

White Paper

A Comprehensive
Commentary on
Financial-grade API

April 2021

Authlete, Inc.

Contents
What is Financial-grade API?	 4

History of Standardization of FAPI	 5

FAPI Specifications	 6

FAPI Certification Program	 8

Certification for FAPI OpenID Providers	 8

Certification for FAPI-CIBA OpenID Providers	 9

Prior Knowledge to Understand FAPI	 10

Basic Specifications	 10

Mutual TLS	 12

OAuth Client Authentication using a Client Certificate	 12

Certificate-Bound Tokens	 16

JARM	 19

Client Metadata for JARM	 20

Server Metadata for JARM	 21

Part 1: Baseline	 23

Requirements for Authorization Server	 23

Requirements for Public Client	 35

Requirements for Confidential Client	 38

Requirements for Protected Resources	 39

Requirements for Clients to Protected Resources	 43

Security Considerations	 45

Part 2: Advanced	 46

Detached Signature	 46

Requirements for Authorization Server	 49

Requirements for Confidential Client	 61

Security Considerations	 71

How Authlete Implements FAPI	 74

A Comprehensive Commentary on Financial-grade API - Page 2

Baseline or Advanced?	 74

Mutual TLS	 77

Access Token Duration	 79

Access Token with Transaction Information	 81

Authorization Details	 82

Conclusion	 86

A Comprehensive Commentary on Financial-grade API - Page 3

What is Financial-grade API?
Financial-grade API (FAPI) is a technical specification that Financial-grade API
Working Group of OpenID Foundation has developed. It uses OAuth 2.0 and
OpenID Connect (OIDC) as its base and defines additional technical requirements
for the financial industry and other industries that require higher API security.

A Comprehensive Commentary on Financial-grade API - Page 4

OpenID Foundation Working Groups and Financial-grade API Stack

https://openid.net/wg/fapi/
https://openid.net/wg/fapi/
https://openid.net/

History of Standardization of FAPI
Implementer’s Draft 1 — The initial version of the FAPI specification was published
in 2017. The version is called Implementer’s Draft 1 (ID1).

Implementer’s Draft 2 — The second version was published in October, 2018. The
version is called Implementer’s Draft 2 (ID2). In this version, the FAPI specification
was renamed from “Financial API” to “Financial-grade API” for wider adoption
across various industries.

Final Version — The final version was published in March, 2021. In this version, the
main two parts of the FAPI specification, “Part 1: Read-Only Security Profile” and
“Part 2: Read and Write API Security Profile”, were renamed to “Part 1: Baseline
Security Profile” and “Part 2: Advanced Security Profile”, respectively.

FAPI 2.0 — The FAPI WG has started to discuss the next version of the FAPI
specification, which is called “FAPI 2.0”. The FAPI FAQ published on March 31, 2021
(announcement) mentions FAPI 2.0. Authlete is mentioned in the answer to the
question “Are there FAPI 2.0 implementations?” because Authlete has already
implemented new technical components of FAPI 2.0 such as PAR (OAuth 2.0 Pushed
Authorization Requests), RAR (OAuth 2.0 Rich Authorization Requests) and DPoP
(OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer).

A Comprehensive Commentary on Financial-grade API - Page 5

History of Financial-grade API

https://openid.net/wg/fapi/faq/
https://openid.net/2021/03/31/picking-up-speed-on-the-fapi-roadmap-from-the-fapi-rw-implementers-draft-2-to-fapi-1-0-advanced-final/
https://datatracker.ietf.org/doc/draft-ietf-oauth-par/
https://datatracker.ietf.org/doc/draft-ietf-oauth-par/
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop/

FAPI Specifications
The core parts of the FAPI specification are Part 1 and Part 2. Their previous and
final versions are available here:

Implementer’s Draft 1 (Part 1: February 2, 2017 / Part 2: July 17, 2017)

• Financial Services — Financial API — Part 1: Read Only API Security Profile

• Financial Services — Financial API — Part 2: Read and Write API Security
Profile

Implementer’s Draft 2 (October 17, 2018)

• Financial-grade API — Part 1: Read-Only API Security Profile

• Financial-grade API — Part 2: Read and Write API Security Profile

• Differences between ID1 and ID2

Final Version (March 12, 2021)

• Financial-grade API Security Profile 1.0 — Part 1: Baseline

• Financial-grade API Security Profile 1.0 — Part 2: Advanced

• Differences between ID2 and Final

In addition, another specification was released in August, 2019 that lists additional
requirements applied when FAPI and CIBA (Client Initiated Backchannel
Authentication) are used together. The specification is called FAPI-CIBA Profile.

• Financial-grade API: Client Initiated Backchannel Authentication Profile

For details about CIBA, please read the following article.

• “CIBA”, a new authentication/authorization technology in 2019, explained by
an implementer

A Comprehensive Commentary on Financial-grade API - Page 6

https://openid.net/specs/openid-financial-api-part-1-ID1.html
https://openid.net/specs/openid-financial-api-part-2-ID1.html
https://openid.net/specs/openid-financial-api-part-2-ID1.html
https://openid.net/specs/openid-financial-api-part-1-ID2.html
https://openid.net/specs/openid-financial-api-part-2-ID2.html
https://gitlab.com/openid/conformance-suite/-/wikis/fapi-changes-in-second-implementers-draft
https://openid.net/specs/openid-financial-api-part-1-1_0-final.html
https://openid.net/specs/openid-financial-api-part-2-1_0-final.html
https://bitbucket.org/openid/fapi/src/master/FAPI_1.0/changes-between-id2-and-final.md
https://openid.net/specs/openid-financial-api-ciba-ID1.html
https://medium.com/@darutk/ciba-a-new-authentication-authorization-technology-in-2019-explained-by-an-implementer-d1e0ac1311b4
https://medium.com/@darutk/ciba-a-new-authentication-authorization-technology-in-2019-explained-by-an-implementer-d1e0ac1311b4

 

A Comprehensive Commentary on Financial-grade API - Page 7

Concept of CIBA

FAPI Certification Program

Certification for FAPI OpenID Providers

The Certification Program for FAPI OpenID Providers officially started on April 1,
2019 (announcement). Two vendors were granted certification on the start day.
Authlete, Inc., is one of the two vendors.

Two years have passed since then, and now more than 30 solutions and deployments
are listed as certified FAPI OPs.

Certification program for the FAPI Final version has not started yet as of this writing
(April, 2021), but Authlete 2.2 has already supports the FAPI Final version. See the
announcement and the release note published on February 4, 2021 for details.

A Comprehensive Commentary on Financial-grade API - Page 8

Certified Financial-grade API OpenID Providers on April 1, 2019

https://openid.net/certification/#FAPI_OPs
https://openid.net/2019/02/21/openid-certification-program-expansion-and-fee-update/
https://www.authlete.com/
https://www.authlete.com/news/20210204_authlete_2_2/
https://www.authlete.com/developers/relnotes/2.2/

Certification for FAPI-CIBA OpenID Providers

The Certification Program for FAPI-CIBA OpenID Providers started on September
16, 2019 (announcement). Authlete was the only solution that was granted
certification on the start day.

As of this writing (April, 2021), three solutions including Authlete are listed as
certified FAPI-CIBA OPs.

A Comprehensive Commentary on Financial-grade API - Page 9

Certified FAPI-CIBA Profile OpenID Providers on September 16, 2019

https://openid.net/certification/#FAPI-CIBA_OPs
https://openid.net/2019/09/16/openid-certification-program-expands-with-the-release-of-financial-grade-api-client-initiated-backchannel-authentication-profile-fapi-ciba-certification/

Prior Knowledge to Understand FAPI

Basic Specifications

The format of the FAPI specification is a terse list of technical requirements, so the
document is not long. In exchange, a lot of prior knowledge is required to read it
smoothly. Especially, you have to learn RFC 6749 and RFC 6750 (the core of OAuth
2.0) and OpenID Connect Core 1.0 (the core of OpenID Connect) by heart.

In addition, because specifications related to JWT (JWS, JWE, JWK, JWA and JWT)
are prior knowledge to understand OIDC Core, they are of course prior knowledge
to read the FAPI specification. Therefore, you need to understand them perfectly.

Furthermore, PKCE (RFC 7636) which was published in September, 2015 is now
regarded as a part of the basic set of OAuth 2.0 specifications as well as RFC 6749
and RFC 6750.

A Comprehensive Commentary on Financial-grade API - Page 10

JWS Compact Serialization (RFC 7515 Section 7.1)

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7636

The following is a list of specifications that you should read at least once before the
FAPI specification.

• RFC 6749 — The OAuth 2.0 Authorization Framework

• RFC 6750 — The OAuth 2.0 Authorization Framework: Bearer Token Usage

• RFC 7515 — JSON Web Signature (JWS)

• RFC 7516 — JSON Web Encryption (JWE)

• RFC 7517 — JSON Web Key (JWK)

• RFC 7518 — JSON Web Algorithms (JWA)

• RFC 7519 — JSON Web Token (JWT)

• RFC 7523 — JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants

• RFC 7636 — Proof Key for Code Exchange by OAuth Public Clients

• OpenID Connect Core 1.0

• OpenID Connect Discovery 1.0

• OpenID Connect Dynamic Client Registration 1.0

• OAuth 2.0 Multiple Response Type Encoding Practices

• OAuth 2.0 Form Post Response Mode

Articles below may help understanding these specifications.

• The Simplest Guide To OAuth 2.0

• Diagrams And Movies Of All The OAuth 2.0 Flows

• Diagrams of All The OpenID Connect Flows

• Understanding ID Token

A Comprehensive Commentary on Financial-grade API - Page 11

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://medium.com/@darutk/the-simplest-guide-to-oauth-2-0-8c71bd9a15bb
https://medium.com/@darutk/diagrams-and-movies-of-all-the-oauth-2-0-flows-194f3c3ade85
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://medium.com/@darutk/understanding-id-token-5f83f50fa02e

Mutual TLS

In general, “Mutual TLS” means that a client is also required to present its X.509
certificate in a TLS connection. However, in the context of FAPI, Mutual TLS means
the following two which are defined in “RFC 8705 OAuth 2.0 Mutual TLS Client
Authentication and Certificate-Bound Access Tokens” (MTLS).

• OAuth client authentication using a client certificate

• Tokens bound to a client certificate

OAuth Client Authentication using a Client Certificate

When a confidential client (RFC 6749, 2. Client Types) accesses a token endpoint
(RFC 6749, 3.2. Token Endpoint), client authentication (RFC 6749, 2.3. Client
Authentication) is required. Client authentication is a process where a client
application proves it has its confidential authentication information.

There are several ways for client authentication. The following are client
authentication methods listed in OIDC Core, 9. Client Authentication (except none).

• client_secret_basic — Basic Authentication using a pair of client ID
and client secret

• client_secret_post — Embedding a pair of client ID and client secret in
a request body

A Comprehensive Commentary on Financial-grade API - Page 12

Client Authentication at Token Endpoint

https://www.rfc-editor.org/rfc/rfc8705.html
https://www.rfc-editor.org/rfc/rfc8705.html
https://www.rfc-editor.org/rfc/rfc8705.html
https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-3.2
https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-2.3
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

• client_secret_jwt — Passing a JWT signed by a key based on a client
secret with a symmetric algorithm

• private_key_jwt — Passing a JWT signed by a private key with an
asymmetric algorithm

In client_secret_basic and client_secret_post, a client application
directly shows the server its client secret to prove that it has the confidential
information.

