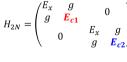
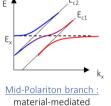
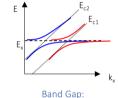

NEW TYPE OF CAVITY-QUANTUM ELECTRODYNAMICS TRANSITION IN MULTIMODE CAVITIES UNDER STRONG COUPLING

M. Godsi, M. Balasubrahmaniyam, C. Genet and T. Schwartz

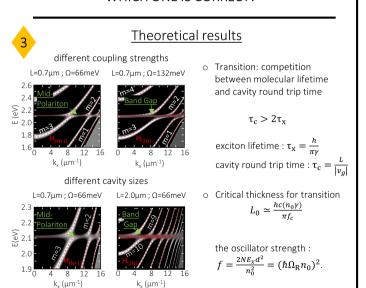

Physical Chemistry Department and Center for Light-Matter Interaction, Tel Aviv University, Israel maygodsi@mail.tau.ac.il



- Strong Coupling: Formation of hybrid (collective) quantum states
- o Determined by the "concentration" of the molecule.
- \circ Light matter interaction is counteracted by dissipation (γ).



How will several optical resonances interact with the material? $H_{N+1} = \begin{pmatrix} E_x & g & g \\ g & \mathbf{E_{c1}} & 0 \\ g & 0 & \mathbf{E_{c2}} \end{pmatrix}$



modal coupling

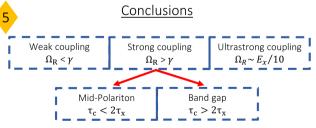
two pairs of decoupled polaritonic branches

Different Hamiltonians = different physics WHICH ONE IS CORRECT?

Balasubrahmaniyam et al., PRB 103, L241407 (2021)

Experimental results

Identical coupling strength, different behavior for different cavity sizes


Reflection measurements

- The transition has been experimentally proven.
- o Single peak: cavity modes talking through molecules.
- o Two peaks: polaritons decoupled.

Emission measurements

o Emission from high energy polaritons, breaking Kasha's rule?

INCREASING THICKNESS L_{cav}=628nm L_{cav}=1615nm Reflection Reflection Emission 2.8 2.6 2.6 2.4 2.2 2.2 k_x (μm⁻¹) k_x (μm⁻¹) 2.05 2.15

- o Strong coupling can occur in two very different manners, depending on coupling strength + cavity size.
- o The dimensions of the system **do** matter.
- o In progress: ultrafast spectroscopy for studying the dynamic of the system.