

Free-Electron-Based Interferometry Ad Quanta for Enhanced Phase-Resolved Near-Field Imaging

Tomer Bucher¹, Ron Ruimy¹, Raphael Dahan¹, Shai Tsesses¹, Guy Bartal¹, Giovanni Maria Vanacore² and Ido Kaminer¹ ¹Andrew and Erna Viterbi department of Electrical & Computer Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel ²Department of Material Science, University of Milano-Bicocca, Via Cozzi 55, 20121, Milano, Italy

Fig. 6. Optimization procedure: block scheme (top) and visualization (bottom)

Conclusions	References
Interferometric-PINEM gives enhanced imaging signal for amplitude and phase , therefore, enables to image electron and light beam sensitive materials and cold excitonic physics .	 Weigert, et al., Nat Meth. 15, 1090 (2018). B. Barwick, et al., Nature 462, 902 (2009). KE. Echternkamp, et al. Nat. Phys. 12, 1000 (2016).
Our vision is achieved via the over-constraint nature of the scheme.	[4] Y. Morimoto, et al., Nat. Phys. 14, 252 (2018). [5] I. Madan, et al., ACS Phot. 9, 3215 (2022)
Inspired by free-electron pre-shaping [3-5,8] and pseudo-heterodyne detection in near-field scanning optical microscopy (NSOM) [9, 10].	 [5] I. Madail, et al., ACS Fliot. 9, 3213 (2022). [6] O. Reinhardt, et al., ACS Photonics. 7, 2859 (2020). [7] K. Zhang, et al., IEEE TIP. 26, 3142 (2017). [8] KE. Priebe, et al. Nat. Phot. 11, 793 (2017).
DL methods will utilize more degrees of freedom from the scheme and enable microscopy of previously inaccessible phenomena.	 [9] S. Tsesses, et al., Nano Letters 19, 4010 (2019). [10] N. Ocelic, et al., Appl. Phys. Lett. 89, 101124 (2006).