes a lot between Sonoma and Sequoia

) It is very opinionated, and so am I. Maybe
incompatibly so.

) It is absolutely not meant for that kind of
usage and | had to fight it every step of the
way

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



BOOOOOO!

) SQLite and CoreData are mature, and extremely optimized over the years, but they have
idiosyncrasies that you may hate, and the debugging is hard
(Time spent on writing the code: ~2 days, because of CLI vs CoreServices issues)

) Blackbird (and other frameworks like it) have a very different optimization strategy:
minimizing development time
(Time spent on writing the code: ~2 hours)

) SwiftData is constantly evolving and optimized for a view-centric world
(Time spent on writing the code: 5 days, because of the differences between platform
versions, especially regarding async/await tolerances)

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



BENCHMARK

) VERY simple to use for simple CLI tools, but super hard to use in graphical/
asynchronous environments

) A lot of undocumented behaviors (leaks, warmup cycles, etc)

) Promising for datacrazies!

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



BONUS ROUND

> JSON

> Intel MacOS 14
vs M1 MacOS 14
vs M1 MacOS 15

) M1 is roughly 2x as fast, no regression
between MacOS 14 and 15

) Blackbird follows the same pattern, with a
tiny speedup under MacOS 15, thanks to
Swift compiler advances

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



BONUS ROUND

SQLite and CoreData

e
@
>
(2]
%9
%
2
2 o
I .% re
nte dC ; K
) &
% $
(o) &
A 2
2 Q'
VS dC s §
?\ oo
< ©
M1-15 - Manual SQLite reading - 15.343 (1 )
vs M1 MacOS 15
lisf hil
I n te I S a Ste r w I e M1-15 - Manual SQLite writing (batch 1000) - 3
) Jata writing - 27.0
%
d

reading, slower when
writing. No regression

SEPT 2024 Zino : Data? Data!




BONUS ROUND

) SwiftData

> Intel MacOS 14
vs M1 MacOS 14
vs M1 MacOS 15

) l... don’t want to talk about
it

SEPT 2024 Zino : Data? Data! SWIFT CONNECTION '24



It's Everywhere

DATA? DATA!

SEPT 2024 Zino SWIFT CONNECTION '24