In client_secret_jwt, a client application indirectly proves that it has the client
secret by signing a JWT with the client secret and passing the JWT to the server. On
the other hand, in private_key_jwt, signing is performed with an asymmetric
private key and the server verifies the signature with the public key corresponding
to the private key.

Apart from the above, “2. Mutual TLS for OAuth Client Authentication” of RFC 8705
introduces new client authentication methods below.

• tls_client_auth — Utilizing a PKI client certificate used in a TLS
connection

• self_signed_tls_client_auth — Utilizing a self-signed client
certificate used in a TLS connection

These two utilize the client certificate used in a TLS connection between the client
and the token endpoint for client authentication.

A Comprehensive Commentary on Financial-grade API - Page 13

Client Authentication using Basic Authentication

https://www.rfc-editor.org/rfc/rfc8705.html#name-mutual-tls-for-oauth-client
https://www.rfc-editor.org/rfc/rfc8705.html

In tls_client_auth, the PKI client certificate used in a TLS connection
established between a client and a server is used for client authentication. The server
verifies the client certificate (this should be done even in a context irrelevant to
OAuth) and then checks whether the Subject Distinguished Name or Subject
Alternative Name matches the pre-registered one.

For this process, client applications that want to use tls_client_auth for client
authentication must register Subject Distinguished Name or Subject Alternative
Name into the server in advance. The specification newly defines the following client
metadata for this purpose (RFC 8705, 2.1.2 Client Registration Metadata).

• tls_client_auth_subject_dn

• tls_client_auth_san_dns

• tls_client_auth_san_uri

• tls_client_auth_san_ip

• tls_client_auth_san_email

A Comprehensive Commentary on Financial-grade API - Page 14

Client Authentication using JWT
Client Certificate for Client Authentication

https://www.rfc-editor.org/rfc/rfc8705.html
https://www.rfc-editor.org/rfc/rfc8705.html#name-client-registration-metadata

In self_signed_tls_client_auth, a self-signed client certificate is used instead
of a PKI client certificate. To use this client authentication method, client applications
have to register a self-signed client certificate into the server in advance.

The following table is the list of client authentication methods mentioned in the FAPI
specification.

For detailed explanation about client authentication, please read “OAuth 2.0 Client
Authentication”. Also, if you are not familiar with X.509 certificate, please read
“Illustrated X.509 Certificate”.

A Comprehensive Commentary on Financial-grade API - Page 15

Client Authentication Methods

X.509 Certificate Chain

https://darutk.medium.com/oauth-2-0-client-authentication-4b5f929305d4
https://darutk.medium.com/oauth-2-0-client-authentication-4b5f929305d4
https://darutk.medium.com/illustrated-x-509-certificate-84aece2c5c2e

Certificate-Bound Tokens

Once a traditional access token is leaked, an attacker can access APIs with the access
token. Traditional access tokens are just like a train ticket which anyone can use once
it is stolen.

An idea to mitigate this vulnerability is to check whether the API caller bringing an
access token matches the legitimate holder of the access token when an API call is
made. This is just like the boarding procedure for international flights where
passengers are required to show not only a plane ticket but also their passport.

This idea is called “Proof of Possession” (PoP) and FAPI lists “Mutual TLS” as an
only possible option of PoP (— in the previous versions (ID1 & ID2), “Token
Binding” was mentioned as a PoP mechanism but it was dropped by the final
version). In this context, “Mutual TLS” means the specification defined in “3.
Mutual-TLS Client Certificate-Bound Access Tokens” of RFC 8705.

Because Mutual TLS has several meanings as explained above and I actually
experienced a problematic conversation like below,

Me: The API management solution of your company does not support Mutual TLS
(as a PoP mechanism).
The company: Not correct. Our solution supports Mutual TLS (because it can be
configured to request a client certificate for TLS communication).

I’ve personally decided to call Mutual TLS as a PoP mechanism “Certificate
Binding”. This naming is not so bad (at least for me) because it sounds symmetrical

A Comprehensive Commentary on Financial-grade API - Page 16

X.509 Certificate in PEM Format

https://www.rfc-editor.org/rfc/rfc8705.html#name-mutual-tls-client-certifica
https://www.rfc-editor.org/rfc/rfc8705.html#name-mutual-tls-client-certifica
https://www.rfc-editor.org/rfc/rfc8705.html

to Token Binding and because actual implementations will eventually become just
binding a certificate to an access token and won’t care whether the certificate has
been extracted from a mutual TLS connection or has come from somewhere else.

In an implementation of Certificate Binding, when the token endpoint of an
authorization server issues an access token, it calculates the hash value of the client
certificate presented by the client application in the TLS connection and remembers
the binding between the access token and the hash value (or embeds the hash value
into the access token if the implementation of the access token is a self-contained
JWT).

When the client application accesses an API of the target resource server, it uses the
same client certificate that was previously used in the communication with the token
endpoint. The implementation of the API extracts an access token and a client
certificate from the request, calculates the hash value of the client certificate and
checks the hash value matches the one that is associated with the access token. If
they match, the API implementation accepts the request. If not, it rejects the request.

A Comprehensive Commentary on Financial-grade API - Page 17

Certificate Binding

It is relatively easy to implement Certificate Binding because it can be implemented
only if the client certificate is accessible. On the other hand, Token Binding is
relatively hard because it is necessary to modify multiple layers such as TLS layer
and HTTP layer. In addition, the future is uncertain as Chrome has removed the
Token Binding feature although the community strongly tried to urge Chrome team
to rethink it (“Intent to Remove: Token Binding”). However, anyway, related
specifications were promoted to RFCs at the beginning of October, 2018.

• RFC 8471 — The Token Binding Protocol Version 1.0

• RFC 8472 — Transport Layer Security (TLS) Extension for Token Binding
Protocol Negotiation

• RFC 8473 — Token Binding over HTTP

“OAuth 2.0 Token Binding” (its status is “expired”) is a specification that defines
rules to apply Token Binding to OAuth 2.0 tokens based on the specifications listed
above.

NOTE: The final version of the FAPI specification dropped Token Binding due to its
unlikeliness of future availability.

A Comprehensive Commentary on Financial-grade API - Page 18

https://www.chromestatus.com/feature/5097603234529280
https://www.chromestatus.com/feature/5097603234529280
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/OkdLUyYmY1E
https://tools.ietf.org/html/rfc8471
https://tools.ietf.org/html/rfc8472
https://tools.ietf.org/html/rfc8473
https://datatracker.ietf.org/doc/draft-ietf-oauth-token-binding/?include_text=1

JARM

JARM is a new specification which was approved at the same timing with FAPI
Implementer’s Draft 2. JARM is referred to in FAPI Part 2.

• Financial-grade API: JWT Secured Authorization Response Mode for OAuth
2.0 (JARM)

The specification defines new values for the response_mode request parameter as
shown below.

1. query.jwt

2. fragment.jwt

3. form_post.jwt

4. jwt

If one of the above is specified, response parameters of an authorization response are
packed into a JWT and the JWT is returned as the value of a single response
response parameter.

For example, a traditional authorization response in the authorization code flow
looks like below. code and state response parameters are included separately.

HTTP/1.1 302 Found
Location: https://client.com/callback?code={CODE}&state={STATE}

On the other hand, if response_mode=query.jwt is added to an authorization
request, the authorization response will become like below.

HTTP/1.1 302 Found
Location: https://client.com/callback?response={JWT}

A Comprehensive Commentary on Financial-grade API - Page 19

https://openid.net/specs/openid-financial-api-jarm-ID1.html
https://openid.net/specs/openid-financial-api-jarm-ID1.html

Because the JWT is signed by a key of the server, a client can confirm that the
response has not been tampered by verifying the signature of the JWT.

Client Metadata for JARM

Before using JARM, client applications have to set a value to the
authorization_signed_response_alg metadata in advance. The metadata
represents an algorithm for signature of response JWTs. If the value of the
response_mode request parameter is *.jwt although the metadata is not set, the
authorization request fails because the specification requires response JWTs be
always signed.

To encrypt response JWTs, algorithms have to be set in advance to the
authorization_encrypted_response_alg metadata and the
authorization_encrypted_response_enc metadata. To use an asymmetric
algorithm, configuration about client’s public key is necessary, too.

A Comprehensive Commentary on Financial-grade API - Page 20

JARM example

The screenshot below is client-side settings for JARM in Authlete’s web console that
is provided for client management.

Server Metadata for JARM

Discovery information of authorization servers that support JARM includes one or
more of query.jwt, fragment.jwt, form_post.jwt and jwt in the list of supported
response modes (response_modes_supported). Also, discovery information includes
the following metadata related to algorithms used for response JWTs.

authorization_signing_alg_values_supported — supported algorithms
for signing

authorization_encryption_alg_values_supported — supported
algorithms for key encryption

authorization_encryption_enc_values_supported — supported
algorithms for payload encryption

Discovery information of authorization servers that support JARM completely will
include data as shown below.

A Comprehensive Commentary on Financial-grade API - Page 21

Authorization Response Algorithms (in Developer Console provided by Authlete)

A Comprehensive Commentary on Financial-grade API - Page 22

Server Metadata related to JARM

Part 1: Baseline
As introduction of prior knowledge was done, let’s start the main part of this article.
To begin with, “Part 1” which defines baseline security profile.

Requirements for Authorization Server

“5.2.2. Authorization server” in “Part 1” lists requirements for authorization server.
Let’s take a look one by one.

Part 1: 5.2.2. Authorization server, 1.

shall support confidential clients;

Part 1: 5.2.2. Authorization server, 2.

should support public clients;

The definition of “confidential clients” and “public clients” is described in “2.1.
Client Types” of RFC 6749. I don’t explain the difference between the client types
here as it is prior knowledge for those who read the FAPI specification. However, the
relationship between client types and OAuth 2.0 flows is often misunderstood even
by those who are familiar with OAuth 2.0. It is only the combination of a “public
client” and “client credentials flow” that RFC 6749 explicitly prohibits. Other
combinations are allowed. Without this understanding, you would misread the FAPI
specification.

A Comprehensive Commentary on Financial-grade API - Page 23

Combinations of Flow and Client Type (RFC 6749)

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html
https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#authorization-server
https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-2.1

Just FYI. It is confidential clients only that are allowed to make backchannel
authentication requests which are defined in CIBA.

Part 1: 5.2.2. Authorization server, 3.

shall provide a client secret that adheres to the requirements in section 16.19 of OIDC
if a symmetric key is used;

OIDC Core states that a value calculated based on a client secret must be used as the
shared key when a symmetric algorithm is used for signing and encryption. If the
entropy of the client secret is lower than the one required by the algorithm, the
strength of the algorithm is weakened. Therefore, “16.19. Symmetric Key Entropy”
requires that client secrets have entropy strong enough for used algorithms. For
example, when HS256 (HMAC using SHA-256) is used for signing algorithm of ID
tokens, client secrets must have 256-bit entropy at minimum.

