Al In Xcode: Is It better
than the competitors?

Vincent Pradeilles (@v_pradeilles) - a Photoroom

https://twitter.com/v_pradeilles

| don’t know If you’ve heard...

...but Apple made some
Al announcements at WWDC(C!

And one announcement was
just for us, developers!

{ L™ ¢

Xcode 16 begins
a whole new chapter fondevelopment,
By

{ > 9

Xcode 16 begins
a whole new chapter fondevelopm

r Building on Apple's Foundation mode
we've created specialized coding mode

that capture expertise
only Apple can provide,

like the latest APIs, language feature
documentation, and sample code,

But how good is it really,
compared to competitors?

Make this function asynchronous

Unfortunately, Swift Assist is
still unavailable for now...

struct VideoCollectionView: View {

let n|

...S0 we’ll focus on
Predictive Code Completion

= | <
s) Copilot

Predictive Code Completion
has a very obvious competitor

' Visual Studio Code

Swift for Visual Studio Code

And you can totally use Copilot
with Swift code!

It's worth noting that these two
tools have opposite approaches:

* Predictive Code Completion runs locally
* Copilot runs in the cloud

So let’s see how they compare
on 5 typical use cases

#01 - Implementing a data model

#01 - Implementing a data model

8 1mport Foundation

9

10 struct Address

11 var street:_String
var city: String
var zipCode: String
var country: String

12

13

#01 - Implementing a data model

1mport Foundation

10 struct Address {
s

#01 - Implementing a data model

Similar predictions, but Xcode did take
more time to get to the full result.

(but did suggest to use let, which is
arguably more appropriate)

#02 - Implementing a mock

8

9
10
11
12
13
14
15
16
17
18

19
20

extension Address {

#02 - Implementing a mock

import Foundation

struct Address {
var street: String
var city: String
var zipCode: String
var country: String

static var mock: Address‘{
Address(street: "1234 Main St", city: "San Francisco", zipCode: "94111", country: "US

}

—_—S e e e e e e e)
oo NONOC .~ LN - O Vv 0

20
21
22

#02 - Implementing a mock

import Foundation

struct Address {
let street: String
let city: String
let zip: String
let country: String

}

extension Address {
static var mock: Address {

}

#02 - Implementing a mock

Similar predictions and time to make them.

#03 - Implementing an array of mocks

#03 - Implementing an array of mocks

26 static var mocks: [Address] @
27 i

Address(
street: "1234 Main St",
city: "San Francisco",
zipCode: "94111",
country: "“USA"),
Address(
street: "5678 Main St",
city: "San Francisco",
zipCode: "94111",
country: "USA"),
Address(
street: "9101 Main St",
city: "San Francisco",
zipCode: "94111",
country: "USA")

28 | N

29 }

#03 - Implementing an array of mocks

17 extension Address {

18 static var mock: Address {

19 .1nit(

20 street: "123 Main St",
21 city: "Anytown",

22 zip: "12345",

23 country: "US"

24,)

25 s

26

27 static var mocks: [Address] {
28 [Imock
29 |4

30 }

31

#03 - Implementing an array of mocks

27 static var mocks: [Address] {
28 [
29 mock,

city: "Anytown",
z1p: "12345",
country: "US"
) |
.init(
street: "789 Main St",
city: "Anytown",
z1p: "12345",

31 |4
32 }
33

#03 - Implementing an array of mocks

You eventually get similar predictions,
out It's more laborious In Xcode

#04 - Implementing an API call

17
18

19
20

#04 - Implementing an API call

struct AddressAPI {

‘ e

func fetchAddressesIuserId: String|, completion: @escaping ([Address]?, Error?

}

// Fetch addresses from API

—> Void) A

#04 - Implementing an API call

17 struct AddressAPI {

19 }
20

#04 - Implementing an API call

Both suggest using the outdated pattern
of a completionHandler.

(at least Xcode does suggest using a
Result rather than two optionals)

#04 - Implementing an API call

17 struct AddressAPI {

18 func fetchAddresses(userId: String) async —> [Address] {

19 let url: URL = URL(string: "https://api.example.com/addresses/\(userId)")!
20

21 let (data, _) = try! await URLSession.shared.data(from: url)

22 +

23}

24

#04 - Implementing an API call

17 struct AddressAPI {
18 func fetchAddresses(userId: String) async -> [Address] {
19 let url = URL(string: "https://api.example.com/addresses/\(userId)")!

21
22 }
23

#04 - Implementing an API call

With some hints, both eventually get to
the prediction we expect.

Xcode did make a small mistake though.

