
## Incoherent and coherent manipulations of valley excitons via a photonic Rashba effect

Kexiu Rong<sup>1</sup>, Xiaoyang Duan<sup>1</sup>, Bo Wang<sup>1</sup>, Dror Reichenberg<sup>1</sup>, Assael Cohen<sup>2</sup>, Chieh-li Liu<sup>1</sup>, Pranab K. Mohapatra<sup>2</sup>, Avinash Patsha<sup>2</sup>, Vladi Gorovoy<sup>1</sup>, Subhrajit Mukherjee<sup>1</sup>, Vladimir Kleiner<sup>1</sup>, Ariel Ismach<sup>2</sup>, Elad Koren<sup>1</sup>, and Erez Hasman<sup>1</sup> <sup>⊠</sup> <sup>1</sup>Technion – Israel Institute of Technology, Israel <sup>2</sup>Tel Aviv University, Israel ⊠ mehasman@technion.ac.il

The photonic Rashba effect describes a momentum-space spin-split dispersion  $\omega(k\pm \sigma K_{sl})$  from an inversion-asymmetric pseudospin lattice, with  $\sigma K_{sl}$  being the spin-dependent reciprocal lattice vector due to optical spin-orbit interactions. Here, we show the room-temperature manipulations of valley excitons both in an incoherent (by exploiting the valley polarization) and a coherent manner (by exploiting the valley coherence) via a photonic Rashba effect. These results establish a multifunctional valley-photon interface for valley information transportation. Firstly, we demonstrate a photonic Rashba effect from valley excitons by incorporating a WSe<sub>2</sub> monolayer into a photonic crystal slab with geometric phase defects [1]. The effect arises from a coherent geometric phase pickup assisted by the Berry phase defect mode, whereby valley excitons effectively interact with the defects for site-controlled excitation, photoluminescence enhancement, and momentum-space valley separation. Secondly, we report on a spin-optical monolayer laser by incorporating a WS<sub>2</sub> monolayer into a heterostructure microcavity supporting high-Q spin-valley resonances [2]. Inspired by the creation of valley pseudospins in monolayers, the spin-valley modes are generated from a photonic Rashba-type spin splitting of a bound state in the continuum, which gives rise to opposite spin-polarized  $\pm K$  valleys under inversion symmetry breaking. The Rashba monolayer laser shows intrinsic spin polarizations, high spatial and temporal coherence, and inherent topological protection features, enabling valley coherence in the WS<sub>2</sub> monolayer upon arbitrary pump polarizations at room temperature.







[1] Rong, K. *et al.* Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. *Nat. Nanotechnol.* 15, 927–933 (2020).
[2] Rong, K. *et al.* Spin-valley Rashba monolayer laser. (Under review.)

Atomic-Scale Photonics Laboratory

