Apoptotic markers may help in predicting the disease course of pediatric immune thrombocytopenic patients

Sarina Levy-Mendelovich^{*1,2,3}, Shraga Aviner^{*4}, Nechama Sharon⁵, Hagit Miskin⁶, Joan Yacobovitch⁷, Gili Kenet^{1,2,3}, Hagit Hauschner⁸ and Nurit Rosenberg^{1,2,3} ¹Sackler Faculty of Medicine, Tel Aviv University, Israel;² The Israeli National Hemophilia Center and Thrombosis Unit, Sheba Medical Center, Tel Hashomer, Israel; ³Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Israel; ⁴Department of Pediatrics, Barzilai University Medical Center, Ashkelon, Israel and The Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; ⁵Pediatric Hemato-oncology Department, Laniado Hospital, Netanya, Israel; ⁶Pediatric Hematology Unit, ShaareZedek Medical Center, Jerusalem, Israel; ⁷Schneider Pediatric Hospital, Petach Tikvah, Israel, affiliated with the Sackler School of Medicine, Tel Aviv University, Israel; ⁸Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel *SLM and SA contributed equally to the paper.

Background

Only 70-85% of pediatric immune thrombocytopenia (ITP) patients will enter durable remission and eventually cure, at one year.

Currently, none of the attempts to classify patients on diagnosis to non-chronic and chronic ones, have been successful.

Hypothesis

Different pathophysiology underlines non-chronic versus chronic pediatric ITP.

Objectives

Examine whether apoptotic markers at differ between the nonchronic and those who will turn to have chronic disease.

Mateial and Methods

Patients

Table 1								
Clinical data of the ITP patients at diagnosis.								
	Non-Chronic ITP n=26	Chronic ITP n=16	All ITP Patients n=42	<i>p</i> value				
% Female	38%	60%	48%	0.026				
Age (year)	3.0±2.9	6.1±5.7	4.1±4.3	0.125				
Platelet Count (x10 ⁹ /L)	16571±18373	17577±13243	17225±14636	0.843				
White Blood Cell (x10 ⁹ /L)	9030±3456	9779±4674	9517±4151	0.602				
Hemoalobin (ma/dL)	12.0±1.4	11.8±1.2	11.9±1.2	0.545				

Table 2

The average expression (Units) level in platelets after incubation with sera taken from ITP patients and healthy controls.

Protein	Non-Chronic ITP	Chronic ITP	Healthy Controls	<i>p</i> value (non-chronic/chronic ITP)
BIM	1599	1162	1099	0.025
CD40	579	460	430	0.035
IGFBP2	1968	877	1810	0.001
P21	31710	20212	29746	0.026
SMAC	2237	1709	1927	0.046

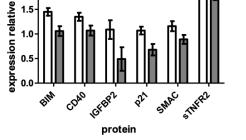
Table 3

Pearson correlation coefficient between the expression levels in platelets after incubation with sera taken from ITP patients and healthy controls.

Proteins	BIM	CD40	IGFBP2	P21	SMAC	sTNFR2
BIM		0.776 p < 0.001	NS	0.425 p < 0.01	0.684 p < 0.001	0.482 p < 0.01
CD40			-0.492 p < 0.01	0.426 p < 0.01	0.829 p < 0.001	0.715 p < 0.001
IGFBP2				NS	-0.505 p < 0.01	NS
P21					NS	0.664 p < 0.001
SMAC						0.494 p < 0.01
sTNFR2						

ITP patient

The expression level in platelets after incubation with sera taken from ITP patients, compared to sera taken from healthy controls, shows a mean±SEM effect of sera from non-chronic ITP patients (white) and chronic ITP patients (gray).


Presented is the average ± SD. The differences between chronic and non-chronic ITP patients were analyzed using a T- test. *denotes a statistically significant difference

•We incubated patients' sera with washed platelets and compared the results between healthy controls, chronic and non-chronic ITP patients.

•Posphatidylserine exposure and mitochondrial electrochemical potential were measured using Flow cytometry followed by a 43 markers Human Apoptosis Array.

Results

- We found an increased expression of five apoptotic proteins on platelets incubated with sera of non-chronic pediatric ITP patients, compared to chronic ones' sera, upon diagnosis (table 2).
- No significant difference was found in the apoptotic markers' phosphatidylserine (PS) surface expression and loss of mitochondrial inner membrane potential ($\Delta \Psi m$), between normal platelets compared to sera from healthy donors.
- An inverse correlation was found between the anti- apoptotic protein IGFBP2 and the pro- apoptotic SMAC protein, or the pro-activation CD40 protein' in accordance with their different effects on platelets. No significant correlations were found between IGFBP2 expression and the other proteins: BIM, p21, and IGF1sR (Table 4).
- Sera taken from chronic ITP patients decreased its expression in the platelet (Figure 1) and displayed a positive correlation with pro-apoptotic SMAC and the pro-activation CD40, which is enigmatic for its function in the platelets.

Discussion

- Two pathways of apoptosis in platelets have been described:
- 1. A cell-intrinsic mitochondria-dependent pathway, is the basis for the results presented above.
- 2. An extrinsic pathway, may be initiated by the interaction between death ligands belonging to the TNF superfamily and the cell surface TNF receptors.
- Altogether, our results suggest that the pathophysiology of non-chronic vs chronic ITP is somewhat different, although they share almost the same clinical presentation.

The limitations of this study:

- 1. The study tested the effects of sera on normal platelets and not on ITP patients' platelets.
- 2. We examined the sera at one time point, upon initial diagnosis.
- 3. The apoptotic protein panel checks the quantitative levels of the markers; however, this does not tell us in what configuration they are found.

Conclusions

Our data may help to stratify ITP patients to non-chronic and chronic ones at diagnosis.

This may enable us to tailor more specific therapy to these seemingly different clinical entities currently being treated in the same way.