
AI in Xcode: is it better 
than the competitors?

Vincent Pradeilles (@v_pradeilles) –

https://twitter.com/v_pradeilles


I don’t know if you’ve heard…



…but Apple made some 
AI announcements at WWDC!



And one announcement was 
just for us, developers!







But how good is it really, 
compared to competitors?



Unfortunately, Swift Assist is 
still unavailable for now…



…so we’ll focus on 
Predictive Code Completion



Predictive Code Completion 
has a very obvious competitor



And you can totally use Copilot 
with Swift code!



It’s worth noting that these two 
tools have opposite approaches:

•Predictive Code Completion runs locally

•Copilot runs in the cloud



So let’s see how they compare 
on 5 typical use cases



#01 - Implementing a data model



#01 - Implementing a data model



#01 - Implementing a data model



#01 - Implementing a data model

Similar predictions, but Xcode did take 
more time to get to the full result.


(but did suggest to use let, which is 
arguably more appropriate) 



#02 - Implementing a mock



#02 - Implementing a mock



#02 - Implementing a mock



#02 - Implementing a mock

Similar predictions and time to make them.



#03 - Implementing an array of mocks



#03 - Implementing an array of mocks



#03 - Implementing an array of mocks



#03 - Implementing an array of mocks



You eventually get similar predictions, 
but it’s more laborious in Xcode

#03 - Implementing an array of mocks



#04 - Implementing an API call



#04 - Implementing an API call



#04 - Implementing an API call



#04 - Implementing an API call

Both suggest using the outdated pattern 
of a completionHandler.


(at least Xcode does suggest using a 
Result rather than two optionals) 



#04 - Implementing an API call



#04 - Implementing an API call



#04 - Implementing an API call

With some hints, both eventually get to 
the prediction we expect. 


Xcode did make a small mistake though.



#05 - Implementing the body of a View



#05 - Implementing the body of a View



#05 - Implementing the body of a View



#05 - Implementing the body of a View



#05 - Implementing the body of a View



#05 - Implementing the body of a View



#05 - Implementing the body of a View



Xcode’s prediction is just plain wrong 
here…


And this seems to suggest that the 
prediction doesn’t “reason” across files

#05 - Implementing the body of a View



So what should we conclude?



So what should we conclude?

After using running these tests and having used Predictive Code 
Completion over the summer, here’s my personal take:


• Predictive Code Completion gives equal or worst predictions than 
Copilot


• Predictive Code Completion takes longer than Copilot to predict


• Predictive Code Completion suffers from UX quirks (no loader)



So what should we conclude?

Now it’s not all bad!


• Some use cases, like creating mocks, work relatively well


• Not having to switch to a third-party tool, like VSCode, is really nice


• At times it does manage to make helpful predictions 👉 👉 👉







So what should we conclude?
At the end of the day:


• If you’re looking for a tool that can do a lot of heavy lifting for you, it 
doesn’t feel that Predictive Code Completion is there yet


• However, it does an honest job at offering suggestions, some of them 
good, some of them bad, without asking for extra effort from the developer


• If you’re on-boarding junior developers, make sure to warn them not to 
take the predictions at face value 


• Hopefully the feature will keep improving over time 🤞



And if you’re really enthusiastic 
about AI-assisted coding…



…you might want to take a 
peek at an IDE called Cursor



It offers something quite similar 
to what Swift Assist promises







Thank You! 😊


