InGaN/GaN quantum wells by **Molecular Beam Epitaxy at ICAP**

Ofer Sinai¹ and Renana Didi¹

¹Soreq NRC; Israel Center for Advanced Photonics

Introduction

The III-Nitride family

- Direct, wide bandgap semiconductors
 - High electro-optical efficiency
 - High breakdown field
- Composition-tunable properties
 - Lattice constant
 - Bandgap energy
 - Polarization
- High durability
 - Radiation hardness
 - Mechanical hardness • Chemical stability

InGaN using shutter modulation

- $\omega 2\theta (0 \ 0 \ 0 \ 4)$
 - No phase separation evident in peaks
 - Relaxation leads to asymmetric peaks
- RSM (1 1 -2 4)
 - $x(In)\uparrow \Rightarrow$ Increasing relaxation
 - $x(In)\uparrow \Rightarrow$ Fainter signal

Israel Center for Advanced Photonics

המרכז הישראלי לפוטוניקה מתקדמת

ISORAD

III-Nitride applications

Molecular Beam Epitaxy (MBE) of III-Nitrides

InGaN/GaN QWs using shutter modulation

SOREQ

- Principles of modulation: 0
 - $\varphi(Ga)/\varphi(N) < 1$
 - Room for In
 - $[\phi(Ga) + \phi(In)]/\phi(N) > 1$
 - Excess In for metal-rich
 - InGaN QW: In > In+Ga+N > Ga+N
 - Excess In at end
 - GaN QB: Ga > Ga+N
 - Ga-only time finely tuned
- Surface conditions monitored in-situ by: 0
 - RHEED

•

Apparent pyrometer temperature

Doping dynamics [Si] – Si concentration n_{Si} – amount of Si Preliminary metal step \rightarrow start metal-rich Ga puddle volume = 1 0 r – puddle vol. change rate t-time $\frac{dn_{Si}}{dt} = Si_{\searrow} - Si_c$ $[Si] = \frac{n_{Si}}{1+rt}$ $Si \searrow - Si$ arriving Si_c – Si incorporated • Constant volume (steady = $Si_{a} - \frac{1}{\tau} \cdot \frac{n_{Si}}{1 + rt}$ state growth) τ – characteristic Si residence time (b) state growth) r = 0: $- - - - \tau = 1 \text{ s, [Si]}_{0} = 0$ _ _ _ _ τ = 1 s, [Si]_o = Si↓- $\tau \cdot r = -0.01$ $\tau = 0.1 \text{ s}, [Si]_0 = 0$ $\frac{d[Si]}{dt} = 0 \Rightarrow [Si]_{t \gg \tau} = \tau \cdot Si_{\searrow}$ ______ *τ*⋅r = -0.1 $\tau \cdot r = -0.3$ ____ τ = 0.1 s, [Si]_o = Si↓·τ _ *τ* = 0.1 s, [Si]_o = 10·Si↓· $\tau r = -0$ • SME = gradually shrinking metal layer r < 0: slight perturbation 0.2 0.4 0.6 0.8

Conditions	Excess III	N-rich
Adatom surface mobility	High	Low

Herman & Sitter, Molecular Beam Epitaxy, fundamental and current status, Springer-Verlag Berlin Heidelberg New York,

H. Asahi and Y. Horikoshi, Molecular Beam

surface

diffusion

- Growth regimes determine crystal quality
- Challenges with InN
 - Weak In-N bond
 - InN decomposition ~450°C
 - Preferential incorporation of Ga • Presence of Ga stabilizes InN
 - Long In residence time at InGaN growth temperatures
 - Phase separation

Chart Area Figure 2. Flux sequence for SME InGaN (3 cycles shown). In this example the metal-rich (In+Ga+N) interval is applied for the first 40% of each cycle.

- Solution: Modulate fluxes during growth
 - "Shuttle" between regimes
 - Eliminate droplets periodically
- Flux conditions:
- $\varphi(Ga)/\varphi(N) < 1$
- $[\phi(Ga)+\phi(In)]/\phi(N) > 1$

• Initial transient dependent on τ

Characterization

X-Ray diffraction

35 37 35.5 36 36.5 ω - 2 θ diffraction angle (deg)

Summary

- Growth of MQWs and SQWs with precise structures, 0 sharp interfaces
- General-purpose shutter-modulated growth 0 techniques, based on RHEED monitoring
- Doping included based on analysis, taking 0 advantage of modulation scheme
- Repeatable, uniform PL emission but broad peaks Ο