Part 1: 5.2.2. Authorization server, 4.

shall authenticate the confidential client using one of the following methods:

1. Mutual TLS for OAuth Client Authentication as specified in section 2 of MTLS;

2.client_secret_jwt or private_key_jwt as specified in section 9 of
OIDC;

Note that client_secret_basic and client_secret_post defined in RFC
6749 are not allowed as client authentication methods at the token endpoint.

A Comprehensive Commentary on Financial-grade API - Page 24

Combinations of Flow and Client Type (CIBA)

https://openid.net/specs/openid-connect-core-1_0.html#SymmetricKeyEntropy

Part 1: 5.2.2. Authorization server, 5.

shall require and use a key of size 2048 bits or larger for RSA algorithms;

Part 1: 5.2.2. Authorization server, 6.

shall require and use a key of size 160 bits or larger for elliptic curve algorithms;

For example, when private_key_jwt is used as client authentication method and
RSA is used for signing the JWT, the key size must be 2048 or bigger. Likewise, when
an elliptic curve algorithm is used, the key size must be 160 at minimum.

Part 1: 5.2.2. Authorization server, 7.

shall require RFC7636 with S256 as the code challenge method;

It is required to implement RFC 7636 (PKCE) which is a countermeasure for
“authorization code interception attack”.

A Comprehensive Commentary on Financial-grade API - Page 25

Client Authentication Methods allowed in FAPI Part 1

RFC 7636 has added code_challenge and code_challenge_method request
parameters to the authorization request and code_verifier request parameter to
the token request. Because the default value of code_challenge_method is
plain, authorization requests that comply with FAPI must include
code_challenge_method=S256 explicitly.

See “Proof Key for Code Exchange (RFC 7636)” for details about PKCE.

Part 1: 5.2.2. Authorization server, 8.

shall require redirect URIs to be pre-registered;

In RFC 6749, registration of redirect URIs is not required under some conditions. For
FAPI, registration of redirect URIs is always required.

A Comprehensive Commentary on Financial-grade API - Page 26

Authorization Code Interception Attack

https://www.authlete.com/developers/pkce/

Part 1: 5.2.2. Authorization server, 9.

shall require the redirect_uri parameter in the authorization request;

In RFC 6749, the redirect_uri request parameter of an authorization request can
be omitted under some conditions. For FAPI, the request parameter must be always
included. OIDC has the same requirement.

Part 1: 5.2.2. Authorization server, 10.

shall require the value of redirect_uri to exactly match one of the pre-registered
redirect URIs;

When an authorization server checks whether the value of the redirect_uri
request parameter matches a pre-registered one, the rule described in “6.
Normalization and Comparison” of RFC 3986 (Uniform Resource Identifier (URI):
Generic Syntax) is applied unless the pre-registered one is an absolute URI.

On the other hand, FAPI (and OIDC also) requires that simple string comparison be
always used to check whether the redirect URIs match.

Part 1: 5.2.2. Authorization server, 11.

shall require user authentication to an appropriate Level of Assurance for the
operations the client will be authorized to perform on behalf of the user;

It is required that user authentication performed during authorization process satisfy
an appropriate level of assurance. ID1 and ID2 required LoA (Level of Assurance) 2,
which is defined in X.1254 (Entity authentication assurance framework. However,
the Final version made the requirement more abstract (= changed the requirement
from “LoA2” to “appropriate LoA”).

Part 1: 5.2.2. Authorization server, 12.

shall require explicit approval by the user to authorize the requested scope if it has not
been previously authorized;

A Comprehensive Commentary on Financial-grade API - Page 27

https://tools.ietf.org/html/rfc3986#section-6
https://tools.ietf.org/html/rfc3986#section-6
https://tools.ietf.org/html/rfc3986
https://www.itu.int/rec/T-REC-X.1254

Indeed.

Part 1: 5.2.2. Authorization server, 13.

shall reject an authorization code (Section 1.3.1 of RFC6749) if it has been previously
used;

Prohibiting reuse of authorization codes and ensuring that authorization codes have
never been used previously are different things. If the current implementation of an
authorization server uses randomly-generated strings as authorization codes and
removes them from the database after they are used, the authorization codes have to
be kept in the database even after they are used just only for the verification. If
strings that represent authorization codes are generated randomly with high enough
entropy, it is wasteful to keep authorization codes in the database even after their
use.

A certain famous engineer says “Most implementations prevent reuse of
authorization codes by deleting corresponding database records and don’t check if
they have been used previously, and such implementations are sufficient enough.”

Part 1: 5.2.2. Authorization server, 14.

shall return token responses that conform to Section 4.1.4 of RFC6749;

This is not a FAPI-specific requirement. Every authorization server implementation
that claims it supports OAuth 2.0 must conform to Section 4.1.4 of RFC 6749.

Part 1: 5.2.2. Authorization server, 15.

shall return the list of granted scopes with the issued access token if the request was
passed in the front channel and was not integrity protected;

In RFC 6749, the scope response parameter can be omitted unless requested scopes
and granted ones are different (RFC 6749, 5.1. Successful Response). In FAPI, the
scope response parameter is required (even if the requested scopes and granted

A Comprehensive Commentary on Financial-grade API - Page 28

https://tools.ietf.org/html/rfc6749#section-4.1.4
https://tools.ietf.org/html/rfc6749#section-5.1

ones are equal) if the authorization request is passed in the front channel and is not
integrity protected.

“Integrity protected” here means that a Request Object (OIDC Core Section 6 or JAR)
is used.

Part 1: 5.2.2. Authorization server, 16.

shall provide non-guessable access tokens, authorization codes, and refresh token
(where applicable), with sufficient entropy such that the probability of an attacker
guessing the generated token is computationally infeasible as per RFC 6749 Section
10.10;

ID2 requires that access tokens have a minimum of 128 bits of entropy, but the Final
version avoids mentioning the exact size of the minimum entropy and just says
“sufficient entropy”.

Part 1: 5.2.2. Authorization server, 17.

should clearly identify the details of the grant to the user during authorization as in
16.18 of OIDC;

Suppose that a client application requests payment scope. A typical authorization
page will tell the user just that the client application is requesting the payment
scope. However, recent regulations in financial industries require that details be
explained to the user. For example, information about the purpose of the payment
scope, the amount of money transferred, and so on. Generally speaking, recent
regulations require that grant be more specific.

UK Open Banking has invented “Lodging Intent” for the purpose. In the
mechanism, (a) a client application registers details of grant it wants into an
authorization server in advance, (b) the authorization server issues an intent ID that
represents the registered details, and (c) the client makes an authorization request
with the intent ID. As a result, the authorization server can generate an authorization
page which includes the details of the authorization request.

To make the lodging intent pattern available as standards, OpenID Foundation has
developed two separate specifications; “OAuth 2.0 Pushed Authorization

A Comprehensive Commentary on Financial-grade API - Page 29

https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests
https://datatracker.ietf.org/doc/draft-ietf-oauth-jwsreq/
https://datatracker.ietf.org/doc/draft-ietf-oauth-par/

Requests” (PAR) and “OAuth 2.0 Rich Authorization Requests” (RAR). These
specifications will be mentioned again later.

Part 1: 5.2.2. Authorization server, 18.

should provide a mechanism for the end-user to revoke access tokens and refresh
tokens granted to a client as in 16.18 of OIDC;

It should be noted that, if the format of access tokens is self-contained-type (e.g.
JWT), the access tokens cannot be revoked unless the system implements and
operates a mechanism like CRL (Certificate Revocation List) or OCSP (Online
Certificate Status Protocol) of PKI (Public Key Infrastructure). If the system does not
provide such mechanism, it means that the system has decided to give up revocation
of access tokens. In this case, the duration of access tokens must be short enough to
mitigate damage of access token leakage. See “OAuth Access Token
Implementation” for further discussion.

Part 1: 5.2.2. Authorization server, 19.

shall return an invalid_client error as defined in 5.2 of RFC6749 when mis-
matched client identifiers were provided through the client authentication methods
that permits sending the client identifier in more than one way;

FAPI Part 1 requires MTLS (tls_client_auth,
self_signed_tls_client_auth) or JWT (client_secret_jwt,
private_key_jwt) for client authentication.

MTLS uses a client certificate but a certificate does not include the client identifier of
the client which tries to authenticate itself with the certificate. Therefore, the
client_id request parameter needs to be given explicitly.

On the other hand, JWT-based client authentication methods present a JWT as the
value of the client_assertion request parameter and the JWT contains the client
identifier as the value of the iss claim. Therefore, the client_id request
parameter is not necessary. In addition, according to RFC 7523, 3. and OIDC Core, 9.,
the sub claim also holds the client identifier when a JWT is used for client
authentication.

A Comprehensive Commentary on Financial-grade API - Page 30

https://datatracker.ietf.org/doc/draft-ietf-oauth-par/
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://medium.com/@darutk/oauth-access-token-implementation-30c2e8b90ff0
https://medium.com/@darutk/oauth-access-token-implementation-30c2e8b90ff0
https://tools.ietf.org/html/rfc7523

In MTLS, it is only the client_id request parameter that represents a client
identifier. On the other hand, in JWT-based client authentication, both the iss claim
and the sub claim hold a client identifier. The values of the claims must match. Also,
if the client_id request parameter is redundantly given although JWT-based
client authentication is used, the value of the request parameter must match the
client identifier, too.

Part 1: 5.2.2. Authorization server, 20.

shall require redirect URIs to use the https scheme;

This sentence added by FAPI Implementer’s Draft 2 is short but has a big impact.
Because of this sentence, developers cannot use custom schemes in FAPI any more.
To process redirection on client side only without preparing an external Web server,
developers have to use the method described in “7.2. Claimed “https” Scheme URI
Redirection” of BCP 212 (OAuth 2.0 for Native Apps).

A Comprehensive Commentary on Financial-grade API - Page 31

JWT-based Client Authentication and Client Identifiers

https://tools.ietf.org/html/bcp212#section-7.2
https://tools.ietf.org/html/bcp212#section-7.2
https://tools.ietf.org/html/bcp212

Part 1: 5.2.2. Authorization server, 21.

should issue access tokens with a lifetime of under 10 minutes unless the tokens are
sender-constrained; and

This requirement was added by the FAPI Final version. “sender-constrained” here
means that access tokens have to be bound to a client certificate (MTLS).

Part 1: 5.2.2. Authorization server, 22.

shall support OIDD, may support RFC8414 and shall not distribute discovery
metadata (such as the authorization endpoint) by any other means.

This requirement was added by the FAPI Final version. OIDD here is short for
“OpenID Connect Discovery 1.0”. Therefore, authorization servers for FAPI must
implement a “discovery endpoint” which is defined in OIDD Section 4.

Part 1: 5.2.2.1. Returning authenticated user’s identifier

Further, if it is desired to provide the authenticated user’s identifier to the client in the
token response, the authorization server:

Section 5.2.2.1. lists requirements that an authorization server must follow when the
authenticated user’s identifier is requested. In other words, when an ID token is
requested.

