

Antinociceptive Effect of *Pterospartum tridentatum* on Experimental Type II Diabetes

¹Life and Health Sciences Research Institute (ICVS), University of Minho; ²ICVS/3B's - PT Government Associate Laboratory; ³CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-montes e Alto Douro; ⁴Centre of Molecular and Environmental Biology (CBMA), University of Minho; ⁵Polytechnic Institute of Viana do Castelo, Viana do Castelo ⁶Centre of Biological Engineering, University of Minho. *filiparibeiro@med.uminho.pt

Introduction

Painful Diabetic Neuropathy (PDN) is one of the most common complications of type-2 diabetes mellitus (T2DM)¹, yet efficient pain relief remains challenging². *Pterospartum tridentatum*, an Iberian Peninsula native plant³ used in folk medicine^{3,4}, displays significant antioxidant activity that could counteract oxidative stress caused by T2DM-induced vascular complications ^{5,6}.

The **aim** of this work was **to evaluate** *in vivo* the antinociceptive and protective effects of Pterospartum tridentatum methanolic extracts in rats with experimental T2DM.

Materials and Methods

<i>In vivo</i> studies
• Adult male rats, var. Wistar han
 Streptozotocin-nicotinamide model ⁷
 PtL extract - 100 mg/Kg (PtL100), n=7
- PtL extract — 300 mg/Kg (PtL300), n=7
- Vehicle solution - PBS (Diab, n=6 and Shar
 Blood glucose test (weekly) ⁸
 Mechanical (Von Frey test ⁹) and thermal a test⁹);
 Mechanical (Randal-Sellito test¹⁰) and ther (tail-flick test¹¹)
 Internal organs (liver, kidney, pancreas ar
GraphPad Prism software: ANOVAtwo-w

Results

[1] Scholz J., Finnerup N. B., Attal N., (...) & Treede, R. D., 2019. Pain, 160, 53. [2] Krein S. L., Heisler M., Piette J. D., Makki F. and Kerr E. A., 2005. Diabetes [8] Okyar A., Can A., Akev N., Baktir G. and Sütlüpinar N., 2001. Phytotherapy Research, 15, 157-161. [9] Pawar S. H., Upaganlawar care, 28, 65-70. [3] Coelho, M. T., Gonçalves, J. C., Alves, V., & Moldão-Martins, M. (2011). Procedia Food Science, 1, 1454-1458. [4] Aires A., Marrinhas E., Carvalho R., A. B. and Upasani C. D., 2021. bioRxiv, 12, 363-368. [10] Vieira W. F., Malange K. F., Magalhães (...) and Parada C. A., Dias C. and Saavedra M. J., 2016. BioMed research international. [5] Pinto, D. C., Simões, M. A., Vinto D. C., 2020. Neuroscience letters, 736, 135253. [11] Pinto-Ribeiro F., Amorim D., David-Pereira A., (...) A. and Almeida A., 2013. Brain Neves B. M. and Silva A., 2020. Molecules, 25, 812. [7] Arulmozhi D. K., Veeranjaneyulu A. and Bodhankar S. L., 2004. Indian Journal of Pharmacology, 36, 217-221. Research Bulletin, 99, 100-108. [12] Oliveira J. M., Kotobuki N., Tadokoro M. (...) and Ohgushi H., 2010. Bone, 46, 1424-1435.

Laranjeira, I. ^{1,2,3,4}, Silva, M.⁵, Almeida, A. ^{1,2}, Dias, A.C.P. ^{3,4,6}, Pinto-Ribeiro, F. ^{1,2,*}

m, n=6) allodynia (acetone rmal hyperalgesia nd spleen)

Induction of **T2DM** blood rats IN throughout the experimental period independently ot

Figure 1. Evaluation of blood levels throughout the

Results

Hyperalgesia

Figure 3 - Evolution of the thermal (A) and mechanical (B) hyperalgesia throughout time.

Histopathology of Internal organs

Figure 2 - Evolution of the thermal (A) and mechanical (B) allodynia throughout time.

Both **PtL treatments reversed** thermal and mechanical **hyperalgesia**

CITAB

Conclusion PtL extracts Contra of molecular and institute de Investigação em Ciências da Vida e Saúde Instituto de Investigação em Ciências da Vida e Saúde Instit

virtual Neuropathic-Pain

Both PtL treatments partially **protected** from **parenchymal**, podocyte and mesangial cell loss, and decreased proximal tubule damage

Figure 5 – Photomicrographs of kidney samples. H&E stain. magnification 40x (scale bar - 50µM)

PtL treatments partially **protected** the citoarchitecture of the Langerhans islets, decreasing the dispersion in the β cells.

Photomicrographs of Figure H&E stain. samples. pancreatic Magnification 40x (scale bar - 50μ M)

Both PtL treatments partly **reversed** the abnormalities caused by experimental T2DM, to the **white** and red pulp in the spleen

Figure 7 – Photomicrographs of speen samples. H&E stain. Magnification 4x (scale bar - 200µM)

partially the prevented development/progression of T2DM complications at the behavioural and tecidular levels, highlighting its potencial as an adjuvant therapy for diabetic patients.

PD - F FCT PhD PROGRAMMES PD/BD/ 150263/2019