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Short wavelength infrared spectrum

Extending the spectral range to short 

wavelength infrared (SWIR) radiation allows to 

access manifold information hidden to the 

optical range. 

SWIR applications

The extended penetration depth and the 

reduced scattering makes the SWIR spectral 

range an interesting candidate for enhanced 

detection in the fields of quality assurance, 

autonomous vehicles and safety.
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Figure 1 – Electromagnetic spectrum.

Figure 2 – SWIR application example, images of the same 

apples in different spectral ranges.1
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Si SWIR detection

SWIR radiation can not be detected in Si by 

interband absorption processes. Schottky

interfaces provide adjustable barriers by 

choosing metal and doping concentration 

appropriately.
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Figure 3 – Schematic of a Schottky barrier with 

photogenerated charge carriers.

Si Detector design

Typically, Schottky detectors suffer from low 

external quantum efficiency originating from a 

low internal quantum efficiency and high 

reflection at the internal metal-semiconductor 

interface.

Reduction of reflection

Matrices of pyramidal shaped nanostructures 

act as absorbing structure increasing the 

interaction length of incoming radiation with 

the interface.

Figure 4 – Si nanostructures fabricated by a two-step 

anisotropic and isotropic dry etching process.

Increas ing internal quantum efficiency

Khurgin2 suggests an improvement in internal 

quantum efficiency by intermediate TiN based 

on an optimized charge carrier distribution 

along the interface.
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Figure 5 – Schematic crosscut through the detector with the 

TiN interface.

Effective barrier height

Optical responsiv ity

Figure 6 – Temperature depended current densities and inset 

with Richardson plot.

Figure 7 – Responsivity of devices with different pyramidal 

nanostructures.
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Conclusion

In summary we found that 

▪ Si nanostructures enhance the optical 

responsivity,

▪ TiN creates a Schottky barrier of required 

height and reasonable saturation current.

Device characterization

Devices are characterized by electrical and 

photonic measurement techniques. By relating 

photocurrent and photonic power from a 

tunable light source the optical responsivity was 

determined.