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 1.

shall support the authentication request as in Section 3.1.2.1 of OIDC;

“3.1.2.1. Authentication Request” of OIDC Core is the definition of a request to an
authorization endpoint in the context of OpenID Connect. RFC 6749 calls a request to
an authorization endpoint “authorization request”. OIDC Core calls it
“authentication request”. Aside from the names, considering that the specification of
an authorization endpoint is the main part of OIDC Core, the FAPI’s requirement is
almost equal to stating “shall support OIDC Core”.

A Comprehensive Commentary on Financial-grade API - Page 32

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 2.

shall perform the authentication request verification as in Section 3.1.2.2 of OIDC;

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 3.

shall authenticate the user as in Section 3.1.2.2 and 3.1.2.3 of OIDC;

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 4.

shall provide the authentication response as in Section 3.1.2.4 and 3.1.2.5 of OIDC
depending on the outcome of the authentication;

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 5.

shall perform the token request verification as in Section 3.1.3.2 of OIDC; and

Part 1: 5.2.2.1. Returning authenticated user’s identifier, 6.

shall issue an ID Token in the token response when openid was included in the
requested scope as in Section 3.1.3.3 of OIDC with its sub value corresponding to
the authenticated user and optional acr value in ID Token.

Summary of the requirements above is “shall follow OIDC Core specification.”
Nothing special for FAPI.

Part 1: 5.2.2.2. Client requesting openid scope

If the client requests the openid scope, the authorization server

1. shall require the nonce parameter defined in Section 3.1.2.1 of OIDC in the
authentication request.

OIDC Section 3.1.2.1 (Authorization Code Flow) states that nonce is optional. On
the other hand, OIDC Section 3.2.2.1 (Implicit Flow) states that nonce is mandatory.

The FAPI requirement above requires nonce even in the authorization code flow if
openid is included in scope.

Part 1: 5.2.2.3. Clients not requesting openid scope

A Comprehensive Commentary on Financial-grade API - Page 33

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitAuthRequest

If the client does not requests the openid scope, the authorization server

1. shall require the state parameter defined in Section 4 of RFC6749

In RFC 6749, the state parameter is optional. FAPI makes the parameter mandatory
when openid is not included in scope.

A Comprehensive Commentary on Financial-grade API - Page 34

Requirements for Public Client

“5.2.3. Public client” of “Part 1” lists requirements for public clients. Let’s take a look
one by one.

Part 1: 5.2.3. Public client, 1.

shall support RFC7636;

RFC 7636 is PKCE.

Part 1: 5.2.3. Public client, 2.

shall use S256 as the code challenge method for the RFC7636;

This means “an authorization request must include
code_challenge_method=S256.”

Part 1: 5.2.3. Public client, 3.

shall use separate and distinct redirect URI for each authorization server that it talks
to;

Part 1: 5.2.3. Public client, 4.

shall store the redirect URI value in the resource owner’s user-agents (such as
browser) session and compare it with the redirect URI that the authorization response
was received at, where, if the URIs do not match, the client shall terminate the process
with error;

These requirements are so clear that further explanation is not needed.

Part 1: 5.2.3. Public client, 5.

(withdrawn); and

A Comprehensive Commentary on Financial-grade API - Page 35

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#public-client

“(withdrawn)” here indicates that the requirement which existed in the previous
FAPI versions has been withdrawn. You’ll see more “withdrawn”s in following
sections, too.

Part 1: 5.2.3. Public client, 6.

shall implement an effective CSRF protection.

In normal cases, CSRF protection is implemented on server side. What is CSRF
protection as a requirement for public clients? This is CSRF protection for redirect
URIs. The following is an excerpt from “10.12. Cross-Site Request Forgery” of RFC
6749.

The client MUST implement CSRF protection for its redirection URI. This is
typically accomplished by requiring any request sent to the redirection URI endpoint
to include a value that binds the request to the user-agent’s authenticated state (e.g., a
hash of the session cookie used to authenticate the user-agent). The client SHOULD
utilize the “state” request parameter to deliver this value to the authorization server
when making an authorization request.

In addition to the requirements from “Public client, 1” to “Public client, 6”, “if it is
desired to obtain a persistent identifier of the authenticated user”, that is, if an ID
token is requested, an authorization request by a public client:

Part 1: 5.2.3. Public client, 7.

shall include openid in the scope value; and

Part 1: 5.2.3. Public client, 8.

shall include the nonce parameter defined in Section 3.1.2.1 of OIDC in the
authentication request.

On the other hand, “If openid is not in the scope value”, an authorization request
by a public client:

Part 1: 5.2.3. Public client, 9.

shall include the state parameter defined in section 4.1.1 of RFC6749;

A Comprehensive Commentary on Financial-grade API - Page 36

https://tools.ietf.org/html/rfc6749#section-10.12

Part 1: 5.2.3. Public client, 10.

shall verify that the scope received in the token response is either an exact match, or
contains a subset of the scope sent in the authorization request; and

Part 1: 5.2.3. Public client, 11.

shall only use Authorization Server metadata obtained from the metadata document
published by the Authorization Server at its well known endpoint as defined in OIDD
or RFC 8414.

A Comprehensive Commentary on Financial-grade API - Page 37

Requirements for Confidential Client

“5.2.4. Confidential client” of “Part 1” lists requirements for confidential clients. The
requirements are positioned as additions to the requirements for public clients.
Therefore, confidential clients must follow not only the requirements in 5.2.4 but also
the requirements in 5.2.3.

Part 1: 5.2.4. Confidential client, 1.

shall support the following methods to authenticate against the token endpoint:

1. Mutual TLS for OAuth Client Authentication as specified in Section 2 of MTLS,
and

2.client_secret_jwt or private_key_jwt as specified in Section 9 of
OIDC;

Note that client authentication methods defined in RFC 6749
(client_secret_basic and client_secret_post) cannot be used.

Part 1: 5.2.4. Confidential client, 2.

shall use RSA keys with a minimum 2048 bits if using RSA cryptography;

Part 1: 5.2.4. Confidential client, 3.

shall use elliptic curve keys with a minimum of 160 bits if using Elliptic Curve
cryptography; and

Part 1: 5.2.4. Confidential client, 4.

shall verify that its client secret has a minimum of 128 bits if using symmetric key
cryptography.

These requirements apply when encrypted JWTs are used.

A Comprehensive Commentary on Financial-grade API - Page 38

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#confidential-client

Requirements for Protected Resources

“6.2.1. Protected resources provisions” of “Part 1” lists requirements for protected
resources.

Part 1: 6.2.1. Protected resource provisions, 1.

shall support the use of the HTTP GET method as in Section 4.3.1 of RFC7231;

Part 1: 6.2.1. Protected resource provisions, 2.

shall accept access tokens in the HTTP header as in Section 2.1 of OAuth 2.0 Bearer
Token Usage RFC6750;

That is, protected resource endpoints must support HTTP GET method and be able
to accept an access token in the format of Authorization: Bearer
{AccessToken}.

Part 1: 6.2.1. Protected resource provisions, 3.

shall not accept access tokens in the query parameters stated in Section 2.3 of OAuth
2.0 Bearer Token Usage RFC6750;

That is, protected resource endpoints must not accept a query parameter in the
format of access_token={AccessToken}.

Part 1: 6.2.1. Protected resource provisions, 4.

shall verify that the access token is neither expired nor revoked;

A Comprehensive Commentary on Financial-grade API - Page 39

Request to Protected Resource Endpoint

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#protected-resources-provisions

Part 1: 6.2.1. Protected resource provisions, 5.

shall verify that the scope associated with the access token authorizes access to the
resource it is representing;

Part 1: 6.2.1. Protected resource provisions, 6.

shall identify the associated entity to the access token;

Part 1: 6.2.1. Protected resource provisions, 7.

shall only return the resource identified by the combination of the entity implicit in
the access and the granted scope and otherwise return errors as in Section 3.1 of
RFC6750;

These are general steps of access token verification that protected resource endpoints
are expected to take.

“3.1. Error Codes” of RFC 6750 defines three error codes. They are
invalid_request, invalid_token and insufficient_scope. One point
those who are not familiar with RFC 6750 may feel strange is that an error code is
embedded not in the response body but in the WWW-Authenticate HTTP header.

A Comprehensive Commentary on Financial-grade API - Page 40

RFC 6750 Error Response

https://tools.ietf.org/html/rfc6750#section-3.1

Part 1: 6.2.1. Protected resource provisions, 8.

shall encode the response in UTF-8 if applicable;

Part 1: 6.2.1. Protected resource provisions, 9.

shall send the Content-type HTTP header Content-Type: application/json; if
applicable;

Protected resource endpoints in FAPI are expected to return their responses in JSON
format.

Part 1: 6.2.1. Protected resource provisions, 10.

shall send the server date in HTTP Date header as in Section 7.1.1.2 of RFC7231;

The format of Date header is defined in “7.1.1.1. Date/Time Formats” of RFC 7231.
Below is an example.

Date: Sun, 06 Nov 1994 08:49:37 GMT

Part 1: 6.2.1. Protected resource provisions, 11.

shall set the response header x-fapi-interaction-id to the value received
from the corresponding FAPI client request header or to a RFC4122 UUID value if
the request header was not provided to track the interaction, e.g., x-fapi-
interaction-id: c770aef3-6784-41f7-8e0e-ff5f97bddb3a;

This is a requirement specific to FAPI. Responses from FAPI protected resource
endpoints must include an x-fapi-interaction-id header.

When an incoming request has x-fapi-interaction-id, the same value of the
header must be included in the response. Otherwise, the protected resource endpoint
must generate a new value for x-fapi-interaction-id.

Part 1: 6.2.1. Protected resource provisions, 12.

shall log the value of x-fapi-interaction-id in the log entry; and

A Comprehensive Commentary on Financial-grade API - Page 41

https://tools.ietf.org/html/rfc7231#section-7.1.1.1
https://tools.ietf.org/html/rfc7231

This is also specific to FAPI. This requirement doesn’t have any impact on request
and response formats, but this can make it easy to correlate server-side logs and
client-side logs.

Part 1: 6.2.1. Protected resource provisions, 13.

shall not reject requests with a x-fapi-customer-ip-address header
containing a valid IPv4 or IPv6 address.

Part 1: 6.2.1. Protected resource provisions, 14.

should support the use of Cross Origin Resource Sharing (CORS) [CORS] and or
other methods as appropriate to enable JavaScript clients to access the endpoint if it
decides to provide access to JavaScript clients.

For example, if a protected resource endpoint wants to allow JavaScript clients to
access it from anywhere, the endpoint should include an Access-Control-
Allow-Origin: * header in responses.

A Comprehensive Commentary on Financial-grade API - Page 42

Requirements for Clients to Protected Resources

“6.2.2. Client provisions” of “Part 1” lists requirements for clients to follow in
accessing protected resources.

Part 1: 6.2.2. Client provisions, 1.

shall send access tokens in the HTTP header as in Section 2.1 of OAuth 2.0 Bearer
Token Usage RFC6750; and

That is, clients send an access token in the format of Authorization: Bearer
{AccessToken}.

