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Understanding light propagation in time-varying environments can lead to new 
ways to manipulate light. Using time-varying photonic structures it is possible 
to achieve optical responses like frequency conversion, optical isolation, 
parametric amplification, temporal cloaking, breaking of Lorentz reciprocity, 
and many others. We recently developed a dynamical multiple scattering 
method for the solution of Maxwell’s equations in time-varying environments 
and, specifically, in layered structures that consist of two-dimensional periodic 
arrays of scatterers. Moreover we have considered the scattering from a single 
dielectric sphere with time-varying permittivity1 or radius2.  The generalization 
of multiple scattering theory offers very interesting possibilities to study novel 
optical phenomena in metasurfaces and photonic crystals. The method is very 
efficient and enables physical insight, since the scattering properties can be 
easily assigned to the optical response of the individual particles.
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Light scattering by a single time varying sphere

Introduction
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Spherical expansion of the EM field, Mie theory
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Time-Floquet analysis of the scattering 
by a particle with time varying radius
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For slow temporal variations Ω → 0 the quasistatic adiabatic approximation 
that considers snapshots as the particle varies, is valid, but overestimates 
the phenomena

Dynamic scattering
T-matrix

Layer Multiple Scattering (LMS) Method

The Dynamic LMS is semianalytical and fast, (few seconds on a laptop), 
and allows the efficient design of dynamic metasurfaces

Monolayer of dynamic  dielectric spheres

𝜀 𝑡 = 𝜀0 1 + sin Ωt , 𝜀0 = 12

Square lattice with lattice 
constant a of spheres with radius, 
R=0.4a with varying permittivity:

Frequency up conversion. 
Triple resonance transitions.
Dependence on the strength of the 
oscillation η. Requires  optimization for 
optimum upconversion efficiency. 

Non reciprocal transmission is achieved with two layers where the ε(t) 

oscillates with a phase shift between them.

Transmission and reflection 
components for fixed incoming 
light  frequency ω, vs Ω.

When Ω is equal to the 
difference between two 
resonances, strong frequency 
conversion occurs, while the 
Stokes component is 
suppressed

Non reciprocal metasurfaces

For time varying scatterers
in a fixed lattice, the LMS method
is generalized by introducing the 
dynamic T-matrix that mixes 
the frequency channels.

The method solves the Maxwell’s 
equations for arrays of particles by 
describing the scattering from each 
particle and then connecting all 
scattering events through the 
multiple scattering equations.

Scattering cross section of a Si sphere with 
time varying radius R(t) = R0[1+ηcos(Ωt)]

𝑅(𝑡) = 𝑅0(1 + 𝜂 sinΩ𝑡)

Fourier components 
(a) Incoming light frequency
ω = ωr+γ and Ω = γ. 
(b) ω = ωr+6γ and Ω = 6γ. 

open symbols η = 10−10

filled squares η = 10−9.

Fourier components of the optical 
scattering and absorption cross 
section, for the first-order TEℓ=12 
Mie resonance

Ω = γ

For vibration amplitudes: 
η = 5×10−10 (light gray line)
η = 10−9 (gray line)
η = 2 × 10−9 (black line).

The problem of the optical response of the dielectric sphere with a 
periodically time-varying radius, is equivalent to that of an oscillator
with a time-varying eigenfrequency. 
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Scattering and 
Absorption
cross sections
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Fourier components of 
transmission and 
reflection.

Resonances appear 
when Ω matches the 
difference between two 
resonances.

The transmission spectrum shows 
many resonances and bound states 
in the continuum due to the Mie 
resonances of the single spheres. 
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