#05 - Implementing the body of a View

#05 - Implementing the body of a View

8 1mport SwiftUI

9

10 struct AddressView: View {

11

12 @State var address: Address

13

14 var body: some View {

15 VStack {
Text(address.street)
Text(address.city)
Text(address.zipCode)

/

16 | B

17 }

18

#05 - Implementing the body of a View

10 struct Address {

11 var flskjfsdlf: String
12 var pbvoivnkljc: String
13 }

#05 - Implementing the body of a View

10 struct Address {

11 var flskjfsdlf: String
12 var pbvoivnkljc: String
13}
10 struct AddressView: View {
11
12 @State var address: Address
13
14 var body: some View !
15 VStack {
Text("Address")
.font(.title)
TextField("Street", text: $address.flskjfsdlf)
TextField("City", text: $address.pbvoivnkljc)
}
16 | MM

17 }

#05 - Implementing the body of a View

8§ 1mport SwiftUIL

G

10 struct AddressView: View {
11

12 @State var address: Address

13

14 var body: some View {

15 VStack {

16 [TextField("Address", text: $address.first)
.padding()
TextField("City", text: $address.last)

.padding()

17 s

18 s

19 }

yA\

#05 - Implementing the body of a View

10 struct Address {

11 var sdqzeazqgd: String
12 var jhopjhji: String
13}

#05 - Implementing the body of a View

10 struct Address {

11 var sdqzeazqd: String
12 var jhopjhji: String
13}
10 struct AddressView: View {
11
12 @State var address: Address
13
14 var body: some View {
15 VStack {
.padding()
TextField("City", text: $address.last)
.padding ()
17 +
18 s
19 }
20

#05 - Implementing the body of a View

Xcode’s prediction Is just plain wrong
here...

And this seems to suggest that the
prediction doesn’t “reason” across files

So what should we conclude?

So what should we conclude?

After using running these tests and having used Predictive Code
Completion over the summer, here’s my personal take:

* Predictive Code Completion gives equal or worst predictions than
Copilot

* Predictive Code Completion takes longer than Copilot to predict

* Predictive Code Completion suffers from UX quirks (no loader)

So what should we conclude?

Now It’s not all bad!
 Some use cases, like creating mocks, work relatively well
* Not having to switch to a third-party tool, like VSCode, is really nice

e At times it does manage to make helpful predictions & & &

8§ 1mport Testing

9

10 @testable import TestingXcodeAl

11

(> struct TestingXcodeAITests {

13

O @Test func testFilterOutOdds() async throws {
15 let data = [1, 2, 3, 4, 5]
17 }

18

19 }

20

23 func code() {
let string = "Hellon World!"

24
26} B split(separator:maxSplits:omittingEmptySubsequences:) >
2/ M split(maxSplits:omittingEmptySubsequences:whereSeparator:) >

split(separator: RegexComponent, maxSplits: Int,
omittingEmptySubsequences: Bool) -> [Substring]

Returns the longest possible subsequences of the collection, in order, around elements
equal to the given separator.)

So what should we conclude?

At the end of the day:

* If you're looking for a tool that can do a lot of heavy lifting for you, it
doesn’t feel that Predictive Code Completion is there yet

 However, it does an honest job at offering suggestions, some of them
good, some of them bad, without asking for extra effort from the developer

 If you’re on-boarding junior developers, make sure to warn them not to
take the predictions at face value

 Hopefully the feature will keep improving over time &

And If you're really enthusiastic
about Al-assisted coding...

3 CURSOR

...you might want to take a
peek at an IDE called Cursor

It offers something quite similar
to what Swift Assist promises

N N « > £ TestingCursorAl O O [0 ¢

0 O P g5 v 3 MoviesView.swift 3 TestingCursorAlTests.swift ® 3 Model.swift 3 TestingCursorAlApp.swift 3 MovieDetailsView.swift 3 Service.swift [[J

v TESTINGCURSORAI TestingCursorAlTests > 3 TestingCursorAlTests.swift
v TestingCursorAl

import XCTest
> Assets.xcassets

> Preview Content @testable import TestingCursorAl
3 Alertltem.swift
3 Model.swift 12|
3 MovieDetailsView.swift
3 MovieDetailsViewModel.swift
3 MoviesView.swift
3 MoviesViewModel.swift
3 Service.swift
3 TestingCursorAlApp.swift
> TestingCursorAl.xcodeproj
v TestingCursorAlTests
3 TestingCursorAlTests.swift

> OUTLINE
> TIMELINE
_ ®OAO0 WO Ln 12, Col1 Spaces: 4 UTF-8 LF Swift CursorTab [)

Thank You! ®