Part 1: 6.2.2. Client provisions, 2.

(withdrawn);

Part 1: 6.2.2. Client provisions, 3.

may send the last time the customer logged into the client in the x-fapi-auth-
date header where the value is supplied as a HTTP-date as in Section 7.1.1.1 of
RFC7231, e.g., x-fapi-auth-date: Tue, 11 Sep 2012 19:43:31
GMT;

Part 1: 6.2.2. Client provisions, 4.

may send the customer’s IP address if this data is available in the x-fapi-
customer-ip-address header, e.g., x-fapi-customer-ip-address:
2001:DB8::1893:25c8:1946 or x-fapi-customer-ip-address:
198.51.100.119; and

Part 1: 6.2.2. Client provisions, 5.

may send the x-fapi-interaction-id request header, in which case the value
shall be a RFC4122 UUID to the server to help correlate log entries between client
and server, e.g., x-fapi-interaction-id:
c770aef3-6784-41f7-8e0e-ff5f97bddb3a.

A Comprehensive Commentary on Financial-grade API - Page 43

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#client-provisions

These are FAPI-specific HTTP headers. It is up to clients whether to send the headers
or not.

A Comprehensive Commentary on Financial-grade API - Page 44

FAPI-specific HTTP Headers

Security Considerations

“7. Security considerations” of “Part 1” lists security considerations. Summary is as
follows.

7.1. — Follow BCP 195. Use TLS 1.2 or newer. Follow RFC 6125.

7.2. — Part 1 doesn’t authenticate authorization request and response.

7.3. — Part 1 doesn’t assure message integrity of authorization request.

7.4.1. — Part 1 doesn’t discuss encryption of authorization request.

7.4.2. — Be careful not to leak information through logs.

7.4.3. — Be careful not to leak information through referrer. Make duration of access
tokens short.

7.5. — Native applications shall follow BCP 212 but must not support “Private-Use
URI Scheme Redirection” and “Loopback Interface Redirection”. They must use
https for the scheme of redirect URI as introduced in “Claimed https Scheme URI
Redirection”.

7.6. — Both FAPI implementation and underlying OAuth/OIDC implementation
must be complete and correct. See OpenID Certification.

7.7. — Use a separate issuer per brand if multiple brands need to be supported.

“Part 2” provides solutions for security considerations listed in “Part 1”, for
example, by making “request object” mandatory. “Part 2” is recommended when
higher security than “Part 1” is needed.

A Comprehensive Commentary on Financial-grade API - Page 45

https://openid.net/specs/openid-financial-api-part-1-1_0-final.html#security-considerations
https://tools.ietf.org/html/bcp195
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/bcp212
https://tools.ietf.org/html/bcp212#section-7.1
https://tools.ietf.org/html/bcp212#section-7.1
https://tools.ietf.org/html/bcp212#section-7.3
https://tools.ietf.org/html/bcp212#section-7.2
https://tools.ietf.org/html/bcp212#section-7.2
https://openid.net/certification/

Part 2: Advanced
Next, let’s read “Part 2” which defines advanced security profile.

Detached Signature

“5.1.1. ID Token as Detached Signature” of “Part 2” states that it uses “ID token” as
“detached signature”.

An ID token is signed by an authorization server, so even if an attacker tampered the
content of the ID token, it could be detected. A client application that has received an
ID token can confirm that the ID token has not been tampered by verifying the
signature of the ID token.

If an authorization server embeds hash values of response parameters (such as code
and state) into an ID token, a client application can confirm that the values of the
response parameters have not been tampered by computing hash values of the
response parameter values and comparing them to the hash values embedded in the
ID token. In the context, the ID token is regarded as a detached signature.

A Comprehensive Commentary on Financial-grade API - Page 46

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html
https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#id-token-as-detached-signature
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

For the code response parameter that represents an authorization code, c_hash has
already been defined in OIDC Core as a claim that represents the hash value of
code. Likewise, at_hash has been defined as a claim that represents the hash value
of access_token.

What is missing is a claim that represents the hash value of the state response
parameter. So, “5.1.1. ID Token as Detached Signature” defines s_hash for that
purpose.

s_hash
State hash value. Its value is the base64url encoding of the left-most half of the hash of
the octets of the ASCII representation of the state value, where the hash algorithm
used is the hash algorithm used in the alg header parameter of the ID Token's JOSE
header. For instance, if the alg is HS512, hash the state value with SHA-512, then

A Comprehensive Commentary on Financial-grade API - Page 47

ID Token as Detached Signature

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#id-token-as-detached-signature

take the left-most 256 bits and base64url encode them. The s_hash value is a case
sensitive string.

Because “Part 2” uses ID tokens as detached signatures, even if client applications
don’t need ID tokens in their application layer, they have to send authorization
requests that require an ID token. To be exact, they have to include id_token in the
response_type request parameter. This is the reason that the second requirement
in “5.2.2. Authorization Server” is saying “shall require the response_type value
code id_token”.

However, since Implementer’s Draft 2, ID tokens don’t have to be used as detached
signatures when JARM is used. It is because the entire set of response parameters is
packed into a JWT.

A Comprehensive Commentary on Financial-grade API - Page 48

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#authorization-server

Requirements for Authorization Server

“5.2.2. Authorization server” of “Part 2” lists requirements for authorization server.

Part 2: 5.2.2. Authorization server, 1.

shall require a JWS signed JWT request object passed by value with the request
parameter or by reference with the request_uri parameter;

The request and request_uri parameters are defined in “6. Passing Request
Parameters as JWTs” of OIDC Core. To use these parameters, the first step is to pack
request parameters into a JWT. This JWT is called “request object”. An
authorization request (1) passes the request object as the value of the request
parameter directly or (2) puts the request object somewhere accessible from the
authorization server and passes the URI pointing to the location as the value of the
request_uri parameter.

A Comprehensive Commentary on Financial-grade API - Page 49

Passing a Request Object by Value

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#authorization-server
https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests
https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests

Signing a request object is not mandatory in OIDC Core, but signing is mandatory in
FAPI Part 2. If request objects are signed, authorization servers can confirm that the
request parameters have not been tampered by verifying signatures of the request
objects.

To be honest, what surprised me most when I read the FAPI specification for the first
time (many years ago) is this requirement. It’s because I knew from my experience it
is hard to implement the request object feature on authorization server side. As the
feature is hard to implement and optional in OIDC, there are many authorization
server implementations that claim they support OIDC but don’t support request
object. Be careful not to choose an authorization server implementation that
doesn’t support request object if you want to build a system that supports FAPI
Part 2.

Part 2: 5.2.2. Authorization server, 2.

shall require

1. the response_type values code id_token, or

2. the response_type value code in conjunction with the response_type
value jwt;

To use ID token as detached signature, even if an ID token is not needed in the
application layer, id_token must be included in the response_type request
parameter.

But, as mentioned in the previous section, id_token doesn’t have to be included in
the response_type request parameter when JARM is used. “When JARM is used”
is, to be concrete, “when the response_mode request parameter is included and its
value is one of query.jwt, fragment.jwt, form_post.jwt and jwt”.

NOTE: ID2 requires that response_type be either code id_token or code
id_token token when JARM is not used, but the Final version has removed code
id_token token.

A Comprehensive Commentary on Financial-grade API - Page 50

Part 2: 5.2.2. Authorization server, 3.

(moved to 5.2.2.1);

Part 2: 5.2.2. Authorization server, 4.

(moved to 5.2.2.1);

Part 2: 5.2.2. Authorization server, 5.

shall only issue sender-constrained access tokens;

In ID2, this clause was “shall only issue authorization code, access token, and
refresh token that are holder of key bound;”. However, because the requirement was
impractical, it was changed to the current one. See FAPI Issue 202 for details if you
are interested.

Part 2: 5.2.2. Authorization server, 6.

shall support MTLS as mechanism for constraining the legitimate senders of access
tokens;

In ID2, this clause was “shall support [OAUTB] or [MTLS] as a holder of key
mechanisms;”. However, OAUTB (Token Binding) was removed from the Final
version due to its unlikeliness of future availability.

Part 2: 5.2.2. Authorization server, 7.

(withdrawn);

Part 2: 5.2.2. Authorization server, 8.

(moved to 5.2.2.1);

Part 2: 5.2.2. Authorization server, 9.

(moved to 5.2.2.1);

Part 2: 5.2.2. Authorization server, 10.

A Comprehensive Commentary on Financial-grade API - Page 51

https://bitbucket.org/openid/fapi/issues/202

shall only use the parameters included in the signed request object passed via the
request or request_uri parameter;

shall require that all parameters are present inside the signed request object passed in
the request or request_uri parameter;

In ID2, this requirement was “shall require that all parameters are present inside the
signed request object passed in the request or request_uri parameter;”. The
expression was changed but the point remains the same. A request object must
include all request parameters to conform to FAPI Part 2.

This is different from OIDC Core which allows request parameters to be put inside
or outside a request object and merges them.

Part 2: 5.2.2. Authorization server, 11.

may support the pushed authorization request endpoint as described in PAR;

The “pushed authorization request endpoint” is a new endpoint defined in “OAuth
2.0 Pushed Authorization Requests” (PAR). A client application can register an
authorization request at the endpoint and obtain a Request URI which represents
the registered authorization request. The client specifies the issued Request URI as
the value of the request_uri request parameter when sending an authorization
request to the authorization endpoint.

The following diagram excerpted from “Illustrated PAR: OAuth 2.0 Pushed
Authorization Requests” shows the authorization code flow which utilizes the
pushed authorization request endpoint.

A Comprehensive Commentary on Financial-grade API - Page 52

https://datatracker.ietf.org/doc/draft-ietf-oauth-par/
https://datatracker.ietf.org/doc/draft-ietf-oauth-par/
https://darutk.medium.com/illustrated-par-oauth-2-0-pushed-authorization-requests-652d71ed5cfb
https://darutk.medium.com/illustrated-par-oauth-2-0-pushed-authorization-requests-652d71ed5cfb

HISTORY: The 7th section of ID2 showed an idea about pre-registration of an
authorization request. The section named the endpoint for the pre-registration
“request object endpoint”. The specification of PAR was developed based on the
idea. As a result, the FAPI Final version has withdrawn the 7th section.

Part 2: 5.2.2. Authorization server, 12.

(withdrawn)

Part 2: 5.2.2. Authorization server, 13.

shall require the request object to contain an exp claim that has a lifetime of no longer
than 60 minutes after the nbf claim;

OIDC Core does not require that request objects include the exp claim. In contrast,
FAPI Part 2 requires exp as a mandatory claim.

Furthermore, the Final version has added a requirement “a lifetime of no longer than
60 minutes after the nbf claim”. Because of this requirement, the nbf claim has
become mandatory.

A Comprehensive Commentary on Financial-grade API - Page 53

Authorization Code Flow with Pushed Authorization Request Endpoint

https://openid.net/specs/openid-financial-api-part-2-ID2.html#request-object-endpoint

The new requirement is a breaking change from a viewpoint of client applications
because authorization servers now reject authorization requests whose request object
does not include the nbf claim. As a matter of fact, some test cases in the official
conformance suite had to be updated for the new requirement.

