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ABSTRACT

A change in terahertz (THz) metamaterials (M.M) resonance
frequency (𝐹0) can be brought by any foreign substance deposited
in the capacitive-gap region, thereby changing the effective
dielectric constant (ε𝑒𝑓𝑓) and thus the capacitance, resulting in a
redshift in the resonance frequency (ΔF) with respect to the
pristine LC circuit in the array. The dielectric response is
maximized by proper engineering and optimization of the M.M
geometry and material so that we can extract the maximum ΔF for
lower concentration of dielectrics. Moreover, the Fabry-Perot (FP)
oscillations of the substrate interacts with the M.M. resonance
which results in increment/decrement of the electric and magnetic
field coupling to the M.M; thus give rise to strong/weak coupling of
FP-M.M resonances, depending on the thickness and material of
the substrate. Thus, the dielectric response can be maximized by
proper engineering and optimization of the M.M (including
substrate) geometry and material so that we can extract the
maximum ΔF for lower concentration dielectrics.

LC RESONANT METAMATERIAL

WORKING PRINCIPLE
 LC resonant M.M consists of an inductive (L) and capacitive

(C) element, with natural resonant frequency 𝐹0.

 Any dielectric particle introduced in the capacitive gap area,

changes the effective dielectric constant and hence the

resonating frequency of the M.M.

 This dielectric response of M.M structure is characterized by a

red-shift of the M.M resonant frequency, which is captured at

resonance by THz impedance spectroscopy.
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DETECTOR STRUCTURE – NOVEL DESIGN
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De-Coupling MM from FP Resonance
 Reduction in Silicon (substrate) thickness reduces 𝜀𝑒𝑓𝑓 and

also widens F.P. oscillations.

 ΔF increases by 5X, hence enabling ultra-sensitive detection.

 Promising to use in virus detection.
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