

University of Dundee

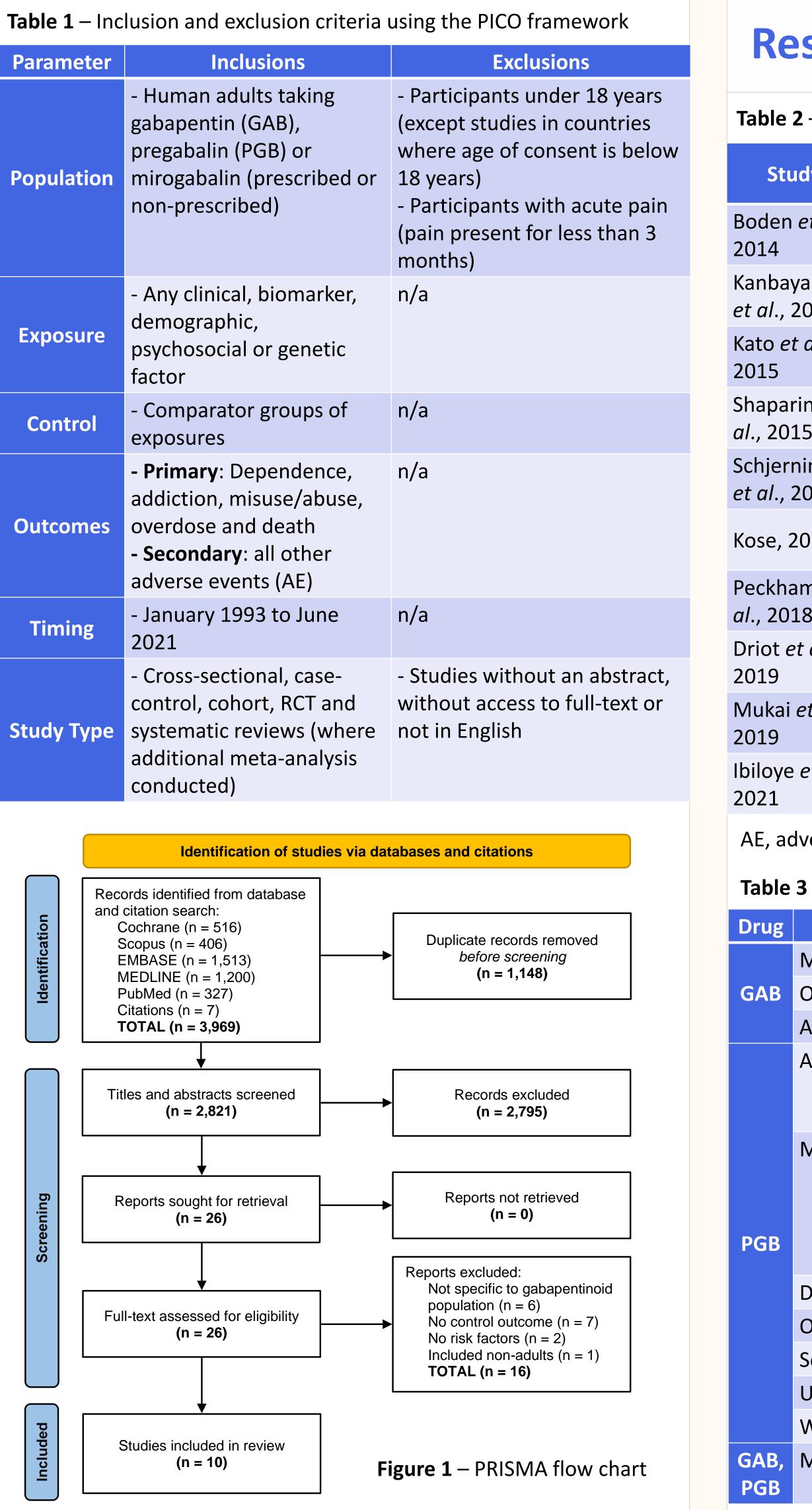
Risk Factors Associated With Adverse Outcomes In Adults Taking Gabapentinoids: A Systematic Review and Meta-Analysis

*Email: h.hebert@dundee.ac.uk

Introduction

Gabapentinoids are recommended for the treatment of neuropathic pain. Prescribing and illicit use of gabapentinoids have been increasing and this has coincided with an increase in drug-related deaths linked to the drugs. Despite rising concerns about the safety of gabapentinoids, little is known about the patients most at risk of harm.

Objectives


- To conduct a systematic review to identify all published studies of risk factors associated with adverse outcomes in adults taking gabapentinoids.
- To summarise the risk factors for adverse outcomes in gabapentinoids through narrative synthesis and meta-analysis.

Methods

- The study was conducted using a pre-registered protocol (PROSPERO ID: CRD42021249664) in line with PRISMA guidelines.
- Cochrane, MEDLINE, EMBASE, Scopus, and PubMed were searched for eligible studies using a pre-defined strategy.
- All titles and abstracts were screened by one reviewer (J.M.E.) with $\sim 1/3$ screened by a second reviewer (H.L.H.) for quality control.
- Risk of bias was assessed using the National Institutes of Health quality assessment tool (J.M.E. and H.L.H.).
- A random effects meta-analysis was conducted where ≥2 studies reported the same drug, risk factor, and outcome and I^2 test of heterogeneity < 50%.
- Statistical analysis was conducted using R Studio.