Authorization server implementations may provide a mechanism to mitigate the
impact of the breaking change. For example, Authlete has defined
Service.nbfOptional flag that indicates whether the nbf claim in the request
object is optional even when the authorization request is regarded as a FAPI-Part2
request. The value of the flag can be changed by “nbf Claim” in the Service Owner
Console.

A Comprehensive Commentary on Financial-grade API - Page 54

Service Configuration: nbf Claim

https://gitlab.com/openid/conformance-suite
https://authlete.github.io/authlete-java-common/com/authlete/common/dto/Service.html#isNbfOptional--

Part 2: 5.2.2. Authorization server, 14.

shall authenticate the confidential client using one of the following methods (this
overrides FAPI Security Profile 1.0 - Part 1: clause 5.2.2-4):

1. tls_client_auth or self_signed_tls_client_auth as specified in
section 2 of MTLS, or

2.private_key_jwt as specified in section 9 of OIDC;

It should be noted that client_secret_jwt is not allowed in Part 2. This is
different from Part 1.

Part 2: 5.2.2. Authorization server, 15.

shall return the aud claim in the request object to be, or to be an array containing, the
OP’s Issuer Identifier URL;

This requirement was added by the Final version. Client applications have to put the
aud claim in request objects. The value of “OP’s Issuer Identifier URL” can be found
in the discovery document as the value of the issuer metadata (cf. OpenID
Connect Discovery 1.0, 3. OpenID Provider Metadata).

A Comprehensive Commentary on Financial-grade API - Page 55

Client Authentication Methods in FAPI

https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata

Part 2: 5.2.2. Authorization server, 16.

shall not support public clients;

This requirement is a new one added by the Final version, but it is said that it has
been logically impossible to support public clients in the context of FAPI Part 2 since
older FAPI versions.

Part 2: 5.2.2. Authorization server, 17.

shall require the request object to contain an nbf claim that is no longer than 60
minutes in the past; and

The 13th requirement implies that the nbf claim is mandatory. This 17th
requirement states it explicitly.

Part 2: 5.2.2. Authorization server, 18.

shall require PAR requests, if supported, to use PKCE (RFC7636) with S256 as the
code challenge method.

“PAR” here is “OAuth 2.0 Pushed Authorization Requests”.

5.2.2.1. ID Token as detached signature

In addition, if the response_typevalue code id_token is used, the
authorization server.

Section 5.2.2.1. lists requirements for authorization servers which are applied when
an ID token is used as a detached signature.

5.2.2.1. ID Token as detached signature, 1.

shall support OIDC;

5.2.2.1. ID Token as detached signature, 2.

A Comprehensive Commentary on Financial-grade API - Page 56

shall support signed ID Tokens;

5.2.2.1. ID Token as detached signature, 3.

should support signed and encrypted ID Tokens;

From a viewpoint of OIDC, these requirements are not new. By definition, ID tokens
are always signed. Encryption of ID tokens is optional.

Part 2: 5.2.2.1. ID Token as detached signature, 4.

shall return ID Token as a detached signature to the authorization response;

This requires that an authorization server issue an ID token, but because the
condition written at the top of Section 5.2.2.1 requires that id_token be included in
response_type and so an ID token is issued as a general consequence, this
requirement doesn’t have to exist.

Part 2: 5.2.2.1. ID Token as detached signature, 5.

shall include state hash, s_hash, in the ID Token to protect the state value if the
client supplied a value for state. s_hash may be omitted from the ID Token
returned from the Token Endpoint when s_hash is present in the ID Token returned
from the Authorization Endpoint; and

When JARM is used, this requirement doesn’t have to be followed.

Part 2: 5.2.2.1. ID Token as detached signature, 6.

should not return sensitive PII in the ID Token in the authorization response, but if it
needs to, then it should encrypt the ID Token.

PII is short for “Personally Identifiable Information”.

The feature of ID token encryption has existed since OIDC Core. When the
encryption algorithm for ID tokens is an asymmetric one, the authorization server
must either (1) manage public keys of client applications directly in its database or

A Comprehensive Commentary on Financial-grade API - Page 57

(2) fetch JWK Set documents from the locations pointed to by clients’ jwks_uri
metadata and extract public keys from the documents.

For signing ID tokens, it is server-side keys only that an authorization server has to
handle.

A Comprehensive Commentary on Financial-grade API - Page 58

ID Token Signing

In contrast, if an authorization server wants to support encryption of ID tokens, the
authorization server has to handle client-side keys, too.

This is the reason that not a small number of authorization server implementations
don’t support ID token encryption.

5.2.2.2. JARM

In addition, if the response_type value code is used in conjunction with the
response_mode value jwt, the authorization server

5.2.2.2. JARM, 1.

shall create JWT-secured authorization responses as specified in JARM, Section 4.3.

This clause does not include any FAPI-specific requirements. It just says that JARM
implementations should function as the JARM specification requires.

When response_type does not contain id_token, the authorization response will
include no ID token. Therefore, an ID token cannot be used as a detached signature.

A Comprehensive Commentary on Financial-grade API - Page 59

ID Token Encryption

In this case, JARM has to be used to assure that the authorization response has not
been tampered.

A Comprehensive Commentary on Financial-grade API - Page 60

Requirements for Confidential Client

The FAPI Final version has renamed Part 2: Section 5.2.3 from “Public client” to
“Confidential client”.

Part 2: 5.2.3. Confidential client, 1.

shall support MTLS as mechanism for sender-constrained access tokens;

That is, the authorization server must issue certificated-bound access tokens as
defined in Section 3 of RFC 8705.

Part 2: 5.2.3. Confidential client, 2.

shall include the request or request_uri parameter as defined in Section 6 of
OIDC in the authentication request;

As listed in the list of requirements for authorization servers, either the request
parameter or the request_uri parameter must be included. Note that OIDC Core
says “If one of these parameters is used, the other MUST NOT be used in the same
request.”

Part 2: 5.2.3. Confidential client, 3.

shall ensure the Authorization Server has authenticated the user to an appropriate
Level of Assurance for the client’s intended purpose;

This requirement states just that the user shall be authenticated appropriately. The
FAPI Final version removed the requirement “by requesting the acr claim as an
essential claim” which once existed in the clause.

There is a long history on this requirement.

In ID2, this requirement was “shall request user authentication at LoA 3 or greater
by requesting the acr claim as an essential claim as defined in section 5.5.1.1 of
[OIDC];”.

A Comprehensive Commentary on Financial-grade API - Page 61

https://www.rfc-editor.org/rfc/rfc8705.html#name-mutual-tls-client-certifica
https://www.rfc-editor.org/rfc/rfc8705.html

When a client wants to require claims as essential ones, the acr_values request
parameter cannot be used. Instead, a client must use the claims request parameter,
pass JSON as its value, and include {“essential":true} inside the JSON. The
following is an example of JSON that needs to be given as the value of the claims
request parameter in order to mark urn:mace:incommon:iap:silver as an
essential ACR.

BTW, this requirement is loosened in UK Open Banking which is based on FAPI
Part 2. That is, clients don’t have to require ACRs as essential. Probably, it is not
intentional. I guess that the snapshot of FAPI specification which was referred to
when Open Banking Profile (OBP) was developed didn’t contain the sentence, “by
requesting the acr claim as an essential claim”.

The official Financial-grade API conformance test suite (conformance-suite)
developed and maintained by FinTechLabs.io contains test cases for OBP. When
FinTechLabs ran the OBP test cases using Authlete to test the test suite itself, they
encountered an error. Because Authlete strictly follows FAPI specification, Authlete
reported “acr claim is not required as essential.” However, the expected behavior
in the context of OBP is to ignore the FAPI requirement.

The right approach for the error was to amend OBP (to make OBP compliant with
the latest FAPI specification). However, I was given explanation like “if the official
conformance test suite did it, all the existing OBP implementations wouldn’t be able
to pass the official tests. Changing the tests at this timing might cause delay in the
officially-announced schedule of Open Banking.”

A Comprehensive Commentary on Financial-grade API - Page 62

Claims for Essential ACR

https://www.openbanking.org.uk/
https://gitlab.com/openid/conformance-suite
https://fintechlabs.io/

Therefore, I decided to tweak Authlete and added OPEN_BANKING option in
addition to FAPI option.

If OPEN_BANKING is enabled, Authlete dare not to check if the acr claim is
required as essential even in the context of FAPI Part 2. The code snippet below is the
actual implementation excerpted from Authlete’s source code.

A Comprehensive Commentary on Financial-grade API - Page 63

Supported Service Profiles (in Service Owner Console provided by Authlete)

Code to judge whether acr should be required as an essential claim

As a result of this, Authlete is listed as a platform vendor that has passed “Open
Banking Security Profile Conformance”.

However, again, the FAPI Final has removed the requirement “by requesting the acr
claim as an essential claim”, so Authlete no longer checks whether ACRs are
requested as essential ones. Therefore, the flag OPEN_BANKING is not meaningful
any more.

Part 2: 5.2.3. Confidential client, 4.

(moved to 5.2.3.1);

Part 2: 5.2.3. Confidential client, 5.

(withdrawn);

Part 2: 5.2.3. Confidential client, 6.

(withdrawn);

Part 2: 5.2.3. Confidential client, 7.

(moved to 5.2.3.1);

Part 2: 5.2.3. Confidential client, 8.

shall send all parameters inside the authorization request’s signed request object

Part 2: 5.2.3. Confidential client, 9.

A Comprehensive Commentary on Financial-grade API - Page 64

Authlete listed in Open Banking Security Profile Conformance

https://openbanking.atlassian.net/wiki/spaces/DZ/pages/126321042/Open+Banking+Security+Profile+Conformance
https://openbanking.atlassian.net/wiki/spaces/DZ/pages/126321042/Open+Banking+Security+Profile+Conformance

shall additionally send duplicates of the response_type, client_id, and
scope parameters/values using the OAuth 2.0 request syntax as required by Section
6.1 of the OpenID Connect specification if not using PAR;

If request parameters are all put into a request object, either the request parameter
or the request_uri parameter is sufficient. However, if parameters that are
mandatory in OAuth 2.0 / OIDC Core (e.g. client_id and response_type) are
omitted, the request is no longer compliant with OAuth 2.0 / OIDC Core. Therefore,
parameters that are mandatory in OAuth 2.0 / OIDC Core must be put outside the
request object duplicately even if they exist inside the request object.

The FAPI Final version has added a condition “if not using PAR”. This implies that
the set of request parameters don’t have to be compliant with OAuth 2.0 / OIDC
when PAR is used. This incompatibility comes from JWT Secured Authorization
Request (JAR). See “Implementer’s note about JAR (JWT Secured Authorization
Request)” for details.

Part 2: 5.2.3. Confidential client, 10.

shall send the aud claim in the request object as the OP’s Issuer Identifier URL;

Part 2: 5.2.3. Confidential client, 11.

shall send the exp claim in the request object that has a lifetime of no longer than 60
minutes;

The same requirements can be found in Section 5.2.2. Authorization server.

Part 2: 5.2.3. Confidential client, 12.

(moved to 5.2.3.1);

A Comprehensive Commentary on Financial-grade API - Page 65

response_type requirement in OAuth 2.0, OIDC and JAR

https://datatracker.ietf.org/doc/draft-ietf-oauth-jwsreq/
https://datatracker.ietf.org/doc/draft-ietf-oauth-jwsreq/
https://darutk.medium.com/implementers-note-about-jar-fff4cbd158fe
https://darutk.medium.com/implementers-note-about-jar-fff4cbd158fe

Part 2: 5.2.3. Confidential client, 13.

(moved to 5.2.3.1);

Part 2: 5.2.3. Confidential client, 14.

shall send a nbf claim in the request object;

The same requirement can be found in Section 5.2.2. Authorization server.

Part 2: 5.2.3. Confidential client, 15.

shall use RFC7636 with S256 as the code challenge method if using PAR; and

That is, an authorization request must include code_challenge_method=S256
request parameter when PAR is used.

Part 2: 5.2.3. Confidential client, 16.

shall additionally send a duplicate of the client_id parameter/value using the
OAuth 2.0 request syntax to the authorization endpoint, as required by Section 5 of
JAR, if using PAR.

The PAR specification requires that authorization servers handle request objects
based on the rules defined in JAR. The JAR specification has made the
response_type request parameter optional, but the client_id remains
mandatory. See “Implementer’s note about JAR (JWT Secured Authorization
Request)” for details.

Part 2: 5.2.3.1. ID Token as detached signature

In addition, if the response_type value code id_token is used, the client

Section 5.2.3.1. lists requirements for client applications which are applied when an
ID token is used as a detached signature.

A Comprehensive Commentary on Financial-grade API - Page 66

https://darutk.medium.com/implementers-note-about-jar-fff4cbd158fe
https://darutk.medium.com/implementers-note-about-jar-fff4cbd158fe

Part 2: 5.2.3.1. ID Token as detached signature, 1.

shall include the value openid into the scope parameter in order to activate OIDC
support;

This is not a FAPI-specific requirement. OIDC Core requires that an OIDC request
include openid in the scope parameter. See the explanation about the scope
parameter written in Section 3.1.2.1. Authentication Request in OIDC Core for
details.

Part 2: 5.2.3.1. ID Token as detached signature, 2.

shall require JWS signed ID Token be returned from endpoints;

Nothing new from OIDC’s viewpoint. By definition, ID tokens are always signed.
And when response_type is code id_token and scope contains openid, both
the authorization endpoint and the token endpoint return an ID token. See
“Diagrams of All The OpenID Connect Flows” for details about what the
endpoints return.

A Comprehensive Commentary on Financial-grade API - Page 67

response_type=code id_token

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://darutk.medium.com/diagrams-of-all-the-openid-connect-flows-6968e3990660

Part 2: 5.2.3.1. ID Token as detached signature, 3.

shall verify that the authorization response was not tampered using ID Token as the
detached signature;

That is, client applications have to compute hash values of response parameters
outside the issued ID token and compare the values to the hash values in the ID
token.

Part 2: 5.2.3.1. ID Token as detached signature, 4.

shall verify that s_hash value is equal to the value calculated from the state value
in the authorization response in addition to all the requirements in 3.3.2.12 of OIDC;
and

NOTE: This enables the client to verify that the authorization response was not
tampered with, using the ID Token as a detached signature.

This requirement particularly mentions the state parameter and the s_hash claim
in the ID token although they are just one of parameter/hash pairs that have to be
considered.

Part 2: 5.2.3.1. ID Token as detached signature, 5.

shall support both signed and signed & encrypted ID Tokens.

By definition, ID tokens are always signed. When ID tokens are encrypted, the order
of signing and encrypting is “sign then encrypt”. As a result, an encrypted ID token
takes the form of “Nested JWT” as illustrated below.

A Comprehensive Commentary on Financial-grade API - Page 68

See “Understanding ID Token” for details about the structure of ID tokens.

Part 2: 5.2.3.2. JARM

In addition, if the response_type value code is used in conjunction with the
response_mode value jwt, the client

Part 2: 5.2.3.2. JARM, 1.

shall verify the authorization responses as specified in JARM, Section 4.4.

See “Section 4.4. Processing rules” of JARM for details about the verification steps.

Part 2: 5.2.4.

(withdrawn)

Part 2: 5.2.5.

A Comprehensive Commentary on Financial-grade API - Page 69

Nested JWT (JWS in JWE pattern)

https://darutk.medium.com/understanding-id-token-5f83f50fa02e
https://openid.net/specs/openid-financial-api-jarm-ID1.html#processing-rules

(withdrawn)

Part 2: 6.2.1. Protected resource provisions, 1.

shall support the provisions specified in clause 6.2.1 Financial-grade API Security
Profile 1.0 - Part 1: Baseline; and

Part 2: 6.2.1. Protected resource provisions, 2.

shall adhere to the requirements in MTLS.

Part 2: 6.2.2. Client provisions

The client supporting this document shall support the provisions specified in clause
6.2.2 of Financial-grade API Security Profile 1.0 - Part 1: Baseline.

Simply put, Section 6 of Part 2 states that protected resource endpoints and client
applications shall use certificate-bound access tokens and follow requirements in
Part 1.

Part 2: 7. (Withdrawn)

The 7th section of ID2 was “Request object endpoint”. The section was removed by
the FAPI Final version because it was replaced with “OAuth 2.0 Pushed
Authorization Requests” (PAR). See “Illustrated PAR: OAuth 2.0 Pushed
Authorization Requests” for overview of PAR.

A Comprehensive Commentary on Financial-grade API - Page 70

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#accessing-protected-resources-using-tokens
https://openid.net/specs/openid-financial-api-part-2-ID2.html#request-object-endpoint
https://darutk.medium.com/illustrated-par-oauth-2-0-pushed-authorization-requests-652d71ed5cfb
https://darutk.medium.com/illustrated-par-oauth-2-0-pushed-authorization-requests-652d71ed5cfb

Security Considerations

“8. Security considerations” of “Part 2” lists security considerations. Summary is as
follows.

8.1 — This specification references security considerations in Section 10 of RFC 6749
and RFC 6819.

8.2 — Protected resource endpoints shall accept only certificate-bound access tokens.

8.3.1 — Clients should use a different redirect URI per authorization server.

8.3.2 — Authorization codes and client secrets are passed to attackers if developers
are deceived into using a fake token endpoint.

8.3.3 — Hybrid flow or JARM can be used as a countermeasure for IdP mix-up
attack.

8.3.4 — (removed)

8.3.5 — Because an access token is bound to an X.509 certificate, stolen access tokens
cannot be used without corresponding certificates.

8.4.1 — RFC 6749 doesn’t assure message integrity of authorization request and
response.

8.4.2 — Using request objects prevents authorization request parameter injection
attack.

8.4.3 — Using hybrid flow or JARM prevents authorization response parameter
injection attack.

8.5 — Cipher suites for TLS 1.2 are restricted.

“8.5. TLS considerations” of “Part 2” permits only the following cipher suites for TLS
communication when the TLS version in use is below 1.3.

1. TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

2. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

3. TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

4. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

A Comprehensive Commentary on Financial-grade API - Page 71

https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#security-considerations
https://tools.ietf.org/html/rfc6749#section-10
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819
https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#tls-considerations

But, from a viewpoint of interoperability of web browsers, additional cipher suites
allowed in the latest BCP 195 are permitted for authorization endpoints.

Because I couldn’t find any good reasons to exclude the following cipher suites,

 5. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 6. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

I created Issue 216 (TLS_ECDHE_ECDSA cipher suites) to suggest adding them to
the list of permitted cipher suites. 1 year and 4 months later, the issue was closed
with the reason that FAPI now allows TLS 1.3.

8.6 — PS256 and ES256 only are allowed for JWS signature algorithm.

Signing algorithms of JWS are listed in “3.1. “alg” (Algorithm) Header Parameter
Values for JWS” of RFC 7518 (JSON Web Algorithms). Among the 13 algorithms,
“8.6. Algorithm considerations” of “Part 2” permits PS256 and ES256 only. The
section explicitly states that RSASSA-PKCS1-v1_5 (e.g. RS256) should not be used
and none must not be used.

FYI: JWT is used at the following places in an authorization server implementation.

A Comprehensive Commentary on Financial-grade API - Page 72

JWS algorithms permitted by Financial-grade API, Part 2

https://tools.ietf.org/html/bcp195
https://bitbucket.org/openid/fapi/issues/216
https://tools.ietf.org/html/rfc7518#section-3.1
https://tools.ietf.org/html/rfc7518#section-3.1
https://tools.ietf.org/html/rfc7518
https://openid.net/specs/openid-financial-api-part-2-1_0-final.html#algorithm-considerations

8.6.1 — RSA1_5 encryption algorithm must not be used.

This requirement about encryption algorithms was added by the FAPI Final version.
FAPI prohibits RSA1_5. The algorighm identifier is defined in “4.1.
“alg” (Algorithm) Header Parameter Values for JWE” of RFC 7518 (JSON Web
Algorithms). The identifier represents RSAES-PKCS1-v1_5.

8.7 — Use certified FAPI implementations.

8.8 —Don’t allow privileged actions without an access token.

8.9 — Keys for signature verification should be accessible via the jwks_uri or jwks
client metadata (cf. RFC 7591) and the jwks_uri server metadata (cf. RFC 8414).

8.10 — A compromise of any client that shares the same key with other clients would
result in a compromise of all the clients.

8.11 — JWK sets should not contain multiple keys with the same kid, but other key
attributes may be used to select one among multiple key candidates.

A Comprehensive Commentary on Financial-grade API - Page 73

JWT Usage in Authorization Server Implementation

https://tools.ietf.org/html/rfc7518#section-4.1
https://tools.ietf.org/html/rfc7518#section-4.1
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc8414

How Authlete Implements FAPI
This chapter picks up some topics related to FAPI implementation.

Baseline or Advanced?

When a client application requests an access token and accesses APIs with the access
token, which security profile should apply, FAPI Part 1 or FAPI Part 2, or neither of
them?

Some implementations may configure themselves statically and others may make
the decision dynamically at runtime. The FAPI specification mentions nothing
about how to determine which security profile should apply.

A simple approach would be “Regard all authorization requests as FAPI Part 2
requests.” Actually, UK Open Banking has adopted this approach. A hard-coded
implementation like this may be acceptable if the system development is a one-time
work.

However, this approach is not appropriate for a generic authorization server
implementation. It’s because a hard-coded implementation hinders flexibility of
system design too much. Therefore, in a generic implementation, it is better to judge
dynamically at runtime whether an authorization request is for FAPI Part 1 or for
FAPI Part 2 (or for normal OAuth 2.0 / OIDC).

If so, how to judge dynamically? The conclusion everyone will eventually reach after
thinking will be just one. It is judged by checking the requested scopes.

(Note: Another possible way would be to utilize the resource request parameter
defined in “RFC 8707 Resource Indicators for OAuth 2.0”.)