Jennifer M. Emerengwa, Blair H. Smith, Lesley A. Colvin, Harry L. Hébert*

Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK

Results

 Table 2 – Study characteristics

dy	Country	Design	Drug	Reported Outcome	Quality Rating
et al.,	Sweden	Retrospective Cohort	PGB	Misuse	Good
ashi 014	Japan	Retrospective Cohort	PGB	Various AEs	Good
al.,	Japan	Retrospective Cohort	PGB	Somnolence, dizziness	Good
n <i>et</i> 5	USA	Nested case-Control	GAB	Various AEs	Fair
ing 016	Denmark	Retrospective Cohort	PGB	Abuse	Good
018	Japan	Nested case-control	PGB	Various AEs	Good
m <i>et</i> 8	USA	Retrospective Cohort	GAB	Overuse	Good
al.,	France	Retrospective Cohort	GAB, PGB	Misuse	Good
et al.,	Japan	Nested case-control	PGB	Various AEs	Good
et al.,	USA	Retrospective Cohort	GAB, PGB	Misuse	Fair

AE, adverse event; GAB, gabapentin; PGB, pregabalin

Table 3 – Risk factors associated with different gabapentinoid outcomes

Outcome	Risk factors				
Misuse	Younger age, higher number of prescribers				
Overuse	Males, anxiety, depression				
Any AEs	Females, non-white				
Abuse	Males, early retirement, younger age, antidepressants, antipsychotics, benzodiazepines, opioids, antiepileptics, no anticholinergics				
Misuse	Younger age, males, higher number of prescribers, cancer, multiple sclerosis, neuropathy, personality disorders, methadone, lower income, epilepsy, neuropathic pain, an addictive disorder, drug with an abuse potential				
Dizziness	Older age, opioid use				
Oedema	Higher neurotropin and serum creatinine levels				
Somnolence	Older age, higher duration of therapy, opioid use				
Unsteadiness	Older Age, no NSAIDs, lower PGB dose				
Weight gain	Higher serum creatinine level				
Misuse	Younger age, males, neuropathic pain, gabapentinoid type (PGB), opioid use				

meta-analysis

Study

O. Schjerning et al. Boden R et al.

Random effects me Heterogeneity: $I^2 = 0\%$

Figure 2 – Forest plot of male gender as a risk factor for misuse/abuse of pregabalin.

Conclusions

Understanding the risk factors for gabapentinoidrelated adverse outcomes has the potential to inform treatment strategies. The development of screening tools to quantify risk of harm will assist treating physicians further. No studies examined gabapentinoid-related death or genetic factors, and these should be areas of future research.

References

- Pain 2015;31(11):983–991.

• Only two studies met the inclusion criteria for a

TE seTE	Odds Ratio	OR	95%-CI	Weight
0.53 0.1730 0.38 0.0330			[1.21; 2.39] [1.38; 1.57]	
odel %, τ ² = 0.0027, p = 0.41			[0.85; 2.63]	
0.5	1 2			

. Bodén R et al. Factors associated with pregabalin dispensing at higher than the approved maximum dose. Eur J Clin Pharmacol 2014;70(2):197–204.

2. Driot D et al. Patterns of gabapentin and pregabalin use and misuse: Results of a populationbased cohort study in France. Br J Clin Pharmacol 2019;85(6):1260–1269.

3. Ibiloye EA et al. Prevalence of and Factors Associated with Gabapentinoid Use and Misuse Among Texas Medicaid Recipients. Clin Drug Investig 2021;41(3):245–253.

4. Kanbayashi Y *et al*. Factors predicting adverse events associated with pregabalin administered for neuropathic pain relief. Pain Res Manag 2014;19(6):e164-e167.

5. Kato H *et al*. A retrospective study to identify risk factors for somnolence and dizziness in patients treated with pregabalin. J Pharm Heal Care Sci 2015;1(1):22.

6. Kose E. Adverse drug event profile associated with pregabalin among patients with and without cancer: analysis of a spontaneous reporting database. J Clin Pharm Ther 2018;43(4):543–549. 7. Mukai R et al. Evaluation of pregabalin-induced adverse events related to falls using the FDA adverse event reporting system and Japanese Adverse Drug Event Report databases. J Clin Pharm Ther 2019;44(2):285–291.

8. Peckham AM *et al*. Predictors of Gabapentin Overuse With or Without Concomitant Opioids in a Commercially Insured U.S. Population. Pharmacotherapy 2018;38(4):436–443.

9. Schjerning O et al. Use of Pregabalin - A Nationwide Pharmacoepidemiological Drug Utilization Study with Focus on Abuse Potential. Pharmacopsychiatry 2016;49(4):155–161.

10. Shaparin N et al. Relationships among adverse events, disease characteristics, and demographics in treatment of postherpetic neuralgia with gastroretentive gabapentin. Clin J