For example, (1) prepare scopes named read and write, (2) adopt a rule where the
read scope requires FAPI Part 1 requirements be satisfied and the write scope
requires FAPI Part 2 requirements be satisfied, and (3) implement APIs so that they
interpret the scopes accordingly. If APIs are implemented in this way, the
implementation of an authorization endpoint can change its behavior dynamically
by (a) applying FAPI Part 2 requirements when the scope request parameter
includes the write scope, (b) applying FAPI Part 1 requirements when the scope

A Comprehensive Commentary on Financial-grade API - Page 74

https://www.rfc-editor.org/rfc/rfc8707.html

request parameter does not include the write scope but includes the read scope,
and (c) applying normal OAuth 2.0 and OIDC requirements when the scope request
parameter includes neither the read scope nor the write scope.

How to implement the scope-based switch? For instance, one approach might be to
regard scopes whose name starts with read as scopes for FAPI Part 1. However, this
approach imposes heavy restrictions on scope names. If that is the case, what
approach has Authlete adopted?

As the first step, Authlete implemented a generic mechanism to set arbitrary
attributes to each scope. On the mechanism, Authlete treats the attribute name fapi
in a special way. An attribute having name fapi and value r represents Read-Only
(= Baseline). Likewise, an attribute having name fapi and value rw represents
Read-and-Write (Advanced).

The web console for FAPI-aware Authlete (version 2.0+) provides UI for scope
attributes. The screenshot below defines a scope named read with an attribute of
fapi=r.

Authlete's /auth/authorization API that parses an authorization request checks
scopes listed in the scope request parameter in the authorization request and
regards the request as a request for FAPI Part 2 if the scope list includes a scope that
has an attribute of fapi=rw. If the scope list does not include any scope having an
attribute of fapi=rw but includes a scope having an attribute of fapi=r, the

A Comprehensive Commentary on Financial-grade API - Page 75

Scope Settings for FAPI Read-Only

http://docs.authlete.com/#auth-authorization-api

authorization request is regarded as a request for FAPI Part 1. In other cases, the
authorization request is treated as a normal OAuth 2.0 / OIDC request.

NOTE: In ID2, the names of FAPI Part 1 and Part 2 were “Read-Only Security
Profile” and “Read and Write Security Profile”. The FAPI Final version renamed
them to “Baseline Security Profile” and “Advanced Security Profile”. The values of r
and rw for the fapi attribute were determined based on the old names.

A Comprehensive Commentary on Financial-grade API - Page 76

Mutual TLS

“Mutual TLS” has three meanings as listed below (as already explained previously).

1. TLS communication using a client certificate

2. Client authentication using a client certificate

3. Certificate binding

The first part is handled by API management solutions. On the other hand, the
second and the third parts don’t necessarily have to be handled by the API
management layer. Rather, a better system architecture would handle them in a
different layer that is independent of the API management layer.

Because of its unique architecture, Authlete doesn’t take on any task in the API
management layer. That is, Authlete does nothing for the first part. On the other
hand, Authlete supports the second and the third parts. Thanks to this, with
Authlete, systems can support MTLS (RFC 8705 OAuth 2.0 Mutual-TLS Client
Authentication and Certificate-Bound Access Tokens) required by FAPI on any API
management solution that developers want to use. I actually tried MTLS on Amazon
API Gateway and wrote an article titled “Financial-grade Amazon API Gateway” to
explains how to achieve it.

A Comprehensive Commentary on Financial-grade API - Page 77

Example of Component Deployment for MTLS on Amazon API Gateway

https://www.rfc-editor.org/rfc/rfc8705.html
https://www.rfc-editor.org/rfc/rfc8705.html
https://www.rfc-editor.org/rfc/rfc8705.html
https://www.authlete.com/developers/tutorial/financial_grade_apigateway/

Any API management solution can support MTLS by using Authlete as long as
the solution provides a mechanism which enables developers to access the client
certificate used in TLS communication.

Existing API management solutions may try to implement MTLS directly. However,
it would take time, and above all, it is not a good system design to support the
functionality directly in the API management layer. At the time of this writing, if you
use an API management solution provided by one of giant cloud vendors, Authlete
is the best answer for MTLS.

The video below is a session in “Financial APIs Workshop” that took place in Tokyo
on July 24, 2018. In the video, Justin Richer, one of the most famous software
engineers in the community and the author of “OAuth 2 in Action”, is explaining
Authlete’s MTLS implementation.

The material and transcript of the presentation are available at “Authlete FAPI
Enhancements”.

A Comprehensive Commentary on Financial-grade API - Page 78

https://www.youtube.com/watch?v=hYhHan5FzlA
https://youtu.be/hYhHan5FzlA
https://financial-api.net/en/
https://www.linkedin.com/in/justinricher/
https://www.manning.com/books/oauth-2-in-action
https://www.authlete.com/resources/videos/20180724/authlete-fapi-enhancements/
https://www.authlete.com/resources/videos/20180724/authlete-fapi-enhancements/

Access Token Duration

This is not related to FAPI, but I explain this feature here because I’m often consulted
about the feature in the context of Bank API by customers who want to make
duration of access tokens for remittance shorter than that of access tokens for other
purposes.

The functionality can be achieved by making access token duration shorter when an
authorization request contains a scope for remittance. For example, if an API for
remittance requires a scope named remit, the authorization server would shorten
access token duration when an authorization request contains the scope.

Authlete supports the functionality by treating a scope attribute named
access_token.duration in a special way.

Authlete checks all scope attributes of requested scopes, picks up the smallest value
among values of access_token.duration attributes, and uses it as the duration
of an access token being issued. If none of the requested scopes has an
access_token.duration attribute, Authlete uses the default value of access
token duration set per authorization server instance. If the default value is smaller
than the smallest value of access_token.duration attributes, the default value is
used.

The screenshot below shows how to set access_token.duration=300as a scope
attribute.

A Comprehensive Commentary on Financial-grade API - Page 79

Scope Settings for Access Token Duration

Likewise, duration of refresh tokens can be set by utilizing
refresh_token.duration attributes.

NOTE: Authlete 2.1 and newer versions support “access token duration per client”.
See “How Authlete determines token duration” on Authlete Knowledge Base for
details.

A Comprehensive Commentary on Financial-grade API - Page 80

https://kb.authlete.com/en/s/oauth-and-openid-connect/a/how-to-calculate-token-duration
https://kb.authlete.com/

Access Token with Transaction Information

This feature is not related to FAPI, either, but I explain it here as I’m often consulted
about it in the context of Bank API by customers who want to associate detailed
transaction information with an access token. I hear that some regulations in Europe
require an access token be issued per transaction under some conditions.

This functionality cannot be achieved by “scope attribute” which was explained in
“Access Token Duration” because the functionality requires data be handled per
access token, not per scope.

Since old days, Authlete has provided a mechanism to set arbitrary key-value pairs
to an access token. This feature can be utilized to associate transaction information
with an access token. Technical details about this feature are explained in “Extra
Properties”. See also “How to add extra properties to an access token” in Authlete
Knowledge Base.

However, note that it is not a smart way to associate detailed information such as
amount of money with an access token directly. Instead, a recommended way is to
(1) store detailed transaction information into another database and (2) associate the
unique identifier of the database record with an access token.

A Comprehensive Commentary on Financial-grade API - Page 81

https://www.authlete.com/documents/definitive_guide/extra_properties
https://www.authlete.com/documents/definitive_guide/extra_properties
https://kb.authlete.com/en/s/oauth-and-openid-connect/a/extra-properties
https://kb.authlete.com/
https://kb.authlete.com/

Authorization Details

Since the version 2.2, Authlete supports “OAuth 2.0 Rich Authorization
Requests” (RAR). The standard specification adds a request/response parameter,
authorization_details.

The authorization_details parameter is used to enable an access token to hold
detailed information about authorization. For example, detailed information about
payment such as “How much?”, “To whom?”, etc.

According to the specification, the authorization_details parameter can be
used anywhere the scope parameter is used. For instance, (a) in the authorization
request, (b) in the token response, (c) in the introspection response, and so on.

A Comprehensive Commentary on Financial-grade API - Page 82

(a) authorization_details in Authorization Request (RAR Section 3)

https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/

A Comprehensive Commentary on Financial-grade API - Page 83

(b) authorization_details in Token Response (RAR Section 7)

RAR is an open standard to describe details about authorization and tie the
information to an access token. RAR is to be adopted as a component of FAPI 2.0 (cf.
“Are there FAPI 2.0 implementations?” in FAPI FAQ).

Authlete’s Extra Properties can be used for the same purpose. One functional
difference is that Extra Properties can choose to expose or hide extra properties.
Hidden extra properties never appear in any OAuth/OIDC responses but can be
retrieved by Authlete’s introspection API (/auth/introspection API). There are some
use cases where you want to tie information to an access token but hide the

A Comprehensive Commentary on Financial-grade API - Page 84

(c) authorization_details in Introspection Response (RAR Section 8.2)

https://openid.net/wg/fapi/faq/
https://www.authlete.com/developers/definitive_guide/extra_properties/
http://docs.authlete.com/#auth-introspection-api

information from the client application and the user. In such cases, Extra Properties
is useful.

A Comprehensive Commentary on Financial-grade API - Page 85

Conclusion
Authlete has already supports the FAPI 1.0 Final version and known technical
specifications of FAPI 2.0 as mentioned in FAPI FAQ. You can try FAPI through
Authlete API Tutorials with an Authlete account (signup).

Please feel free to contact us, Authlete, Inc., via the web form or email if you are
interested in using the world’s first certified FAPI implementation.

A Comprehensive Commentary on Financial-grade API - Page 86

https://openid.net/wg/fapi/faq/
https://www.authlete.com/developers/tutorial/
https://so.authlete.com/accounts/signup
https://www.authlete.com/
https://www.authlete.com/contact/

About Authlete

Authlete, Inc is based in Tokyo and London and
comprised of a team of experts who have a
wealth of experience specialized in authorization
and identity management and are actively
involved in providing specifications of open
standards serving a variety of industries, such as
UK Open Banking.

For more information, please visit
www.authlete.com.

	What is Financial-grade API?
	History of Standardization of FAPI
	FAPI Specifications
	FAPI Certification Program
	Certification for FAPI OpenID Providers
	Certification for FAPI-CIBA OpenID Providers

	Prior Knowledge to Understand FAPI
	Basic Specifications
	Mutual TLS
	OAuth Client Authentication using a Client Certificate
	Certificate-Bound Tokens

	JARM
	Client Metadata for JARM
	Server Metadata for JARM

	Part 1: Baseline
	Requirements for Authorization Server
	Requirements for Public Client
	Requirements for Confidential Client
	Requirements for Protected Resources
	Requirements for Clients to Protected Resources
	Security Considerations

	Part 2: Advanced
	Detached Signature
	Requirements for Authorization Server
	Requirements for Confidential Client
	Security Considerations

	How Authlete Implements FAPI
	Baseline or Advanced?
	Mutual TLS
	Access Token Duration
	Access Token with Transaction Information
	Authorization Details

	Conclusion

